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Abstract: To deal with the complexities associated with the rapid growth in a merged 
concept lattice, a formal method based on an entropy-based weighted concept lattice 
(EWCL) is proposed as a mechanism for merging multi-source geographic ontologies  
(geo-ontologies). First, formal concept analysis (FCA) is used to formalize different  
term-based representations in relation to the geographic domain, and to construct a merged 
formal context. Second, a weighted concept lattice (WCL) is applied to reduce the merged 
concept lattice, based on information entropy and a deviance analysis. The entropy of the 
attribute set is exploited to acquire the intent weight value, and the standard deviation 
contributes to computing the intent importance deviance value, according to the user 
preferences and interests. Some nodes of the merged concept lattice are then removed if 
their intent weights are lower than the intent importance thresholds specified by the user. 
Finally, experiments were conducted by combining fundamental geographic information 
data and spatial data in the hydraulic engineering domain from China. The results indicate 
that the proposed method is feasible and valid for reducing the complexities associated 
with the merging of geo-ontologies. Although there are still some problems in the 
application, the manuscript offers a new approach for the merging of geo-ontologies. 

Keywords: geo-ontology merging; formal concept analysis; weighted concept lattice; 
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1. Introduction 

Currently, geo-ontology is widely used for representing and sharing spatial information in various 

application domains, and integrating different geospatial information between interoperating systems 

has become a hot topic in many scientific disciplines [1]. However, due to the different data standards 

and incompatible terminologies for expressing spatial information in geographic information science, 

it is easy to produce semantic heterogeneity. For instance, semantic differences regarding rivers often 

occur in the distributed systems of the Ministry of Water Resources and the Ministry of Land and 

Resources in China. The former emphasizes the natural morphology of rivers, and the latter stresses 

the negotiability of waterways. These problems could possibly be avoided if ontologies were applied. 

At present, ontology is widely used as a tool to address heterogeneity problems in many areas, such as 

knowledge representation, information retrieval, and the semantic web [2,3]. Furthermore, ontology 

has been defined as “a formal explicit specification of a shared conceptualization” [3], and geo-ontology is 

no exception in real applications, which is used to define a common vocabulary that will facilitate 

interoperability and handle some problems with data integration in various systems. [4]. The existing 

geo-ontology building frameworks different experts, different tools, and different techniques.  

Geo-ontologies may differ and even conflict, even though the ontologies exist in the same domain. As 

a consequence, the problem of merging geo-ontologies from multi-source geospatial data is still a  

big challenge. 

Up till now, some significant progress in merging geo-ontologies has been achieved. Kokla et al. [5] 

combined semantic factoring and a concept lattice for integrating multiple ontologies .They used an 

example of integrating the concept type “stream”, as defined by three different ontologies: CYC  

top-level ontology, WordNet, and SDTS. This method can detect the possible implicit relations 

between concepts which are not predefined. Similarly, Zhu [6] presented a formal method based on 

concept lattices to form a more general semantic level, and an algorithm was designed to reduce the 

redundant concept relations. 

Meanwhile, Buccella et al. [7] proposed a merging method by using a set of matching functions and 

inferences over the ontologies in order to find the more suitable correspondences. This method 

minimizes the redundant information and improves the understandability of data by applying the 

ISO19109 and ISO19107 standards to normalize the geographic ontologies. Torre et al. [4] provided a 

conceptualized framework of geographic application ontologies for sharing and integrating geospatial 

information. This method is based on abstract classes to cognitively classify geographic concepts, and 

directly translates the relationships between mapping concepts by a set of axiomatic relations. In 

addition, Stumme et al. [8] proposed the formal concept analysis merge (FCA-MERGE) method as a 

semi-automatic method for translating concept lattices into a merged ontology, but the method still 

requires revision by experts. Chen et al. [9] provided a new method for combining WordNet and the 

fuzzy formal concept analysis technique for merging ontologies with the same domain. Two 

ontologies, including a base ontology and a revision ontology, can be converted into a novel fuzzy 

ontology by using the revision ontology to update the base ontology, but the method solely utilize 

partial semantic factors to determine the relationship between elements, and much detailed information 

need be considered in the future. 
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The applications mentioned above mainly focus on top-level ontologies, a conceptualized 

framework, matching functions, and formal concept analysis, However, the previous works have two 

drawbacks: (1) Each method must extract the formal representation of semantics from the definitions 

of geographic entities by FCA, and the complexity in the different levels does not get full attention, 

due to the rapid growth of the merged concept lattice. (2) These methods generally not only assume 

that all the intents are equally important during the process of constructing the concept lattice, but also 

do not fully consider the requirements and preferences of the user. Hence, new techniques must be 

added to handle these shortcomings. However, due to the high space and time complexity, the 

performance of most algorithms for constructing a concept lattice for dense and large contexts is not 

desirable [10]. Accordingly, reducing the size of the merged concept lattice in most of the approaches 

is essential for the first problem. Since each node is composed of the intent and extent in the structure 

of a concept lattice [11,12], we propose the term of reduction from the viewpoint of finding an 

appropriate object set and attribute set, respectively. From the point of view of the object reduction in 

our previous work [13], we applied a fuzzy equivalence relation matrix to construct the equivalent 

characteristic components of the extent of the concept lattice. We then selected an appropriate 

threshold value to receive sets of concept extension in different granulations, and measured the 

similarity of any two extents in the granulation. Finally, the experimental results indicated that the 

merging process is a stepwise refinement process corresponding to different levels of granularity, and 

conceptual similarity in the fine-grained levels was higher than in the coarse-grained levels. 

Following this premise, our current work is motivated by the need to address the two problems 

mentioned above. The main contributions of this manuscript can be summarized as follows: First, FCA 

is introduced for the merging of multi-source geo-ontologies. Second, EWCL is applied to consider the 

importance of the different intents of geo-ontologies in GIScience, in which the entropy of the attribute 

set is used to acquire the single attribute intent weight value, and the standard deviation is used for the 

intent importance deviance value between the multiple attributes. Third, the merged concept lattice is 

simplified from the point of view of attribute reduction, in terms of the importance threshold specified 

by the user. 

The rest of this paper is organized as follows: Section 2 briefly reviews some notions of FCA and 

analyses some of the sematic representations of geo-ontologies; Section 3 describes the basic contents 

of the merging process of EWCL; Section 4 describes the experiments undertaken to investigate the 

merging of geo-ontologies, and presents an analysis of the results; and Section 5 draws conclusions 

and discusses the future work. 

2. A Sematic Representation of Geospatial Information Based on FCA 

2.1. Basic Notions of FCA 

FCA, a branch of applied mathematics based on lattice theory, is a conceptual framework proposed 

by Wille in 1982, and has been applied to many different fields, such as data analysis, knowledge 

discovery, software engineering, and information retrieval [14–17]. To demonstrate the relations 

between objects and attributes in a given application domain, a concept in FCA is defined within a 

formal context. Here, we only briefly implement some basic sematic analysis by FCA. For a more 

extensive introduction refer to [18]. 
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Definition 1. A formal context is defined as a triple ( , , )K G M I , where G  and M  are two non-

empty sets called objects (extent) and attributes (intent), respectively, and I G M   is a binary 

relation. if Img , for g G  and m M  , this indicates that the object g has the attribute m.  

As a matter of fact, the domain ontology is usually approximately defined as a relation group. In a 

formal context ( , , )K G M I  for a set GA  and MB  .The formal concepts of the context are 

derived in terms of the following operations:  

' { | , }A B a G b B aIb    (1)

' { | , }B A b M a A aIb    (2)

( '', ') ( ', '')iC A A B B 
 (3)

For simplicity, we write 'a  instead of { }'a for all a G , and write 'b  instead of { }'b for all b M . 

A pair ( , )A B  is called a formal concept if 'A B  and 'B A . 'A  is the set of the attributes representing 

each object in A  ,whereas 'B  is the set of objects possessing attributes in B . iC  are the union sets 

( '', ') ( ', '')A A B B  describing the final classes or concept lattice nodes. 

A partial order relation between the two formal concepts ( 1 1( ),A B , 2 2( ),A B ) in a formal context K 

is defined as follows: 

1 1 2 2 1 2 1 2( ) ( ), ,A A AB B A B B     (4)

In the above condition, " "  is called the hierarchical order of concepts. 1 1( ),A B is called a  

sub-concept of 2 2( ),A B , and 2 2( ),A B  is called a super-concept of 1 1( ),A B . In addition, in a formal 

context 1 2 1 2( , , ), , , , , ,K G M I A A B BA G B M    , the following properties hold: 
1 2 2 1' 'A A AA   , 1 2 2 1' 'B B BB   , ''A A , ''B B , '''A A , '''B B , ' 'A BB A   . 

2.2. A Sematic Representation of Geospatial Information 

In the current research on concept lattices, it is usually assumed that the extent and intent in the 

formal concept are of equal importance. The extent represents the entities, whereas the intent includes 

its intrinsic characteristics. However, the semantic basis for spatial concept types in the hydrological 

domain usually means intent, and the intent is determined by essential geographic properties [4]. The 

extent and intent of the spatial concept may be extracted by the common understanding, taxonomic 

structure, and recognized vocabulary of the domain knowledge derived from professional dictionaries 

and standards. Based on the fundamental philosophical notions of identity, unity, essence, and 

dependence, Guarino and Welty [19] presented a set of meta-properties to represent the behavior of the 

essential properties, including the rigid property, non-rigid property, anti-rigid property, semi-rigid 

property, carrier identity, and external dependence. For example, we normally think that reservoirs in 

the hydrological domain possess properties such as “store water”, “storage capacity”, “name”, etc. 

The “store water” property is normally rigid for each individual reservoir. The “name” property cannot 

support identity while being the same individual. The “storage capacity” has a non-rigid property 

because different reservoirs have different storage capacities. Therefore, “store water” may represent 

the ontological property of the reservoir. 
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Table 1. Partial semantics of inland hydrological concepts in GB/T 20258.1-2007. 

Object Normative Description Ontological Properties 

lake 
A body of water surrounded by low 
depressions, has wide areas and slowly 
changes the yield of water 

material/water, spatial morphology/ depressions 
on the earth.(time/perennial, metrics/ ≥ 105 m3 , 
cause/nature, function/store water) 

pond A pool of water storage 

material/water, function/store water. 
(cause/artificial, spatial morphology/ 
depressions on the earth, time/perennial, 
metrics/ أ 105 m3) 

seasonal lake 
A kind of lake which possesses water under 
seasonal conditions 

material/water, time/seasonal ,cause/nature. 
(function/store water, spatial morphology/ 
depressions on the earth) 

ground river 
A kind of natural river on the ground which 
possesses water 

material/water, spatial location/on the earth , 
material state/flow.(cause/nature, spatial 
morphology/long strip slot, time/perennial ) 

seasonal river 
A kind of natural river which possesses 
water under seasonal conditions 

material/water, cause/nature, time/seasonal , 
material state/flow.( spatial morphology/long 
strip slot, spatial location/on the earth) 

reservoir 
A body of water or buildings generated 
from constructing all kinds of dam, gate, 
dike, and weir, which retain river runoff  

material/water, cause/artificial, spatial 
adjacency/dam, gate, dike and weir, function/ 
prevent flood. (function/ store water ,spatial 
morphology/ depressions on the earth) 

In geographic ontologies, definitions contain the rich sources of scientific knowledge of the 

geographic domain, in general, they are also the key and the only descriptions of category terms, 

which result in the semantic definition of geographic categories (e.g., purpose, cause, material) [20]. In 

order to identify a set of semantic properties-relations, Wang et al. [21] proposed the property of 

geospatial ontology from the view of top-level ontology, including space, time, cause, material, 

function, object, and metrics. On the basis of their work, we identified partial semantic relations-

properties of inland hydrological concepts from GB/T 13923-2006 (Specifications for feature 

classification and codes of fundamental geographic information), GB/T 20258.1-2007 (Data dictionary 

for fundamental geographic information features), and SL 213-98 (Specification on basic information 

coding of water conservancy projects) in China (see Table 1 and Table 2). From the given normative 

descriptions, heterogeneity problems inevitably exist. For example, one consider a lake consisting of 

the following semantic properties and relations : material with value “water”, spatial morphology with 

value “low depressions”, metrics with value “wide areas and slowly changes the yield of water”, and 

the other defines a lake associated with the corresponding semantic properties: material with value 

“water”, spatial morphology with value “natural depressions on the earth”, function with value “store 

water”. In terms of the formal definitions of ontologies, geo-ontologies are applied to capture the 

universal concepts and meanings in the geospatial domain. However, “lake: wide areas and slowly 

changes the yield of water” has a bit strong subjectivity and a non-rigid property, because different 

lakes have different areas, flow velocities and water yields. Hence, in order to replace “wide areas and 

slowly changes the yield of water”, we adopt a more appropriate expert standard: metrics with value 

“≥ 105 m3” [22], meanwhile, “natural depressions” is a part of “low depressions”. In addition, other 
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context-specific semantic elements are also identified. For instance, the semantic properties in relation 

to hydrography are complemented by domain experts, such as time (perennial or seasonal) and cause 

(natural or artificial). Similarly, “reservoir: retain river runoff” is a part of “reservoir: prevent flood”, 

and “in the river, the valley, the depressions and underground permeable layer” is considered as spatial 

morphology with value “depressions on the earth”. Here, ontological properties of geospatial objects in 

Table 1 and Table 2 have been extracted from the normative descriptions, moreover, in particular, 

ontological properties in the parentheses are updated and complemented based on domain experts. 

Table 2. Partial semantics of hydraulic engineering concepts in SL 213-98. 

Object Normative Description Ontological Properties 

lake 
A lake basin and a body of water accommodated 
in the lake basin, which can store water, and is 
surrounded by natural depressions on the earth  

material/water, spatial morphology/natural 
depressions .( function/store water, 
time/perennial , cause/nature, metrics/ ≥ 105 m3 
) 

polder 

An enclosed area for production and living 
activities, which is generated from constructing 
all kinds of dikes, along with river, lake, islet in 
a river, and the coastal side of a beach and the 
vicinity of a water area 

function/production and life, cause/artificial, 
spatial adjacency/dam, gate, dike and weir. 
(material/soil and stone, spatial location/on  
the earth) 

water 
gate 

A kind of low/head building is constructed in 
the rivers and channels for controlling flow and 
adjusting water level 

function/control flow and adjusting water 
level, cause/ artificial, material/soil and stone 
(spatial morphology/building, spatial 
adjacency/river, channel, lake and reservoir ) 

flood 
storage 

and 
detention 

basin 

Some areas, such as lakes along with rivers, low 
depressions or specially designated areas, are 
originated from constructing dikes and ancillary 
buildings for defense from abnormal floods and 
storing floods  

function/prevent flood and store flood, 
material/soil or stone, cause/artificial, spatial 
adjacency/dam, water gate, dike and weir 
(spatial morphology/depressions on the 
earth) 

reservoir 

A kind of artificial lake that possesses a 
catchment basin area originated from 
constructing a dam, dike or weir in the river, the 
valley, the depressions and underground 
permeable layer  

material/water, cause/artificial, spatial 
morphology/depressions on the earth 
 (function/ store water and prevent flood, 
spatial adjacency/ dam, gate, dike and weir) 

dike 

A kind of retaining water building, along with 
the edge of a lake, channel, flood flowing area, 
flood diversion area and reclamation area, 
which controls the flow of water 

function/prevent flood and protection against 
the tide, material/soil or stone, 
cause/artificial, spatial morphology/retaining 
water building 

In reality, extracting semantic information from the normative descriptions might encounter some 

differences and conflicts, such as inconsistencies in normative definitions, differences in different 

spatial locations and incomplete characteristics or overlapping functions. Furthermore, a certain 

vagueness, caused by different languages, also existed in the literal description of the concepts of 

geospatial objects. In order to deal with these heterogeneities from the merging of multi-source 

geospatial data, the formal method based on a top-level ontology should be considered. The formal 

conceptualization of geographical concepts consisting of two parts: the extent and the intent. The 
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former includes the entities or objects, which belong to the concept, whereas the latter represents its 

intrinsic meaning or properties. Each row and column of a formal context represents an extent and intent 

of a geographical concept, respectively. Due to the extensive contents in the two above-mentioned 

domains, we only selected partial elements to construct the formal contexts by FCA in Table 3.  

Table 3. Parts of the formal contexts of two different ontologies. 

Mark Object a b c d e f g h i j k l m n o 

s1 seasonal lake *  *   *  *  *     * 
s2 ground river *   *  *  *  *     * 
s3 seasonal river *  *   *  *   *    * 
s4 lake *  *  *   *  *  * *   
s5 pond *  *  *   *   * * *   
s6 reservoir *   *  *  *      * * 
s7 spillway *   * *    *     *  
s8 dike  *  *   * *      *  

Where each letter from “a” to “o”, represents material/water, material/soil or stone, cause/nature, cause/artificial, 
spatial morphology/long strip slot, spatial morphology/depressions, spatial morphology/buildings, spatial location/on 
the earth, spatial location/underground, time/perennial, time/seasonal, material state/flow, function/shipping, 
function/prevent flood and function/store water, respectively. “ *” stands for criterion satisfied. 

For running example in Table 3, 'A and 'B take the following form: 

' {{ }',{ } {{ 1}',{ 2}',{ 3}', }seasonal lake ground river}',{seasonal river}', ,{dike}' ,{s8}'A s s s  

' {{ }',{ }',{ }', ,{ }'}B a b c o 
 

Where { }' { , , , , , }seasonal lake a c f h j o  is the set of attributes corresponding to the semantic factor 

seasonal lake, whereas { }' { }seasonal lake,seasonal river, lake,pondc  is the set for semantic factors 

denoted by the attribute c (cause with value “nature”). 

3. The Entropy-Based Weighted Concept Lattice 

Although all the intents are generally of equal importance during the construction of a concept 

lattice [10–12], in some practical applications, a user is usually interested in some certain attribute 

characteristics, according to his/her preference and requirement. Fox example, we may pay more 

attention to the “shipping property” of the canal rather than its “water storage”, to some extent. Hence, 

we add some weights into the intent to capture its importance, and we do not need to investigate all the 

nodes, but only those nodes according to our needs. Motivated by an incremental updating algorithm 

used to effectively construct a weighted concept lattice [10–12] , a proposed approach of EWCL is 

outlined to resolve the above-mentioned problem in the following definitions below. In parallel, we 

briefly recall some basic notions and judgment methods of each intent weight value, with regard to 

weighting a concept lattice. Refer to [10–12] for a more extensive introduction. 
In a general formal context ( , , )K G M I , a set of attributes is expressed by 1 2{ }, , , nM m m m  . 

We demonstrate the weights of attributes 1 2{ }, , , nW w w w  , where (0 1)i iw wW    denotes an 

importance degree of the attribute im . 
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Definition 2. A weighted formal context is defined as a quadruple ( , , , )wK G M I W , where G  and 

M  are two non-empty sets called objects and attributes, respectively. W is a set of the weight value, 

which indicates the importance of a single attribute in M , and I G M  is a binary relation between 

G  and M . ( , , )wn B wA  is a triple, for a set G, M, ( )A B w weight B   and 0 1w  . The 

following two conditions are satisfied: 

( ) { | , }f A b M a A aIb   

( ) { | , }f B a G b B aIb     

If ( ) , ( )f A B f B A  , i.e., then the triple ( , , )wn A B w  is called the weighted concept of wK . A  

and B  are the extent and intent of wn , respectively. 

Definition 3. Let ( , , )wn A B w  be a weighted concept of a weighted formal context wK . 

1 2 nB b b b   (   is the combination operator of b). If 1n   , then B  is denoted as a single 

attribute intent, otherwise B  is denoted as a multi-attribute intent. Here, the weight of the multi-

attribute intent ( ( )weight B ) is defined as the arithmetic average of the corresponding attributes 

computed as follows: 

1

1
( )

n

i
i

weight B w
n 

    (5)

where A   ,or B   , we assume that ( ) 1weight B  . 

In general, the weight of the single attribute intent is determined by domain experts. However, the 

current spatial objects stem from different domains, and it is difficult to determine the weight by 

experts in a specific domain. Therefore, under the condition of a lack of existing knowledge, we adopt 

an objective probability method to quantify the related weight by using axiomatic characterizations of 

information entropy, according to Shanonn [11,23–25].  

Definition 4. Let any object ja  and (1 ),  ( / )j i ja G j n p b a   is called the probability of ja  

possessing the corresponding attribute ib ,and ( )iE b  is called the average information of weight of G  

providing the attribute ib . In a formal context wK ,if ( , , )wn A B w  and  (1 )iB b i n   , then iw  is 

denoted as the weight value of single attribute intent ib . The probability and the weight value are 

computed as follows [11,25]: 

( / )

2
1

( ) ( / ) log i j

n
p b a

i i j
j

E b p b a


    (6)

1

( )

( )

i
ni

i
i

w
E b

E b





 

(7)

The above iw  is generally a normalized form. Here, we regard a weighted concept lattice, based on the 

weighted value produced by the information entropy, as an entropy-based weighted concept lattice. 

However, in practical applications, ( )weight B  does not take into account the importance of the 

deviation among all the intents. The result is not conducive to the sensitive extraction of a user 

interested in knowledge. Therefore, in order to explore iw  deviating from ( )weight B , we introduce a 
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deviation analysis to evaluate the importance of the multi-attribute intent weight value and select an 

appropriate threshold value to further meet the needs of the user. The deviation analysis is computed as 

follows [11,12]: 

1

1
( ) ( ( ))

1

n

i
i

D B w weight B
n 

 
    (8)

where ( )D B  is denoted as the deviation of the multi-attribute intent weight value. In particular, if 

1n  , then ( ) 0D B  . 

From the above analysis, the basic steps of merging multi-source geo-ontologies based on EWCL 

are shown in Figure 1. We can see that the approach consists of three stages: extracting ontological 

properties, building a general concept lattice and reducing the general concept lattice based on 

information entropy and a deviance analysis. In the following Section 4, we will present experimental 

results to highlight the relevance of our method on merging multi-source geographic ontologies 

Figure 1. The workflow of merging multi-source geo-ontologies based on EWCL. 

 

4. Case Study and Discussion 

Our method is focused on the interdisciplinary merging of geo-ontologies, which is quite different 

from other approaches in the same field. For example, we have employed the shared concept related to 

the hydrographic ontology between the fundamental geographic information (GB/T 13923-2006) and 

hydraulic engineering (SL 213-98) to implement the merging of ontologies. We selected several 

extents from these two domains, respectively, and constructed a synthetic formal context in Table 3, in 

which lakes, reservoirs, spillways, and dikes are interdisciplinary common objects. The intents of the 

two domain ontologies were expanded unanimously, based on domain experts (see Table 3). The 

process of building ontologies was not discussed in detail. Refer to [5,21] for a more extensive 

introduction. Here, we reduced the merged concept lattice from the intent direction by EWCL. 
First, by using Equations (5)–(7), we obtained the single intent weight value of the merged concept 

lattice in Table 4, by using information entropy based on Table 3. Then, by using the incremental 

updating algorithm of the concept lattice [11,12,26,27], we drew a general weighted concept lattice 

(WCL) for representing the merged ontologies, which was induced from the formal context in Table 3. 
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Despite semantic heterogeneities between multi-source geospatial data, the integrated concept lattice 

comprised a common and equally perceived part of geospatial objects in the two domains. As shown in 

Figure 2, all the intents were of equal importance, and all concept lattice nodes iC were the union of 

sets ( '', ') ( ', '')A A B B .The operations result in the following concepts: 

0 ({ 1, 2, 3, 4, 5, 6, 7, 8}; ;1)C s s s s s s s s   “largest concept” 

1 ({ 1, 2, 3, 4, 5, 6, 7};{ };0.026)C s s s s s s s a  
2 ({ 2, 6, 7};{ };0.076)C s s s d  
3 ({ 1, 2, 3, 4, 5, 6, 8};{ };0.026)C s s s s s s s h  
4 ({ 4, 5, 7};{ , };0.054)C s s s a e  
5 ({ 1, 2, 3, 4, 5, 6};{ , };0.026)C s s s s s s a h  
6 ({ 2, 6, 7};{ , };0.051)C s s s a d  
7 ({ 1, 3, 4, 5};{ , };0.043)C s s s s a ch  
8 ({ 6, 7};{ , , };0.061)C s s a d h  
9 ({ 6, 8};{ , , };0.061)C s s d h n  
10 ({ 1, 3};{ , , , , };0.056)C s s a c f h o  
11 ({ 2, 6};{ , , , , };0.056)C s s a d f h o  
12 ({ 7};{ , , , , };0.064)C s a d e i n  “spillway” 

13 ({ 8};{ , , , , };0.059)C s b d g h n  “dike” 

14 ({ 1};{ , , , , , };0.060)C s a c f h j o  “seasonal lake” 

15 ({ 2};{ , , , , , };0.060)C s a d f h j o  “ground river” 

16 ({ 3};{ , , , , , };0.059)C s a c f h k o  “seasonal river” 

17 ({ 6};{ , , , , , };0.060)C s a d f h n o  “reservoir” 

18 ({ 4};{ , , , , , , };0.063)C s a c e h j l m  “lake” 

19 ({ 5};{ , , , , , , };0.063)C s a c e h k l m “pond” 

20 ( ;{ , , , , , , , , , , , , , , };1)C a b c d e f g h i j k l m n o   “least concept” 

Figure 2. The merged concept lattice based on Table 3. 
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Specifically, the last tem of each node iC  is denoted as the weight value in the above-mentioned 

parentheses. 12, 13, 14, 15, 16, 17, 18C C C C C C C  and 19C are the origin concepts by examining the 

formal context in Table 3. The least concept 20C  does not possess the corresponding meanings in the 

geospatial domain, due to the completeness to form the bottom of the concept lattice. 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10C C C C C C C C C C C  and 11C  are the new generated concepts by the algorithm. 

Although not every new concept does correspond to a meaningful concept or a specialized term, it is 

beneficial to reveal the hierarchical relationships between geographic categories. The manuscript will 

not discuss further the hierarchical semantic classification of the integrated concept lattice, since our 

work does not contribute to those aspects. Instead, we focus on reducing the merged concept lattice, 

based on information entropy and a deviance analysis. Figure 2 is only a concept lattice generated by 

the partial objects in relation to hydrography, which is not a complete ontology category. 

Table 4. Acquisition method for the single intent weight value. 

Intent p(X) E(X) iw  

a 0.875 0.169 0.026 
b 0.125 0.375 0.057 
c 0.500 0.500 0.076 
d 0.500 0.500 0.076 
e 0.375 0.531 0.081 
f 0.500 0.500 0.076 
g 0.125 0.375 0.057 
h 0.875 0.169 0.026 
i 0.125 0.375 0.057 
j 0.375 0.531 0.081 
k 0.250 0.500 0.076 
l 0.250 0.500 0.076 

m 0.250 0.500 0.076 
n 0.375 0.531 0.081 
o 0.500 0.500 0.076 

Second, according to Table 4, we computed the average weight of the multi- attribute intent and the 

deviation of the intent importance using Equations (5) and (8). The results are shown in Table 5. In the 

construction process of the WCL, we took into account the user preference and interest by combining 

the average weight of the multi-attribute intent and the deviation of the intent importance to set 

thresholds for the intent importance. For any weighted concept ( , , )wn A B w in the WCL, 
( )w weight B , we defined the quantity (0 1)    as the threshold of the intent importance, We 

represented the following: if w  , wn  is denoted as a frequent weighted node; otherwise wn  is 

denoted as an infrequent weighted node. In general, the WCL is usually composed of all of the 

frequent weighted nodes [10,11]. As is shown in Table 6, the quantity   is denoted in different 

granulations according to the range of weight(B) in Table 5. If we set up 0.040   as the threshold, 

then C1, C3, and C5 are removed because of w  . This indicates that one concept only involved the 

intents of material/water and spatial location/on the earth, which was unsatisfied with the threshold of 

the intent importance. In order to ensure the completeness of the concept lattice, C1 and C3 are 

temporarily retained, and C3 is removed. Similarly, if we set up 0.052   as the threshold, C1, C3, 
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C5, C6 and C7 are removed. The results are shown in Figure 2 and Figure 3 in different granularity, 

obviously, Figure 3 is greatly simplified comparing with Figure 2, whereas Figure 4 is greatly 

simplified comparing with Figure 3. From the above analysis, we drew a conclusion that  

Hasse Diagram was gradually simplified with increase of the granularity ( ) , and the process of 

reducing the intergrated concept lattice was a stepwise refinement process corresponding to different 

levels of granularity.  

Table 5. The intent weight value and importance deviation value of the lattice node. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The reduced weighted concept lattice when ( 0.40  ). 

 

Name Intent Intent Average Value Weight(B) D(B) 

C0 Φ 1 1 0 
C1 a 0.026 0.026 0 
C2 d 0.076 0.076 0 
C3 h 0.026 0.026 0 
C4 ae 0.054 0.054 0.055 
C5 ah 0.026 0.026 0 
C6 ad 0.051 0.051 0.036 
C7 ach 0.043 0.043 0.029 
C8 adn 0.061 0.061 0.031 
C9 dhn 0.061 0.061 0.031 

C10 acfho 0.056 0.056 0.028 
C11 adfho 0.056 0.056 0.028 
C12 adein 0.064 0.064 0.024 
C13 bdghn 0.059 0.059 0.022 
C14 acfhjo 0.060 0.060 0.027 
C15 adfhjo 0.060 0.060 0.027 
C16 acfhko 0.059 0.059 0.026 
C17 adfhno 0.060 0.060 0.027 
C18 acehjlm 0.063 0.063 0.026 
C19 acehklm 0.063 0.063 0.025 
C20 abcdefghiklmno 1 1 0 
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Table 6. The reduced concept lattice nodes in different granulations. 

Figure 4. The reduced weighted concept lattice when ( 0.52  ). 

 

Finally, we defined the quantity  (0 1)    as the threshold of the deviation of the intent 

importance. In terms of ( )D B  in Table 5, if we set up  0.27  as the deviation threshold when 

( 0.40  ), then C12, C13, C16, C18, and C19 are moved because of ( )D B  , namely, their intent 

weights were lower than the intent importance thresholds specified by the user. At the same time, we 

might encounter situations when although the intent weight values of these nodes (C12, C13, C16, 

C18, and C19) are greater than the predefined threshold (  ), the deviation values of the intent 

importance of these nodes are lower than the predefined threshold ( ), as can be seen the strong 

weighted concept lattice in Figure 5, then these nodes should also be removed. The reduced WCL 

when ( 0.40   and 0.27  ) is shown in Figure 5, which is greatly simplified compared to Figure 3. 

In addition, according to the meaning of the deviance analysis, the smaller is the standard deviation  , 

the less are the single-attribute intents deviating from ( )weight B , namely, if the greater is the 

difference between the single-attribute intent weight values , the greater is the deviation value ( )D B . 

For example, the deviation value C6 is greater than C4 in Table 5. That is to say that the potential 

weight value difference between “a” and “d” is greater than that between “a” and “e”. By ascending 

Weight(B)   Removed Nodes 

1 0.76 1   C1,C2 C3,C4, C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C17,C18,C19
0.076 0.64 0.76   C1, C3,C4, C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C17,C18,C19 
0.064 0.63 0.64   C1, C3,C4, C5,C6,C7,C8,C9, C10,C11,C13,C14,C15,C17,C18,C19 
0.063 0.61 0.63   C1, C3,C4, C5,C6,C7,C8,C9,C10,C11,C13,C14,C15,C17 
0.061 0.60 0.61   C1, C3,C4, C5,C6,C7,C10,C11,C13,C14,C15,C17 
0.06 0.59 0.60   C1, C3,C4, C5,C6,C7,C10,C11,C13 

0.059 0.56 0.59   C1, C3,C4, C5,C6,C7,C10,C11 
0.056 0.54 0.56   C1, C3,C4, C5,C6,C7 
0.054 0.51 0.54   C1, C3, C5, C6, C7 
0.051 0.43 0.51   C1, C3, C5,C7 
0.043 0.26 0.43   C1, C3, C5 
0.026 0 0.26     
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the deviance value in the process of reducing the multi-attribute concept lattice , in genearal, the 

method should give priority to retain some nodes existed a greater difference between the single-

attribute intent weight values, and remove other nodes existed a small difference. The example shows 

that the proposed method is feasible and effective for reducing the merged concept lattice in the geo-

ontological domain, and is appropriate for different user requirements. Consequently, we can select an 

appropriate threshold to reduce the complexity of the merging of the geo-ontologies by combing 

information entropy and a deviance analysis. 

Figure 5. The reduced weighted concept lattice when ( 0.40  and 0.27  ). 

 

5. Conclusion and Future Work 

In this study, we present a novel method for the merging of multi-source geo-ontologies by EWCL. 

Firstly, to deal with the semantic heterogeneity of the geospatial information, FCA was used to extract 

the formal semantics, and we constructed the formal contexts from two different domains of the 

fundamental geographic information and hydraulic engineering domain. Secondly, in order to address 

the complexity of the merged concept lattice with the rapid growth in the ontology size, we have 

proposed a merging method for the geo-ontologies in different granulations. According to the user 

preference and interest, we reduced the intent of the merged concept lattice by the WCL based on 

information entropy and deviance analysis. We can then select an appropriate threshold value to 

reduce the merged concept lattice according to the specific need. Finally, experiments were conducted 

by combining fundamental geographic information data and spatial data in the hydraulic engineering 

domain. The results showed that the proposed method is both feasible and valid. As a matter of fact, 

the merging of multi-source geo-ontologies is still a challenge, and error-prone problems inevitably 

exist. WCL is a known theory in other disciplinary areas, but the proposed EWCL in this paper is a 

crucial application related to information entropy theory in the field of the merging of geo-ontologies, 

and the research is a new attempt in this direction. 

In the previous work, although FCA acquired some new implicated concepts induced concepts from 

the given multi-source geospatial data set, it generated some redundant concepts and relations. The 

intent weight value, based on information entropy and a deviance analysis, was regarded as a kind of 
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constraint in order to reduce the merged concept lattice. Sometimes, however, the reduction achieved 

by EWCL is not enough; in such situations, a reasonable threshold relying on domain experts might be 

useful to control the simplicity. For example, extracting the semantic relations and concepts is not just 

a technical issue but requires a revision by domain experts to make sure that the resulting concepts 

make sense. Consequently, in the future, we will concentrate on multiple ways of acquisition for the 

intent weights of the concept lattice. Other important aspects must also be taken into account, in order 

to achieve semantic integration. For instance, we will further apply the formal reasoning mechanism to 

improve the merging integration process, and we will evaluate the quality of the merged ontology. 
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