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Abstract: Multilevel thresholding has been long considered as one of the most popular 

techniques for image segmentation. Multilevel thresholding outputs a gray scale image in 

which more details from the original picture can be kept, while binary thresholding can 

only analyze the image in two colors, usually black and white. However, two major 

existing problems with the multilevel thresholding technique are: it is a time consuming 

approach, i.e., finding appropriate threshold values could take an exceptionally long 

computation time; and defining a proper number of thresholds or levels that will keep most 

of the relevant details from the original image is a difficult task. In this study a new 

evaluation function based on the Kullback-Leibler information distance, also known as 

relative entropy, is proposed. The property of this new function can help determine the 

number of thresholds automatically. To offset the expensive computational effort by 

traditional exhaustive search methods, this study establishes a procedure that combines the 

relative entropy and meta-heuristics. From the experiments performed in this study, the 

proposed procedure not only provides good segmentation results when compared with a well 

known technique such as Otsu’s method, but also constitutes a very efficient approach. 

Keywords: thresholding; relative entropy; Gaussian mixture models; meta-heuristics; virus 

optimization algorithm 
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1. Introduction 

Segmenting an image into its constituents is a process known as thresholding [1–2]. Those 

constituents are usually divided into two classes: foreground (significant part of the image), and 

background (less significant part of the image). Several methods for thresholding an image have been 

developed over the last decades, some of them based on entropy, within and between group variance, 

difference between original and output images, clustering, etc. [3–5]. 

The process of thresholding is considered as the simplest image segmentation method, which is true 

when the objective is to convert a gray scale image into a binary (black and white) one (that is to say 

only one threshold is considered). However, in the process of segmentation, information from the 

original image will be lost if the threshold value is not adequate. This problem may even deteriorate as 

more than one threshold is considered (i.e., multilevel thresholding) since not only a proper number of 

thresholds is desirable, but also a fast estimation of their values is essential [1]. 

It has been proven over the years that as more thresholds are considered in a given image, the 

computational complexity of determining proper values for each threshold increases exponentially 

(when all possible combinations are considered). Consequently, this is a perfect scenario for 

implementing meta-heuristic tools [6] in order to speed up the computation and determine proper 

values for each threshold. 

When dealing with multilevel thresholding, in addition to the fast estimation, defining an adequate 

number of levels (thresholds that will successfully segment the image into several regions of interest from 

the background), has been another problem without a satisfactory solution [7]. Therefore, the purpose and 

main contribution of this study is to further test the approach proposed in [8] which determines the number 

of thresholds necessary for segmenting a gray scaled image automatically. The aforementioned is achieved 

by optimizing a mathematical model based on the Relative Entropy Criterion (REC). 

The major differences between this work and the one presented in [8], are that a more extensive and 

comprehensive testing of the proposed method was carried out. To verify the feasibility of the 

proposed model and reduce the computational burden, when carrying out the optimization process, this 

study implements three meta-heuristic tools and compares the output images with that delivered by a 

widely known segmentation technique named Otsu’s method. In addition to the aforementioned, 

further tests with images having low contrast and random noise are conducted; this intends to probe the 

robustness, effectiveness and efficiency of the proposed approach. 

The following paper is organized as follows: Section 2 introduces the proposed procedure, which 

consists of the mathematical model based on the relative entropy and the meta-heuristics—virus 

optimization algorithm, genetic algorithm, and particle swarm optimization as the solution searching 

techniques. Section 3 illustrates the performance of the proposed method when the optimization is 

carried out by three different algorithms VOA, GA and PSO, where six different types of images were 

tested. Lastly, some concluding remarks and future directions for research are provided in Section 4. 

2. The Proposed Multilevel Thresholding Method 

A detailed explanation of the proposed method is given in this section, where the mathematical 

formulation of the model is presented and the optimization techniques are introduced. 
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2.1. Kullback-Leibler Information Distance (Relative Entropy) 

The Kullback-Leibler information distance (known as Relative Entropy Criterion) [9] between the 

true and the fitted probabilities is implemented in [8] for estimating an appropriate model that will best 

represent the histogram coming from the gray level intensity of an image. According to  

McLachlan and Peel [10] this information distance is defined as in Equation (1). However, the gray 

levels (intensity) are discrete values between [0, 255]; therefore, Equation (1) can be rewritten as in 

Equation (2): 
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where p(i) and
 

p(i;θd) are the probabilities values from the image histogram and fitted model 

respectively. These probabilities are estimated using Equations (3) and (4), where the value of 

݅ א ሾ0, 255ሿ and represents the gray intensity of a pixel at location (x, y) on the image of size ܯ ൈ ܰ 

pixels; while  1
, j

d

j
g i 


 
in Equation (4) is a mixture of “d” distributions which are used to estimate 

the value of p(i;θd). Lastly, θj is a vector containing the parameters of each distribution in the mixture: 
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In this study Gaussian distributions are used to estimate Equation (4), where the central limit 

theorem (C.L.T.) is the motivation of using this type of distributions [11]. Therefore, Equation (4) can be 

expressed as in Equation (5): 

 
2

1
 
2

1

;
2

j

j

d

i
d

j

j j

w
p i e







          



 
 

  
 
 

  (5) 

where θj contains the prior probability (or weight) wj, mean μj, and variance σ2
j, of the jth Gaussian 

distribution. The minimization of the Relative Entropy Criterion function can be interpreted as the 

distance reduction between the observed and estimated probabilities. This should provide a good 

description of the observed probabilities p(i)
 
given by the gray level histogram of the image under 

study. However, finding an appropriate number of distributions, i.e., “d”, is a very difficult task [12–15]. 

Consequently, the addition of a new term in Equation (2), which is detailed in the following subsection 

helps to automatically determine a suitable amount of distributions. 
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2.2. Assessing the Number of Distributions in a Mixture Model 

The purpose of assuming a mixture of “d” distributions in order to estimate p(i;θd) in the REC 

function, is that the number of thresholds for segmenting a given image, can be easily estimated using 

Equation (6). The value of each threshold is the gray level intensity “i” that minimizes Equation (7), 

where “i” is a discrete unit (i.e., an integer [255 ,0] א): 

݂݋ ݎܾ݁݉ݑ݊ ݏ݈݀݋݄ݏ݁ݎ݄ݐ ൌ ݀ െ 1 (6)
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Given that estimating a suitable number of distributions “d” is a very difficult task, the method proposed 

in [8] attempts to automatically assess an appropriate value for “d” combining Equations (2) and (8) as 

a single objective function. The vector w contains all the prior probabilities (weights) of the mixture 

model. The values max(w) and min(w) are the maximum and minimum weights in w respectively: 
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Equation (8) compares each prior probability wj with respect to the largest one in the vector w. The 

result is normalized using the range given by [max(w)–min(w)] in order to determine how significant 

wj 
is with respect to the probability that contributes the most in the model, i.e., max(w). Therefore, 

Equation (8) will determine if the addition of more Gaussian distributions is required for a better 
estimation of p(i;θd). The term 1

݀ െ 1ൗ  will avoid Equation (8) overpowering Equation (2) when the 

mathematical model of Equation (9) is minimized: 
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Therefore, by minimizing Equation (9), the introduced approach will not only determine an 

appropriate number of distributions in the mixture model, but will also find a good estimation (fitting) 

of the probabilities p(i) given by the image histogram. An appropriate value for “d” is determined by 

increasing its value by one, i.e., dl = dl−1 + 1 where “l” is the iteration number, and minimizing 

Equation (9) until a stopping criterion is met and the addition of more distributions to the mixture 

model is not necessary. Therefore, not all the possible values for “d” are used. 

2.3. Mathematical Model Proposed for Segmenting (Thresholding) a Gray Level Image 

The mathematical model which is used for segmenting a gray level image is presented as in 

Equation (10). By minimizing Equation (10) with “d” Gaussian distributions, J(d) is in charge of 

finding a good estimation (fitting) of the image histogram, while P(d) determines whenever the 

addition of more distributions to the model is necessary: 
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Equation (11) guarantees a summation of the prior probabilities equal to 1, while Equations (12) and 

(13) ensure positive values to all prior probabilities and variances in the mixture model, respectively. 

To minimize Equation (10), a newly developed meta-heuristic named Virus Optimization Algorithm [16], 

the widely known Genetic Algorithm [17] and Particle Swarm Optimization algorithm [18] are 

implemented in this study. 

The flowchart at Figure 1 details the procedure of the proposed method using VOA (the similar idea is 

also applied to GA and PSO). As can be observed, the optimization tool (VOA, GA, or PSO) will optimize 

Equation (10) with dl Gaussian distributions until the stopping criterion of the meta-heuristic is reached. 

Once the algorithm finishes optimizing Equation (10) with dl distributions, the proposed method decides if 

the addition of more components is necessary if and only if Θ(dl) ≥ Θ(dl−1) is true; otherwise a suitable 

number of distributions (thresholds) just been found and the results coming from Θ(dl−1) are output. 

The purpose of using three algorithmic tools, is not only to reduce the computation time when 

implementing the proposed approach, but also, to verify if the adequate number of thresholds 

suggested by optimizing Equation (10) with different optimization algorithm remains the same. The 

reason of the aforementioned is because different algorithms may reach different objective function 

values. However, if the proposed method (Figure 1) is robust enough, all algorithms are expected to 

stop iterating when reaching a suitable number of thresholds, and this number has to be the same for all 

the optimization algorithms. 

2.4. Algorithmic Optimization Tools 

2.4.1. Virus Optimization Algorithm (VOA) 

Inspired from the behavior of a virus attacking a host cell, VOA [8,16] is a population-based 

method that begins the search with a small number of viruses (solutions). For continuous optimization 

problems, a host cell represents the entire multidimensional solution space, where the cell’s nucleolus 

denotes the global optimum. Virus replication indicates the generation of new solutions while new 

viruses represent those created from the strong and common viruses. 

The strong and common viruses are determined by the objective function value of each member in 

the population of viruses, i.e., the better the objective function value of a member the higher the chance 

to be considered as strong virus. The number of strong viruses is determined by the user of the 

algorithm, which we recommend to be a small portion of the whole population (strong and common). 
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Figure 1. Flowchart of the proposed optimization procedure. 
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To simulate the replication process when new viruses are created, the population size will grow 

after one complete iteration. This phenomenon is controlled by the antivirus mechanism that is 

responsible for protecting the host cell against the virus attack. The whole process will be terminated 

based on the stopping criterion: the maximum number of iterations (i.e., virus replication), or the 

discovery of the global optimum (i.e., cell death is achieved). 
The VOA consists of three main processes: Initialization, Replication, and Updating/Maintenance. 

The Initialization process uses the values of each parameter (defined by the user) to create the first 

population of viruses. These viruses are ranked (sorted) based on the objective function evaluation Θ(d) 
to select strong and common members. Here the number of strong members in the population of viruses 

is a parameter to be defined by the user, without considering the strong members; the population of 

viruses is the number of common viruses. 

The replication process is performed using the parameters defined by the user in the Initialization 

stage described above, where a temporary matrix (larger than the matrix containing the original 

viruses) will hold the newly-generated members. Here, Equations (14) and (15) are used to generate 

new members, where “vn” stands for the value of the variable in the nth dimensional space, for viruses 

in the previous replication. “svn” stands for the value of the variable in the nth dimensional space 

generated from the strong viruses in the current replication, and “cvn” is the value of the variable in the 

nth dimensional space generated from the common viruses in the current replication: 

()
intensity

randsvn vn vn
 
 
 

    (14)

()cvn vn rand vn    (15)

The intensity in Equation (14) above reduces the random perturbation that creates new viruses from 

the strong members. This will allow VOA to intensify exploitation in regions more likely to have a 

global optimum (i.e., areas where the strong viruses are located). The initial value for the intensity is 

set as one, which means that the random perturbation for strong and common viruses is the same in the 

early stages. Therefore, the exploration power of VOA is expected to be enhanced during the 

program’s early stages. The intensity value increases by one when the average performance of the 

population of viruses in VOA; that is to say, the average objective function value of the whole 

population of viruses, did not improve after a replication. The flowchart of the proposed procedure is 

illustrated in Figure 1. Note that the VOA part can be easily switched to other optimization algorithms 

such as GA and PSO. 

2.4.2. Genetic Algorithm (GA) 

The basic concept of Genetic Algorithms or GAs [17] is to simulate processes in natural systems, 

necessary for evolution, especially those that follows the principles first laid down by Charles Darwin 

of survival of the fittest. In GA a portion of existing population (solutions) is selected to breed a new 

population (new solutions), individuals are selected to reproduce (crossover) through a fitness-based 

process (objective function). Mutation takes place when new individuals are created after crossover to 

maintain a diverse population through generations. The standard GA is summarized in Figure 2, for the 

selection of the parents the roulette wheel is used in this study, as for the population maintenance 
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mechanism the best members in the pooled population (parents and offspring) survive. The crossover 

operators implemented in this paper are the geometric and arithmetic means [Equations (16) and (17)] 

for the creation of the first and second child respectively. Note that only the integer part is taken by the 

program since the chromosome contains only integers. The mutation operator in GA uses Equation (18), 

which is the floor function of a random number generated between [Ti−1, Ti] where T0 = 0  

and Td = 255: 

   
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Figure 2. Genetic Algorithm (GA) overview. 

 

2.4.3. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization was inspired by social behavior of bird flocking or fish schooling [18]. 

Each candidate solution (known as particle) keeps track of its coordinates in the problem space which 

are associated with the best solution (fitness) it has achieved so far, also known as the particle’s best 

(pbest). The swarm on the other hand, also keeps track of the best value, obtained until now, by any 

particle in the neighbor of particles. This is known as the global best (gbest). The basic concept of PSO 

consists of changing the velocity of each particle towards the gbest and pbest location. This velocity is 

weighted by a random term, with separated random numbers being generated for acceleration toward 

the pbest and gbest locations. The standard PSO is summarized as in Figure 3. For this study, the 

velocity of the particle is bounded to a Vmax value which is only 2% of the gray intensity range; that is to 

say, Vi א [−Vmax , Vmax] where Vmax = 0.02 × (255 − 0). 
  

Procedure GA_meta-Heuristic 

Set parameters 

Generate initial population of individuals 

Evaluate the fitness of individuals 

While (not termination) 

Select the best-fit individuals for crossover 

Breed a new population through crossover 

Mutate the population of offspring 

Evaluate the fitness of offspring 

Replace least-fit individuals in the previous 

generation with best-fit individuals in the new 

population of offspring 

End while 

End procedure 
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Figure 3. Overview of the Particle Swarm Optimization (PSO) algorithm. 

 

The stopping criterion for the VOA (GA or PSO) is when two consecutive replications 

(generations) did not improve the objective function value of the best virus (chromosome or particle). 

Once the VOA (GA or PSO) stops searching and the best value for the Θ(dl) is determined, the 

proposed method will decide if the addition of more distributions is necessary when the condition 

Θ(dl) < Θ(dl−1) is satisfied; otherwise the proposed method will automatically stop iterating. After the 

proposed method stops, the parameters contained inside the vector θd
l-1 that represents the set of 

parameters of the best result in the previous iteration are output. 

 In order to avoid computational effort of calculating the threshold values that minimize Equation (7), 

the VOA (GA and PSO) will code each threshold value inside each solution, i.e., each virus 

(chromosome or particle) will have a dimensionality equal to the number of thresholds given by 

Equation (6). During the optimization, when the search of the best value for Θ(dl)
 
is in process, each 

threshold will be treated as a real (not an integer) value, which can be considered as the coded solution 

of the VOA and PSO.  

In the case of GA a chromosome containing integer values is used for encoding the solution. In 

order to evaluate the objective function of each virus or particle, the real values coded inside each 

member will be rounded to the nearest integer, whereas in GA this is not necessary since each 

chromosome is an array of integers. The parameters for each Gaussian distribution are computed as in 

Equations (19)–(21), which is considered as the decoding procedure of the three meta-heuristics 

implemented in this study: 
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Procedure PSO_metaHeuristic 

Set parameters 

Generate initial swarm of particles (locations and velocities) 

Initialize the particle’s best known position (pbest) 

Initialize the swarm’s best known position (gbest) 

While (not termination) 

Update particle’s velocities for each dimension 

If (velocities [−Vmax, Vmax]) 

Generate velocities within [−Vmax, Vmax] 

End if 

Update particle’s position for each dimension 

Update particle’s best known position 

Update swarm’s best known position 

End while 
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In Equations (19)–(21), Tj represents the jth threshold in the solution. The values for T0 = 0
 
and  

Td = 255, which are the lower and upper limits for thresholds values. During the optimization process, 

special care should be taken when generating new solutions (viruses, offspring, or particles). The details 

are as follows: 

Condition 1: The threshold should be in increasing order when coded inside each solution, and two 

thresholds cannot have the same value, i.e., T0 < T1 < T2 <...< Td. 

Condition 2: The thresholds are bounded by the maximum (Td = 255) and minimum (T0 = 0) 

intensity in a gray level image, i.e., 0 ≤ Tj ≤ 255, ׊j א [1, d−1]. 

Equation (22) is checked to ensure that the first condition is satisfied, where ׊ i, j א [1, d−1]
 
and i < j. 

If Equation (22) is not satisfied then the solution (virus, chromosome, or particle) is regenerated using 

Equation (23), where ۂ·ہ is the floor function. The second condition is also checked and whenever any 

threshold value is outside the boundaries, i.e., Tj ൑ 0
 
or Tj ൒ 255,

 
the virus (chromosome or particle) is 

regenerated using Equation (23). 
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3. Experimental Results 

In order to further test the method proposed in [8], five different types of images were tested. The 

first image, which has a known number of three thresholds as in this case is tested (Figure 4a); 

secondly, an image containing text on a wrinkled paper which will cause lighting variation is tested 

(Figure 5a). Thirdly, the Lena image (Figure 6a) [1,12–15] is tested, which is considered as a 

benchmark image when a new thresholding technique is proposed. 

Figure 4. Test image 1: (a) Original image; Thresholded image implementing (b) VOA, 

(c) GA, (d) PSO, and (e) Otsu’s method using three thresholds. 

(a) (b) (c) (d) (e) 
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Figure 5. Test image 2: (a) Original image; Thresholded image implementing (b) VOA, 

(c) GA, (d) PSO, and (e) Otsu’s method with two thresholds. 

(a) (b) (c) (d) (e) 

Figure 6. Test image 3: (a) Original image; Thresholded image implementing (b) VOA, 

(c) GA, (d) PSO, and (e) Otsu’s method with four thresholds. (taken from [1] ) 

  
(a) (b) (c) (d) (e) 

3.1. Algorithmic Setting (VOA, GA, and PSO) 

The setting of VOA, GA, and PSO was determined by using Design of Experiments (DoE) [19–20] 

to know which values for the parameters are suitable when optimizing Equation (10). The full factorial 

design, i.e., 3-levels factorial design was performed for the four parameters of the VOA; in other 

words, 34 combinations of the four parameters were tested. Table 1 shows the results after performing 

DoE, where the final setting of the VOA is presented in bold. 

Table 1. Parameter values (factor levels) used during the for the VOA. 

Parameter Low Level  Medium Level High Level 

Initial population of viruses 5 10 30 
Viruses considered as strong 1 3 10 

Growing rate of strong viruses 2 5 10 
Growing rate of common viruses 1 3 6 

Similarly, a 33
 full factorial design was implemented in order to set the population size (ps), 

crossover and mutation probabilities (pc and pm) respectively for GA. Table 2 summarizes the 

experimental settings and the final setting (in bold) of the GA. As for PSO a 34 full factorial design 

determined the values for the swarm size, inertia weight (w), cognitive and social parameters (c1 and c2) 

respectively. Table 3 summarizes the experimental settings of the PSO algorithm and the final setting 

is also highlighted in bold. 
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Table 2. Parameter values (factor levels) used during the DoE for the GA. 

Parameter Low Level Medium Level High Level 

Population size (ps) 5 10 30 
Probability of crossover (pc) 0.8 0.9 0.99 
Probability of mutation (pm) 0.05 0.1 0.15 

Table 3. Parameter values (factor levels) used during the DoE for the PSO. 

Parameter Low Level Medium Level High Level 

Swarm size 5 10 30 
Inertia weight (w) 0.5 0.8 0.99 

Cognitive parameter (c1) 2 2.1 2.2 
Social parameter (c2) 2 2.1 2.2 

The basic idea of the DoE is to run the 34, 33, and 34, parameters combinations for VOA, GA, and 

PSO respectively, to later select which level (value) yielded the best performance (lower objective 

function value). Once the values for each parameter which delivered the best objective function value 

are identified, each test image is segmented by optimizing Equation (10) with each of the algorithmic 

tools used in this study. 

The advantage of using DoE is that it is a systematic as well as well-known approach when 

deciding the setting yielding the best possible performance among all the combinations used during the 

full factorial design. In addition to the aforementioned, it is also a testing method that has been proven 

to be quite useful in many different areas such as tuning algorithm parameters [20]. 

3.2. Segmentation Results for the Proposed Model Using Meta-Heuristics as Optimization Tools 

A comprehensive study of the proposed model implementing the three meta-heuristics introduced 

above is detailed in this part of Section 3. Additionally, a well-known segmentation method (Otsu’s) is 

implemented, where only the output image is observed in order to verify if the segmentation result 

given by the optimization algorithms used to minimize Equation (10) is as good as the one provided by 

Otsu’s method. The reason of the above mentioned, is because in terms of CPU time Otsu’s is a kind 

of exhaustive search approach; therefore, it is unfair to compare both ideas (the proposed approach and 

the Otsu’s method) in terms of computational effort. 

Tables 4–8 detail the performance of the methods used for optimizing Equation (10) over different 

images. The results (objective function, threshold values, means, variances, and weights) are averaged 

over 50 independent runs, where the standard deviations of those 50 runs are not shown because they are 

in the order of 10−17.  
By testing the image in Figure 4a it is observed that implementing the three meta-heuristics previously 

introduced for the optimization of Equation (10), the correct number of thresholds needed for segmenting 

the image is achieved (which is three). The computational effort and parameters of each Gaussian 

distribution (  2, ,j j j jw   ) are summarized in Table 4. Here, the number of iterations for the 

algorithms were four, i.e., the proposed method optimized By testing the image in Figure 4a it is observed 

that implementing the three meta-heuristics previously introduced for the optimization of Equation (10), 

the correct number of thresholds needed for segmenting the image is achieved (which is 3).  
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Table 4. Thresholding results over 50 runs for the test image 1. 

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights 

CPU 
Time per 
Iteration 

(s) 

Total CPU 
Time for the 

Proposed 
Approach (s) 

VOA 

1 2.410 244 
66.808 3836.212 0.637 

0.026 

0.507 

251.391 37.709 0.363 

2 0.976 62, 244 
33.209 12.892 0.483 

0.071 175.849 1298.019 0.167 
252.452 0.616 0.350 

3 0.826 
44, 145, 

246 

33.123 11.272 0.480 

0.117 
78.128 390.079 0.021 

187.900 186.987 0.149 
252.469 0.482 0.350 

4 0.896 
55, 97, 

163, 246 

33.178 12.123 0.482 

0.294 
75.522 119.910 0.017 

128.441 258.119 0.003 
185.922 82.920 0.142 
252.158 6.177 0.356 

GA 

1 2.410 244 
69.838 4226.048 0.650 

0.106 

0.658 

252.452 0.616 0.350 

2 0.994 65, 242 
33.239 13.806 0.483 

0.147 176.018 1256.142 0.166 
252.440 0.736 0.351 

3 0.857 
45, 111, 

242 

33.131 11.350 0.481 

0.195 
74.412 187.027 0.019 

186.725 207.543 0.150 
252.440 0.736 0.351 

4 0.882 
44, 143, 
155, 247 

33.123 11.272 0.480 

0.211 
77.924 377.966 0.021 

150.013 12.387 0.001 
188.193 191.885 0.149 
252.477 0.431 0.349 

PSO 

1 2.384 247 
70.158 4274.185 0.651 

0.083 

0.584 

252.477 0.431 0.349 

2 0.955 65, 247 

33.239 13.806 0.483 

0.118 176.672 1288.421 0.167 

252.477 0.431 0.349 

3 0.857 
45, 111, 

242 

33.131 11.350 0.481 

0.172 
74.412 187.027 0.019 

186.725 207.543 0.150 

252.440 0.736 0.351 

4 0.880 
42, 135, 
154, 247 

33.097 11.070 0.479 

0.211 

74.922 381.817 0.022 

144.535 35.001 0.001 

188.161 192.778 0.149 

252.477 0.431 0.349 
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The computational effort and parameters of each Gaussian distribution (  2, ,j j j jw   ) are 

summarized in Table 4. Here, the number of iterations for the algorithms were 4, i.e., the proposed 

method optimized Equation (10) for d = [1, 2, 3, 4] before reaching the stopping criterion.  

The behavior of the Relative Entropy function (Figure 7a) reveals its deficiency in detecting an 

appropriate number of distributions that will have a good description of the image histogram (Figure 8). 

The aforementioned is because as more distributions or thresholds are added into the mixture, it is 

impossible to identify a true minimum for the value of J(d) when implementing the three different 

meta-heuristic tools. 

The additional function P(d) on the other hand shows a minimum value when a suitable number of 

distributions (which is the same as finding the number of thresholds) is found (Figure 7b), since its 

value shows an increasing pattern when more distributions are added to the mixture model. The 

combination of these two functions J(d) and P(d) shows that the optimal value for Θ(d)
 
(Figure 7c) 

will be when the number of thresholds is three as P(d) suggested. Note that the purpose of J(d)
 
is to 

find the best possible fitting with the suitable number of distributions (thresholds), and this is observed 

at Figure 8 where the fitted model (dotted line) provides a very good description of the original 

histogram (solid line) given by the image. The vertical dashed lines in Figure 8 are the values of the 

threshold found. In addition to the thresholding result, it was observed that VOA provides both, the 

smallest CPU time as well as the best objective function value among the three algorithms. 

Figure 7. Behavior of (a) Relative Entropy function J(d), (b) P(d), and (c) Objective 

function Θ(d) over different numbers of thresholds with different meta-heuristics VOA, 

GA and PSO on test image 1. 

(a) (b) 

(c)
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Figure 8. Fitting of the histogram of the test image 1 implementing (a) VOA, (b) GA, and 

(c) PSO. 

(a) (b) 

(c)

When implementing Otsu’s method, it is rather impressive to observe that the output image delivered by 

the algorithms when optimizing Equation (10) resembles the one given by Otsu’s method (Figure 4e). The 

aforementioned, confirms the competitiveness of the proposed idea in segmenting a gray scale image given 

a number of distributions in the mixture model. Additionally, the main contribution is that we do not need 

to look at the histogram to determine how many thresholds will provide a good segmentation, and by 

implementing optimization tools such as the ones presented in this study, we can provide satisfactory 

results in a short period of time, where methods such as Otsu’s would take too long. 

Table 5. Thresholding results over 50 runs for the test image 2. 

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights 

CPU 
Time per 
Iteration 

(s) 

Total CPU 
Time for the 

Proposed 
Approach (s) 

VOA 

1 1.051 143 
87.326 1015.901 0.127 

0.057 

0.237 

203.855 603.462 0.873 

2 0.585 133, 205 
81.590 808.054 0.114 

0.089 182.352 280.586 0.448 
223.915 170.129 0.438 

3 0.670 
104, 174, 

209 

67.393 370.007 0.082 

0.091 
150.866 385.486 0.153 
192.994 90.775 0.378 
226.231 146.602 0.386 
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Table 5. Cont. 

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights 

CPU 
Time per 
Iteration 

(s) 

Total CPU 
Time for the 

Proposed 
Approach (s) 

GA 

1 1.051 142 
86.658 991.336 0.126 

0.109

0.480 

203.746 609.117 0.874 

2 0.593 132, 204 
81.075 790.076 0.113 

0.145181.537 279.992 0.436 
223.310 176.642 0.451 

3 0.659 
142, 149, 

206 

86.658 991.336 0.126 

0.226
145.121 3.989 0.011 
185.213 205.948 0.440 
224.558 163.332 0.423 

PSO 

1 1.051 143 
87.326 1015.901 0.127 

0.072

0.453 

203.855 603.462 0.873 

2 0.573 156, 206 
97.751 1389.414 0.153 

0.141186.458 170.789 0.424 
224.558 163.332 0.423 

3 0.619 
101, 180, 

211 

66.048 335.944 0.079 

0.240
155.144 453.146 0.195 
195.932 76.337 0.366 
227.489 134.942 0.359 

When an image containing text on a wrinkled paper (Figure 5a) is tested, two thresholds (or three 

Gaussian distributions) give the best objective function value for Equation (10) as observed in Figure 9c. 

Table 5 summarizes the thresholding results, i.e., Θ(d), computational effort and Gaussian parameters, 

for the three meta-heuristics implemented. As for the fitting result, Figure 10 shows that even though 

three Gaussian distributions do not provide an exact description of the image histogram, it is good 

enough to recognize all the characters on the thresholded image (Figures 5b–d). 

Figure 9. Behavior of (a) Relative Entropy function J(d), (b) P(d), and (c) Objective 

function Θ(d) over different numbers of thresholds with different meta-heuristics VOA, 

GA and PSO on test image 2. 

(a) (b) 
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Figure 9. Cont. 

(c)

The outstanding performance of the three meta-heuristics is observed once again when comparing 

with the Otsu’s method (Figure 5e), where the computational effort shows the feasibility of optimizing 

the proposed mathematical model with heuristic optimization algorithms. 

Figure 10. Fitting of the histogram of the test image 2 implementing (a) VOA, (b) GA, 

and (c) PSO. 

(a) (b) 

 
(c)

The thresholding results of the Lena image (Figure 6a) shows that four thresholds (five Gaussian 

distributions) have the best objective function value, which is detailed in Table 6. Visually, the 

thresholded images (Figures 6b–d) obtain most of the details from the original one, and in terms of 

objective function behavior (Figure 11) there is no need to add more distributions into the mixture 

model (i.e., more thresholds) because they do not provide a better objective function value. 
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Table 6. Thresholding results over 50 runs for the test image 3. 

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights 

CPU 
Time per 
Iteration 

(s) 

Total CPU 
Time for the 

Proposed 
Approach (s) 

VOA 

1 1.043 63 
48.917 51.398 0.159 

0.046 

1.009 

138.048 1442.095 0.841 

2 0.575 59, 138 
47.598 40.100 0.143 

0.128 104.785 484.361 0.430 
168.523 538.213 0.428 

3 0.454 
99, 140, 

183 

65.002 369.233 0.302 

0.198 
120.137 147.621 0.287 
157.234 130.155 0.295 
201.595 109.646 0.116 

4 0.367 
86, 126, 

154, 199 

57.24
3

192.433 0.236 

0.210 
106.550 126.938 0.236 
139.629 67.666 0.241 
170.694 173.733 0.218 
208.851 42.459 0.068 

5 0.466 
68, 104, 

134, 156, 
190 

50.380 68.188 0.175 

0.428 

88.813 108.622 0.165 
120.054 77.656 0.203 
145.072 39.845 0.192 
168.597 90.400 0.167 
204.364 77.722 0.098 

GA 

1 1.044 66 
49.794 60.874 0.169 

0.103 

0.904 

138.924 1393.456 0.831 

2 0.606 69, 139 
50.671 72.095 0.178 

0.136 109.090 368.075 0.402 
169.106 530.358 0.419 

3 0.504 
96, 140, 

179 

62.664 315.826 0.282 

0.182 
118.590 171.180 0.307 
156.168 110.243 0.282 
199.453 139.510 0.129 

4 0.474 
46, 99, 136, 

169 

40.698 14.583 0.051 

0.225 
69.954 296.623 0.251 

118.032 124.129 0.256 
151.053 77.603 0.267 
192.624 235.736 0.175 

5 0.584 
65, 87, 128, 

152, 205 

49.504 57.550 0.166 

0.258 

76.023 40.415 0.074 
108.258 138.292 0.250 
139.533 49.522 0.205 
171.707 244.613 0.257 
211.824 28.018 0.049 
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Table 6. Cont. 

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights
CPU Time 

per Iteration 
(s) 

Total CPU 
Time for the 

Proposed 
Approach (s) 

PSO 

1 1.044 64 
49.212 54.387 0.163

0.096 

0.887 

138.353 1424.978 0.837

2 0.575 68, 140 
50.380 68.188 0.175

0.128 109.403 387.984 0.414
169.718 522.330 0.411

3 0.446 
97, 141, 

191 

63.440 333.741 0.288

0.170 
119.639 170.199 0.309
159.625 168.784 0.308
204.790 73.728 0.095

4 0.337 
79, 121, 
148, 184 

54.216 131.179 0.210

0.220 
101.036 126.541 0.225
134.327 60.474 0.225
161.866 95.355 0.227
202.037 103.844 0.113

5 0.478 
60, 115, 

117, 147, 
186 

47.926 42.582 0.147

0.273 

90.827 237.679 0.255
115.514 0.250 0.010
132.322 71.331 0.240
161.755 107.986 0.240
202.782 94.639 0.108

Figure 11. Behavior of (a) Relative Entropy function J(d), (b) P(d), and (c) Objective 

function Θ(d) over different numbers of thresholds with different meta-heuristics VOA, 

GA and PSO on test image 3. 

(a) (b) 
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Figure 11. Cont. 

 
(c)

Once again, the fitting provided by the mixture model (Figure 12) might not be the best; however, 

it is good enough to provide most of the details from the original image. It is interesting to observe that 

all the algorithmic tools are able to find satisfactory results in no more than 1.009 seconds in the case 

of VOA which is the slowest one, even though the algorithmic tools had to optimize Equation (10) for 

d = [1, 2, 3, 4]. 

Figure 12. Fitting of the histogram of the test image 3 implementing (a) VOA, (b) GA, 

and (c) PSO. 

(a) (b) 

(c)

To further test the proposed method an image with low contrast is used as illustrated in Figure 13a. 

It is observed that all the algorithmic tools are able to segment the image providing the correct number 

of thresholds which is three. Additionally, when comparing the output image given by Otsu’s method 
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and the idea proposed in this study, we are able to observe that despite its novelty the proposed method 

provides stable and satisfactory results for a low contrast image.  

Three thresholds are suggested after the optimization of Equation (10) is performed, which is good 

enough for successfully segmenting the image under study (Figures 13b–d), though the fitting of the 

image histogram was not a perfect one (Figure 15). More importantly, the addition of more than four 

distributions (i.e., three thresholds) to the mathematical model Equation (10) does not achieve a better 

result according to Figure 14c; therefore, the power of the proposed approach is shown once again 

with this instance. As for the Otsu’s method, even though the correct number of thresholds is provided, the 

low contrast causes defect in the output image (seen at the light gray region in the middle of Figure 13e. 

Table 7. Thresholding result over 50 runs for the test image 4.  

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights

CPU 
Time per 
Iteration 

(s) 

Total CPU 
Time for the 

Proposed 
Approach (s) 

VOA 

1 2.112 98 
102.027 504.595 0.612

0.045 

0.213 

174.622 36.165 0.388

2 1.014 105, 169 
91.007 2.994 0.486

0.051 146.853 157.462 0.160
176.415 0.749 0.354

3 0.848 
101, 133, 

169 

90.917 1.888 0.482

0.054 
109.438 46.637 0.019
150.667 17.258 0.145
176.415 0.749 0.354

4 0.919 
103, 117, 
140, 169 

90.929 2.009 0.483

0.064 
107.796 17.853 0.016
126.818 25.714 0.002
150.202 9.141 0.139
176.271 2.326 0.359

GA 

1 2.112 98 
90.906 1.803 0.482

0.134 

0.692 

166.703 268.234 0.518

2 1.051 100, 166 
90.914 1.861 0.482

0.153 145.534 191.624 0.161
176.349 1.354 0.357

3 0.903 
99, 122, 

167 

90.910 1.832 0.482

0.179 
107.759 23.640 0.018
150.171 19.452 0.144
176.364 1.203 0.356

4 0.998 
109, 115, 
139, 177 

91.270 6.829 0.494

0.225 
111.849 2.575 0.003
123.655 52.305 0.005
164.654 163.335 0.323
177.000 1.455 0.176
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Table 7. Cont.  

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights
CPU Time 

per 
Iteration (s) 

Total CPU 
Time for the 

Proposed 
Approach (s)

PSO 

1 2.112 98 
90.906 1.803 0.482

0.027 

0.171 

166.703 268.234 0.518

2 1.005 97, 168 

90.902 1.780 0.481

0.035 145.505 204.582 0.163

176.393 0.931 0.355

3 0.873 
98, 116, 

168 

90.906 1.803 0.482

0.045 
106.393 12.956 0.016

149.899 33.945 0.147

176.393 0.931 0.355

4 0.911 
98, 130, 
138, 169 

90.906 1.803 0.482

0.065 

108.777 42.833 0.019

133.110 4.122 0.001

150.704 16.707 0.144

176.415 0.749 0.354

Figure 13. Test image 4: (a) Original image; Thresholded image implementing (b) VOA, 

(c) GA, (d) PSO, and (e) Otsu’s method. 

(a) (b) (c) (d) (e) 

Figure 14. Behavior of (a) Relative Entropy function J(d), (b) P(d), and (c) Objective 

function Θ(d) over different numbers of thresholds with different meta-heuristics VOA, 

GA, and PSO on test image 4. 

(a) (b) 
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Figure 14. Cont. 

 
(c)

Figure 15. Fitting of the histogram of the test image 4 implementing (a) VOA, (b) GA, 

and (c) PSO. 

(a) (b) 

(c)
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Table 8. Thresholding result over 50 runs for the test image 5. 

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights 

CPU 
Time per 
Iteration 

(s) 

Total CPU 
Time for the 

Proposed 
Approach (s)

VOA 

1 1.023 67 
48.328 119.083 0.172 

0.060 

0.435 

138.301 1428.555 0.828 

2 0.556 63, 137 
46.555 100.292 0.155 

0.075 104.962 436.410 0.421 

168.426 564.154 0.424 

3 0.504 
88, 140, 

206 

57.730 278.208 0.254 

0.082 
115.780 221.287 0.346 
165.005 334.790 0.358 
214.735 50.956 0.042 

4 0.481 
87, 130, 
151, 197 

57.218 267.832 0.249 

0.094 
109.591 151.059 0.268 

140.153 36.619 0.178 

168.811 169.302 0.232 

209.138 78.820 0.071 

5 0.495 
77, 116, 
143, 158, 
214, 255 

52.347 176.710 0.208 

0.124 

97.798 120.079 0.210 

129.636 59.464 0.208 

149.842 18.471 0.128 

180.649 270.308 0.226 
220.581 34.873 0.020 

GA 

1 1.024 71 
49.927 139.317 0.187 

0.139 

1.204 

139.577 1363.879 0.813 

2 0.669 76, 137 
51.913 169.499 0.204 

0.198 109.784 294.414 0.372 

168.426 564.154 0.424 

3 0.586 
84, 138, 

227 

55.674 237.243 0.236 

0.209 
113.180 235.410 0.347 

168.529 529.908 0.413 

231.261 20.782 0.003 

4 0.568 
60, 103, 
146, 211 

45.138 87.633 0.141 

0.259 
82.720 165.607 0.195 

125.553 152.188 0.316 

170.644 343.107 0.320 

218.253 40.308 0.028 

5 0.573 
57, 90, 130, 

156, 212 

43.635 76.301 0.126 

0.400 

72.881 99.772 0.138 

110.800 131.973 0.254 

142.590 55.391 0.220 

178.408 270.837 0.237 

219.035 38.368 0.025 
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Table 8. Cont. 

Algorithm 
Number of 
Thresholds 

Objective 
Function 

Threshold 
Values 

Means Variances Weights 

CPU 
Time per 
Iteration 

(s) 

Total CPU 
Time for the 

Proposed 
Approach (s) 

PSO 

1 1.023 66 
47.900 114.220 0.168 

0.034 

0.373 

137.948 1446.983 0.832 

2 0.564 64, 137 
47.023 104.922 0.159 

0.060 105.419 421.751 0.416 
168.426 564.154 0.424 

3 0.413 
97, 140, 

182 

63.047 390.706 0.300 

0.073 
119.448 154.217 0.300 
157.206 130.606 0.281 
201.012 152.773 0.119 

4 0.410 
28, 89, 133, 

169 

22.825 17.056 0.007 

0.091 
59.246 263.407 0.252 

112.179 160.043 0.284 
149.441 99.432 0.282 
192.596 259.838 0.175 

5 0.576 
40, 70, 125, 

159, 230 

32.580 32.714 0.037 

0.115 

53.830 68.546 0.146 
100.401 235.202 0.297 
141.671 92.691 0.281 
184.398 346.042 0.237 
234.122 19.797 0.002 

The Lena image in which a random noise is generated will be our last test instance (Figure 16a), from 

this it is expected to provide clear evidence concerning robustness of the proposed method, where all the 

parameter values and computational results are summarized on Table 8. By observing the thresholded 

images when implementing the proposed approach (Figures 16b–d), we are able to conclude that random 

noise does not represent a major issue, even though different optimization tools are used. 

The objective function behavior (Figure 17c) proved once again that when a suitable number of 

thresholds is achieved, the addition of more distributions into the mixture model is not necessary, since 

it will always achieve a larger objective function value compared with the one given by having four 

thresholds (or five Gaussians). Additionally, the fitting of the histogram (Figure 18) given by the 

image, even though is not a perfect one, is proved to be good enough to keep most of the relevant 

details from the original test instance. 

Most of the relevant details from the original instance are kept. On the other hand, Otsu’s method 

(Figure 16e) is not able to provide an output image as clear as the ones given by the proposed approach 

when implementing the meta-heuristic tools. 
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Figure 16. Test image 5: (a) Original image; Thresholded image implementing (b) VOA, 

(c) GA, (d) PSO, and (e) Otsu’s method with 4 thresholds. 

   
(a) (b) (c) (d) (e) 

Figure 17. Behavior of (a) Relative Entropy function J(d), (b) P(d), and (c) Objective 

function Θ(d) over different numbers of thresholds with different meta-heuristics VOA, 

GA and PSO on test image 5. 

(a) (b) 

(c)
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Figure 18. Fitting of the histogram of the test image 5 implementing (a) VOA, (b) GA, and 

(c) PSO. 

(a) (b) 

 
(c)

4. Conclusions 

In this study a new approach to automatically assess the number of components “d” in a mixture of 

Gaussians distributions has been introduced. The proposed method is based on the Relative Entropy 

Criterion (Kullback-Leibler information distance) where an additional term is added to the function 

and helps to determine a suitable number of distributions. Finding the appropriate number of 

distributions is the same as determining the number of thresholds for segmenting an image, and this 

study has further shown that the method proposed in [8] is powerful enough in finding a suitable 

number of distributions (thresholds) in a short period of time. 

The novelty of the approach is that, not only an appropriate number of distributions determined by 

P(d) is achieved, but also a good fitting of the image histogram is obtained by the Relative Entropy 

function J(d). The optimization of Equation (10) was performed implementing the Virus Optimization 

Algorithm, Genetic Algorithm, Particle Swarm Optimization, and the output images are compared to 

that given by a well-known segmentation approach Otsu’s method. The objective function behavior 

shows that the proposed model achieves a suitable number of thresholds when its minimum value is 

achieved, and the addition of more distributions (thresholds) into the model will cause an increasing 

trend of the model in Equation (10). 

Comparing the proposed method with Otsu’s method provided clear evidence of the effectiveness 

and efficiency of the approach where the algorithmic tools are used in order to reduce the 

computational effort when optimizing Equation (10). Additionally, the proposed method proved to 
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reach the same value for the number of thresholds needed for the segmentation of the images tested in 

this study, even though different optimization algorithms were implemented. 

It is worth mentioning that the proposed method proved to work remarkably well under test images 

with low contrast and random noise. A suitable number of thresholds and an outstanding result in the 

output thresholded images were obtained. Whereas for the Otsu’s method, the output image showed 

some defects once the segmentation was performed. 

The fitting result coming from the proposed approach might not be the best; however, when 

segmenting an image what matters the most is the fidelity in which most of the details are kept from 

the original picture. This is what makes the difference between a good and poor segmentation result. 

Future directions point toward testing the proposed method with more meta-heuristic algorithms, as 

well as a wider range of images to evaluate the robustness of the approach.  
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