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Abstract: Zhang in 2012 introduced a nonparametric estimator of Shannon’s entropy, whose
bias decays exponentially fast when the alphabet is finite. We propose a methodology to
estimate the bias of this estimator. We then use it to construct a new estimator of entropy.
Simulation results suggest that this bias adjusted estimator has a significantly lower bias than
many other commonly used estimators. We consider both the case when the alphabet is finite
and when it is countably infinite.
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1. Introduction

Let K be a finite or countable index set with cardinality |K|. Let P = {pk : k ∈ K} be a probability
distribution on the alphabet X = {`k; k ∈ K}. Entropy, of the form

H = −
∑
k∈K

pk ln(pk) (1)

was introduced by Shannon in [1] and is often referred to as Shannon’s entropy. Miller [2] and
Basharin [3] were among the first to study nonparametric estimation of H . Since then, the topic has
been investigated from a variety of directions and perspectives. Many important references can be found
in [4] and [5]. In this paper, we introduce a modification of an estimator of entropy, which was first
defined by Zhang in [6]. This modification aims to reduce the bias of the original estimator. Simulations
suggest that, at least for the models considered, this estimator has very low bias compared with several
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other commonly used estimators. Throughout this paper, we use ln to denote the natural logarithm and
we define, as is common, 0 ln 0 = 0. For any two functions f and g, taking values in (0,∞) with
lim
n→∞

f(n) = lim
n→∞

g(n) = 0, we write f(n) = O(g(n)) to mean

0 < lim inf
n→∞

f(n)

g(n)
≤ lim sup

n→∞

f(n)

g(n)
<∞

and O(g(n)) ≤ f(n) to mean

0 < lim inf
n→∞

f(n)

g(n)
≤ lim sup

n→∞

f(n)

g(n)
≤ ∞

Assume that P is unknown. Let X1, X2, . . . , Xn be an independent and identically distributed (iid)
sample of size n from X according to P . Let {yk =

∑n
i=1 1[Xi = `k], k ∈ K} be the observed sample

frequencies of letters in the alphabet, and let {p̂k = yk/n, k ∈ K} be the sample proportions. In this
framework, we are interested in estimating H . Perhaps the most intuitive nonparametric estimator of H
is given by

Ĥ = −
∑
k∈K

p̂k ln(p̂k) (2)

This is known as the plug-in estimator. When |K| is finite, the bias of Ĥ is given by

|K| − 1

2n
+O(1/n2)

see Miller [2] or, for a more formal treatment, Paninski [5]. This leads to the so-called
Miller–Madow estimator

ĤMM = Ĥ +
|̂K| − 1

2n
(3)

where |̂K| is the number of distinct letters observed in the sample. Other estimators of H include the
jackknife estimator of Zahl [7] and Strong, Koberle, de Ruyter van Steveninck, and Bialek [8], and the
NSB estimator of Nemenman, Shafee, and Bialek [9] and Nemenman [10]. These estimators (and others)
have been shown to work well in numerical studies, although many of their theoretical properties (such
as consistency and asymptotic normality) are not known.

Zhang [6] proposed an estimator, Ĥz, of entropy, which is given in Equation (4) below. When |K| is
finite, the bias of Ĥz decays exponentially fast, and the estimator is asymptotically normal and efficient.
See Zhang [11] for details. This estimator is given by

Ĥz =
n−1∑
v=1

1

v
Z1,v (4)

where

Z1,v =
nv+1[n− (v + 1)]!

n!

∑
k∈K

[
p̂k

v−1∏
j=0

(
1− p̂k −

j

n

)]
(5)
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In Zhang [6] it is shown that

E(Ĥz) =
n−1∑
v=1

1

v

∑
k∈K

pk(1− pk)v

and that the bias of Ĥz is given by

Bn = H − E(Ĥz) =
∞∑
v=n

1

v

∑
k∈K

pk(1− pk)v (6)

Although Bn decays exponentially in n when K is a finite set, it can still be annoyingly sizable for small
n. The objective of this paper is to put forth a good estimator B̂n of Bn, and, in turn, a good estimator
of H by means of Ĥ]

z = Ĥz + B̂n. We deal with both the case when |K| is finite and the case when it
is infinite.

2. Bias Adjustment

For a positive integer v, let ∆v be the difference between the bias of Ĥz based on an iid sample of
size v and that of size v + 1, i.e.,

∆v = Bv −Bv+1 =
1

v

∑
k∈K

pk(1− pk)v

Clearly Bn =
∑∞

v=n ∆v. According to Zhang and Zhou [12], for every v with 1 ≤ v ≤ n − 1,
Z1,v, as given in Equation (5), is the uniformly minimum variance unbiased estimator (umvue) of
ζ1,v =

∑
k∈K pk(1 − pk)

v. This implies that for every v, 1 ≤ v ≤ n − 1, ∆̂v = v−1Z1,v is a good
estimator of ∆v.

The methodology proposed in this paper is as follows: For all v ≤ n−1, we estimate ∆v with ∆̂v. We
use ∆̂1, ∆̂2, · · · , ∆̂n−1 to fit a parametric function δ(v) such that δ(v) is close to ∆̂v. We then extrapolate
this function and take ∆̂v = δ(v) for v ≥ n. Our estimate of the bias is then B̂n =

∑∞
v=n ∆̂n.

It remains to choose a reasonable parametric form for δ and to fit it. We consider these questions in
two separate cases: (1) when |K| is finite, known or unknown, and (2) when |K| is countably infinite.
The case when it is unknown whether |K| is finite or infinite is discussed in Remark 1 below. Figure 1
shows how well our chosen δ(v) fits ∆̂v for typical examples.

Figure 1. (a) Plot of v on the x-axis and ln(∆̂v) on the y-axis. This is based on a random
sample of size 200 from a Zipf distribution. The overlaid line is the estimated ln δ(v); (b) Plot
of ln(v) on the x-axis and ln(∆̂v) on the y-axis. This is based on a random sample of size
200 from a Poisson distribution. The overlaid line is the estimated ln δ(v).
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Figure 1. Cont.
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2.1. Case: |K| is Finite

Assume that |K| is finite. If p∧ = mink∈K pk then

∆v =
1

v

∑
k∈K

pk (1− pk)v = O
(
v−1 (1− p∧)v

)
(7)

as v increases indefinitely. This suggests taking

δ(v) =
αe−γv

v
(8)

where α > 0 and γ > 0. However, since, for small values of v, other terms of the sum given in
Equation (7) may have a significant impact, we consider the slightly more general form

δ(v) =
αe−γv

vβ
(9)

where α > 0, γ > 0 and β ∈ R are parameters. These parameters are estimated by using least squares
to fit

ln δv = lnα− β ln v − γv (10)

with data
ln ∆̂v ln v v

ln ∆̂v0 ln v0 v0

ln ∆̂v0+1 ln(v0 + 1) v0 + 1
...

...
...

ln ∆̂n−1 ln(n− 1) n− 1

(11)

Here v0 is a user-chosen positive integer. We can always take v0 = 1, but we may wish to exclude the
first several ∆̂v since they may be atypical. We denote our estimate of lnα by l̂nα, and those of α, β,
and γ by

α̂ = el̂nα, β̂, and γ̂ (12)

The bias adjusted Ĥz is given by

Ĥ]
z = Ĥz +

∞∑
v=n

(
α̂e−γ̂v

vβ̂

)
(13)
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This summation may be approximated by the integral
∫∞
n

(α̂e−γ̂vv−β̂)dv or by truncating the sum at some
very large integer V . For the simulation results presented below, we take v0 = 10 and V = 100, 000.

Two finer modifications are made to Ĥ]
z in Equation (13) when the sample data present some

undesirable features:

1. If the least squares fit based on Equation (10) leads to γ̂ ≤ 0, the fitted results are abandoned, and
instead the new model

ln δv = lnα− γv (14)

is fit to the same data as in Equation (11). The resulting estimates of the parameters are then

α̂ = el̂nα and γ̂

and a modified estimate of H is given by

Ĥ]
z = Ĥz +

∞∑
v=n

(
α̂e−γ̂v

)
(15)

The switch from Equation (10) to Equation (14) is necessary because if γ̂ ≤ 0 then Ĥ]
z in

Equation (13) diverges. In this case, we recommend taking a relatively large value for v0 because
small values of v are more likely to require a polynomial part. For our simulations, we use
v0 = (n− 21) in this case.

2. When a sample has no letters with frequency 1, the model in Equation (9) will not fit well.
In this case we modify the sample by isolating one observation in a letter group with the least
frequency and turn it into a singleton, e.g., a sample of the form {y1, y2, y3} = {3, 2, 2} is replaced
by {3, 2, 1, 1}.

To show how well Equation (9) fits (∆̂1, ∆̂2, · · · , ∆̂n−1) for a typical sample, we include an example
of the fit in (a) of Figure 1. Here we plot v against ln ∆̂v. The overlaid curve represents the fitted
δ(v). This is based on a simulation of a random sample of size 200 from a Zipf distribution. To give
a snapshot of the performance of the proposed estimator, we conducted several numerical simulations,
and compared the absolute value of the bias of the proposed estimator to that of several commonly used
ones. The distributions that we performed the simulations on are:

1. (Triangular) pk = k/5050, for k = 1, 2, · · · , 100, here H ≈ 4.416898,
2. (Zipf) pk = C/k, for k = 1, 2, · · · , 100, here C ≈ 0.192776 and H ≈ 3.680778.

The estimators that we compared the performance of our estimator to are: the plug-in estimator given in
Equation (2), the Miller–Madow estimator given in Equation (3), and Ĥz given in Equation (4).

For each distribution and each estimator, the bias was approximated as follows. We simulate n
observations from the given distribution and evaluate the estimator. We then subtract the estimated
value from the true value H . We repeat this 2000 times and average the errors. We then take the absolute
value of the estimated bias. The procedure was slightly different for the estimator given in Equation (4).
Since, in this case, the bias has the explicit form given in Equation (6), we approximate the bias by
truncating this series at 100, 000. The sample sizes considered in these simulations range from n = 22
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to n = 500. The plots of the estimated biases are graphed in Figure 2; part (a) gives the plot for
the triangular distribution and part (b) gives the plot for the Zipf distribution. Note that our proposed
estimator has the lowest bias in all cases and that it is significantly lower for small samples.

Figure 2. We compare the absolute value of the bias of our estimator (New Sharp) with that
of the plug-in (MLE), the Miller–Madow (MM), and the one given in Equation (4) (New).
The x-axis is the sample size and the y-axis is the absolute value of the bias. The plots
correspond to the distributions: (a) Triangular distribution and (b) Zipf distribution.
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Another estimator of entropy is the NSB estimator of Nemenman, Shafee, and Bialek [9] (see also
Nemenman [10] and the references therein). The authors of that paper provide code to do the estimation,
which is available at http://nsb-entropy.sourceforge.net/. We used version 1.13, which was updated on
20 July 2011. Unlike the estimators discussed above, this one requires knowledge of |K|, and, for this
reason, we consider it separately. Plots comparing the bias of our estimator and that of NSB are given in
Figure 3. Note that our estimator is mostly comparable with NSB, although in certain regions it performs
a bit better.
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Figure 3. We compare the absolute value of the bias of our estimator with that of the NSB
estimator. The x-axis is the sample size and the y-axis is the absolute value of the bias. The
plots correspond to the distributions: (a) Triangular distribution and (b) Zipf distribution.
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2.2. Case: |K| is Countably Infinite

We now turn to the case when |K| is countably infinite. We need to find a reasonable parametric form
for δ(v). The following facts suggest an approach.

1. For any distribution on a countably infinite alphabet ∆v ≥ O (v−2).
2. If pk = Ck−λ for k ≥ 1 where λ > 1, then ∆v = O

(
v−(2−1/λ)

)
.

These facts tell us that ∆v decays slower than O(1/v2). Moreover, the heavier the tail of the
distribution, the slower the decay appears to be. Since, even for very heavy tailed distributions, we
have polynomial decay, this suggests that the rate of decay is essentially O(1/vβ) for some β ∈ (0, 2].
Thus, for all practical purposes, a reasonable model is

δ(v) =
α

vβ
(16)

where α > 0 and β > 0 (we allow β > 2 to make the model more flexible). The model parameters are
estimated by using least squares to fit

ln δ(v) = lnα− β ln v (17)

with the data in Equation (11). We denote the estimate of lnα by l̂nα, and those of α and β by

α̂ = el̂nα and β̂ (18)

The bias adjusted Ĥz is given by

Ĥ]
z = Ĥz +

∞∑
v=n

(
α̂v−β̂

)
(19)
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where the summation may be approximated by the integral
∫∞
n

(α̂v−β̂)dv = α̂n1−β̂/(1 − β̂) or by
truncating the sum at some very large integer V . For the simulation results presented below, we take
v0 = 10 and use the integral approximation to the sum.

As in the case when |K| is finite, we need to make adjustments in certain situations.

1. If β̂ ≤ 1 then the sum in Equation (19) diverges. In fact, when β̂ is close to 1 (even if it is larger
then 1), this causes problems. To deal with this we do the following. Choose β0 ∈ (1, 2], if β̂ < β0

our fitted results are abandoned, and instead the new model

ln δ(v) + β0 ln v = lnα (20)

is fit using least squares. In our simulations we take β0 = 1.5. The resulting estimate of the sole
parameter α is given by α̂ = el̂nα, and a modified estimate of H is given by

Ĥ]
z = Ĥz +

∞∑
v=n

(
α̂v−β0

)
(21)

2. When a sample has no letters with frequency 1, we run into trouble as we did in the case when |K|
is finite. We solve this problem in the same way as in the previous case.

To show how well Equation (16) fits (∆̂1, ∆̂2, · · · , ∆̂n−1) in a typical sample, we include an example
of the fit in (b) of Figure 1. Here we plot ln v against ln ∆̂v. The overlaid curve represents the fitted
δ(v). This is based on a simulation of a random sample of size 200 from a Poisson distribution. As in the
previous case, we evaluate the performance of the proposed estimator by conducting several numerical
simulations. We estimated entropy for the following distributions:

1. (Power) pk = C/k2, for k ≥ 1, here C = 6/π2 and H ≈ 1.637622,
2. (Geometric) pk = (1− 1/e)e−k, for k ≥ 0, here H ≈ 1.040652,
3. (Poisson) pk = e−λλk/k!, for k ≥ 0, where λ = e and H ≈ 1.87722.

Again, we compare with the plug-in estimator, the Miller–Madow estimator, and Ĥz. Although the
Miller–Madow estimator is motivated by the case where |K| is finite, it is often a good estimator in the
infinite case as well. We approximate the bias, as in the previous case. The estimated biases for sample
sizes ranging from n = 22 to n = 500 are graphed in Figure 4. Parts (a), (b), and (c) of Figure 4
correspond to the three distributions listed above. Note that the new estimator outperforms the other
estimators. However, the improvement is not as drastic as in the case when |K| is finite. We also make
separate comparisons with NSB. These are given in Figure 5. Although NSB is designed for the case
when |K| is known and finite, we can extend its use to the infinite case by telling the program that |K| is
some large but finite value. In our simulations we take it to be 1010. We see that the performance of our
estimator is roughly comparable with or somewhat better than that of NSB.

Remark 1. In practice, it may not be known, a priori, if |K| is finite or infinite. In such situations, one
does not know which of the two adjustments to use. One approach is as follows. Fit both models and
denote their respective mean squared errors by MSE1 and MSE2, then use the one that has the smaller
MSE.
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Figure 4. We compare the absolute value of the bias of our estimator (New Sharp) with that
of the plug-in (MLE), the Miller–Madow (MM), and the one given in Equation (4) (New).
The x-axis is the sample size and the y-axis is the absolute value of the bias. The plots
correspond to the distributions: (a) Power; (b) Geometric; and (c) Poisson.
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Figure 5. We compare the absolute value of the bias of our estimator with that of the NSB
estimator. The x-axis is the sample size and the y-axis is the absolute value of the bias. The
plots correspond to the distributions: (a) Power; (b) Geometric; and (c) Poisson.
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3. Summary and Discussion

In Zhang [6] an estimator of entropy was introduced, which, in the case of a finite alphabet, has
exponentially decaying bias. In this paper we described a methodology for further reducing the bias of
this estimator. Our approach is to note that when the alphabet is finite, the bias of this estimator decays
exponentially fast, while in the case when the alphabet is infinite, the bias decays like a polynomial. We
estimate the bias by fitting an appropriate function. Then we add this estimate of the bias to our estimated
entropy. Simulation results suggest that, at least in the situations considered, the bias is drastically
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reduced for small sample sizes. Moreover, our estimator outperforms several standard estimators and is
comparable with the well-known estimator NSB.

One situation where estimators of entropy run into difficulty is in the case where all n observations
are singletons, that is when each observation is a different letter. There is not much that can be done in
this case since the sample has very little information about the distribution (except that, in some sense, it
is very “heavy tailed”). In this case, we can say that the sample size is very small, even if n is substantial.

This suggests a way to think about small sample sizes. Before discussing this, we describe a common
approach to defining what a small sample size is. When |K| is finite, a common heuristic is to say
that a sample is small if its size n is less than ε|K|, for some ε ∈ (0, 1). While this may be useful in
certain situations, it has several limitations. First, it assumes that |K| is known and finite, and second
there appears to be no good way to choose ε. Moreover, this ignores the fact that some letters may
have very small probabilities and may not be very important for entropy estimation. To underscore
this point, consider two models. The first has an alphabet of size K, while the second has a much
larger alphabet size, say K2. However, assume that on K of its letters, the second model has almost
the same probabilities as those of the first model, while the remaining K2 − K letters have very tiny
probabilities. The heuristic described above may call a sample of size n from the first population
large while a sample of size n from the second population very small, even though, for the purposes
of entropy estimation, the two samples may have approximately the same amount of information about
their respective distributions.

What matters is not how big the sample is relative to |K|, but how much information about the
population the sample possesses. Thus, instead of starting with an external idea of what constitutes
a small sample, we can “ask” the sample how much information it contains about the distribution. If it
contains very little information about the sample then we can call it a “small sample.” When one has a
small sample, in this sense, one should be very careful about using it for inference, and, in particular, for
entropy estimation.

One way to quantify how much information a sample has is the sample’s coverage of the population,
which is given by π0 =

∑
k∈K pk1[yk > 0]. Thus, one can consider the sample large if π0 is large and

small if π0 is small. Of course, to evaluate π0 one needs to know the underlying distribution. However,
an estimator of π0 is given by Turing’s formula, T = 1 − N1/n, where N1 is the number of singleton
letters in the sample. Interested readers are referred to Good [13], Robbins [14], Esty [15], Zhang and
Zhang [16], and Zhang [17] for details.

Note that, for the situation described above, where each letter is a singleton, we have N1 = n and
T = 0. Thus, the sample has essentially no coverage of the distribution. Which values of T
constitute a small sample and which constitute a large sample is an interesting question that we leave for
another time.

We end this paper by discussing some future work. While our simulations suggest that the estimator
introduced in this paper is quite useful, it is important to derive its theoretical properties. In a different
direction, we note that, in practice, one often needs to compare one estimated entropy to another. An
approach to doing this is to use the asymptotic normality of Ĥ or Ĥz (or a different estimator, if available)
to set up a two sample z-test. We recently conducted a series of studies on testing the equality of two
entropies using this approach. We found two major difficulties that are not very surprisingly in retrospect:
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1. The difference between biases due to different sample sizes causes a huge inflation of Type II error
rate, even with reasonably large samples.

2. The bias in estimating the variance of an entropy estimator is also sizable and persistent.

Both of these issues are not well-studied in the current literature. We strongly believe that more research
on this front should be encouraged.
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