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Abstract: We introduce a new estimate of mutual information between a dataset and a
target variable that can be maximised analytically and has broad applicability in the field
of machine learning and statistical pattern recognition. This estimate has previously been
employed implicitly as an approximation to quadratic mutual information. In this paper we
will study the properties of these estimates of mutual information in more detail, and provide
a derivation from a perspective of pairwise interactions. From this perspective, we will show
a connection between our proposed estimate and Laplacian eigenmaps, which so far has not
been shown to be related to mutual information. Compared with other popular measures of
mutual information, which can only be maximised through an iterative process, ours can be
maximised much more efficiently and reliably via closed-form eigendecomposition.
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1. Introduction

Mutual information has been receiving increased attention in the recent years, in the field of machine
learning and statistical pattern recognition, more specifically in dimensionality reduction, also known
as feature extraction. In this paper we focus on the problem of classification, in which a dataset of
(usually high-dimensional) vectors are categorised into several distinct classes and presented as training
data, and the task is to classify new data points into their correct categories. For this to be done feasibly
and efficiently, a dimensionality reduction procedure needs to be carried out as a pre-processing step,
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where the dataset is projected onto a lower-dimensional space, whose basis vectors are often known
as features. The search for these features is known as feature extraction in the machine learning
literature [1], and sometimes also known as dimensionality reduction in the context of data visualisation
and representation [2].

The features are found by declaring an objective value to maximise or minimise, and those features
with the highest objective values are retained as “good” features. For example, given any feature (a unit
vector in the input space, which can be viewed as a line), we can project the training data points onto it,
and estimate the mutual information between these projected data points and the class label (our target
variable), and use this as the objective value to determine the quality of the feature. Indeed, Torkkola’s
method [3] maximises Kapur’s quadratic mutual information (QMI) [4] through gradient-ascent-type
iterations. Another example of an objective value of a feature is the variance of the data along
the feature, whose maximisation has a closed-form, eigenvalue-based solution, known as principal
component analysis (PCA) [5]. In this paper however we want to focus on information-theoretic
objective values, whose benefits over variance-based (or distance-based) objective values, at least for
artificial datasets and low-dimensional datasets, have been demonstrated [3,6,7]. The main advantage of
using information-theoretic measures is illustrated in Figure 1.

Figure 1. This artificial 2D data is categorised into two classes: pink pentagons and blue
stars. We can see that the black line is a better line of projection for the data, in terms of
class-discrimination, than the blue dashed line. The blue dashed line is the feature computed
using Fisher’s linear discriminant analysis (LDA) [5]; PCA produces a very similar feature
in this case. The black line is computed using our eigenvalue-based mutual information
method [8].

PCA and LDA feature
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There are many difficulties associated with measuring mutual information from data. First of all,
we do not know the true distribution of the data in the input space, which itself needs to be estimated
from the training data. Secondly, Shannon’s measure of mutual information [9,10], when applied to
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continuous data, requires either numerical integration, which is extremely computationally expensive, or
discretisation, which may lead to inaccurate estimation and does not lend itself to efficient optimisation
techniques. Several attempts have been made to circumvent some of these difficulties through the
use of alternative measures of information [3,4,6,11] and the popular technique of kernel density
estimation [12]. While these have proven to be effective techniques for measuring mutual information
between the data along a feature and the class label, they can (so far) only be maximised through
iterative optimisation. This has its own complications with regards to dimensionality reduction. More
specifically, they have many free variables, and the algorithms are very computationally expensive, much
more so than non-information-theoretic dimensionality reduction techniques like PCA. A technique was
proposed [8] that avoids iterative optimisation, and instead has a closed-form, eigenvalue-based solution,
similar in methodology to PCA. In this paper we will look at some more detailed properties of the
underlying measure used therein, and show some connections with Laplacian eigenmaps [2,13].

2. Measures of Mutual Information

For the application of information theory to dimensionality reduction for classification problems, we
study the mutual information between a continuous random variable Y and a discrete random variable
C. Refer to Table 1 for notation. Shannon’s mutual information in this case is

I(Y ;C) =
K∑
c=1

∫
Y

pY,C(y, c) log2

pY,C(y, c)

pY (y)pC(c)
dy (1)

We want to avoid numerical computation of integrals because of their high computational cost. A
common way of doing this is to discretise the continuous random variable Y .

Mutual information as defined in Equation (1) is the Kullback–Leibler (KL) divergence between
a joint distribution pY,C(y, c) and the product of the respective marginal distributions pY (y)pC(c), or
equivalently the joint distribution under the assumption of independence. The KL divergence can be
characterised by a set of postulates [11]. Kapur [4] argued that if the aim is to maximise the divergence,
and not so much to calculate its value precisely, then the set of postulates can be relaxed [3]. A family of
measures for the divergence of two distributions were proposed, and one of them results in the following
quadratic mutual information (QMI).

IQ(Y ;C) :=
K∑
c=1

∫
Y

(
pY,C(y, c)− pY (y)pC(c)

)2
dy (2)

This takes a particularly convenient form when the densities pY |C(y|c) and pY (y) are estimated using
Gaussian kernel density estimation [12]. More specifically, the integral in equation (2) can be evaluated
analytically using the convolution property of Gaussian densities [3,8]. We refer the reader to [3,8] for
algebraic details, and only present the key results here. Equation (2) can be re-written as follows.

IQ(Y ;C) =
N∑
n=1

N∑
m=1

ρnmGnm (3)

where we use the short-hand notation

ρnm :=
1

N2

(
I[cn = cm] +

( K∑
c=1

N2
c

N2

)
− 2Ncn

N

)
(4)
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Gnm :=
1

σ
√

2π
exp

(
− (yn − ym)2

2σ2

)
(5)

With this, the maximisation of QMI can (theoretically) be solved by differentiating Equation (3) with
respect to w and using a gradient-ascent-type algorithm. Note that in contrast, if we approximate I(Y ;C)

as in Equation (1) by discretising the continuous random variable Y as mentioned, then we cannot
differentiate it with respect to w analytically. However there are methods that approximate the gradient
of Shannon’s mutual information even when discretisation is used, and gradient ascent can be done with
Shannon’s mutual information [14].

Table 1. Notation.

w Unit vector representing a feature.
X Random vector variable representing a data point in the input space.
xn The nth training data point.
Y Random variable representing a data point projected onto a feature w.

More precisely, Y = wTX.
yn := wTxn, the nth training data point projected onto the feature w.
C A discrete random variable representing the class label of a data point.
cn The correct class label of the nth training data point.

x, y, c Realisations of X, Y , and C.
K Total number of classes in the dataset.
N Total number of training data points.
Nc Size of training data class c.

pY (y) Probability density function of Y at realisation y. Likewise for other
variables.

σ
√

2 × (bandwidth of the Gaussian kernel density estimator).

Torkkola uses QMI as a measure of quality of features in his iterative feature extraction algorithm [3].
It was shown that this technique can give superior classification results for some low-dimensional
datasets, while the conventional feature extraction methods PCA and LDA perform better on others. No
high-dimensional datasets were tested on however, possibly due to the high computational complexity
of iterative algorithms. QMI is a theoretically elegant and practically applicable measure of mutual
information. Regarding its optimisation however, there are practical drawbacks, which can be
summarised as follows.

• The computational complexity (cost) of any iterative optimisation algorithm is very high, and QMI
in its current form Equation (3) can only be maximised iteratively. Table 2 shows a comparison
of the computing times of PCA, LDA, Torkkola’s iterative QMI algorithm, and our proposed
eigenvalue-based MI method (EMI).
• The current iterative algorithms have many free parameters, including the learning rate and the

stopping criterion, for which there is not yet a principled method of estimating.
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• Experiments show that a straightforward application of gradient ascent, a popular algorithm used
to maximise QMI, can be unstable and unpredictable in maximising QMI in high-dimensional
spaces. In particular, it does not always maximise what it is designed to maximise. Figure 2
illustrates this, for the AT&T Dataset of Faces. Note that this is not an intrinsic deficiency of QMI,
but rather of gradient ascent as applied to maximising QMI.

Table 2. Times taken, in seconds, for algorithms PCA, LDA, eigenvalue-based MI,
and iterative QMI to extract one feature and 39 features respectively, from the AT&T
Dataset of Faces. The computing times for eigenvalue-based algorithms (PCA, LDA, EMI)
are independent of the number of extracted features, due to the closed-form nature of
the eigenvalue problem. This was a Python 2.7 implementation with packages Numpy,
MatPltoLib, and PIL (Python Imaging Library), executed on an Intel Core i7-2600K
processor at 3.40 GHz with 16 GB RAM.

Time to extract
first feature 39 features

PCA 0.406 (0.406)
LDA 1.185 (1.185)
EMI 4.992 (4.992)
QMI 265.034 10330.358

In Figure 2, the reader may ask why LDA produces high values of QMI, similar to that produced by
the EMI method, despite that LDA is not designed to maximise QMI. To answer this question, first note
that Equation (2) can be re-written as

IQ(Y ;C) =
K∑
c=1

pC(c)2
∫
Y

(
pY |C(y|c)− pY (y)

)2
dy (6)

Let us consider a simple 2-class example, where both classes have equal prior probabilities PC(c) = 1
2
. In

this case, Equation (6) tells us that IQ(Y ;C) is proportional to a sum of two summands, each of which
is the square of the area between the graphs of the class-conditional distribution pY |C and the overall
distribution pY . Let us suppose further that the classes are normally distributed with the same variance
but different means. Then Figure 3 shows us that maximising QMI is equivalent to minimising the
overlap between the 2 class-conditional distributions, or equivalently maximising the separation between
the classes.
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Figure 2. Plot of the QMI between the class label and each of the first 10 features, computed
by various methods. The horizontal axis indexes the features, while the vertical axis
measures the QMI along each feature. We see that Torkkola’s iterative QMI algorithm [3]
gives lower values of QMI than the EMI algorithm, which gives values similar to LDA.
Note that LDA is not designed to maximise QMI. PCA is also included for the sake of
comparison. In the experiment, the data was whitened and the initial features for the iterative
QMI algorithm were set to random features.
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0.004

0.006

0.008

0.010

0.012

0.014
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LDA
Eigenvalue-based MI
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Figure 3. The solid lines are the class-conditional distributions for the 2 classes, and the
dotted line is the overall distribution pY . The checkered and the dotted areas correspond to
the value of |pY |C(y|c)−pY (y)| for each of the 2 classes respectively, and the squares of only
these areas contribute to the value of QMI, not the grey-shaded area. The grey-shaded area
is the overlap between the two class-conditional distributions. We see that the smaller the
overlap, the larger the value of the dotted and checkered areas, and therefore the larger the
value of QMI. (a) Good class separation, high QMI; (b) Bad class separation, lower QMI.

(a) (b)
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Figure 4. 2D projections of the AT&T Dataset of Faces, computed using (a) LDA; (b) our
EMI method; (c) Torkkola’s iterative QMI method; and (d) PCA for comparison. In (a) we
see that each of the 40 classes in the dataset is in a compact cluster, well separated from
others. In fact, each class is so tightly packed that at this resolution it looks like a singleton
point. Similar observations can be made from (b). In (c) however, each class seems to be
scattered into 2 or more clusters, as exemplified by the class marked by red circles. Note that
each class of the dataset has 10 data points, and the class marked by red circles seems to be
in 4 clusters. For all of (a), (b) and (c), the data was whitened as a pre-processing step.

(a) LDA
(b) EMI

(c) QMI using gradient ascent (d) PCA
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The intuition shown in Figure 3 can be validly extrapolated to higher dimensions, general class-
conditional distributions, and multi-class datasets. LDA maximises the class-separation of the data in
the sense that it maximises the between-class distances and minimises within-class distances between
data points. Now depending on the class-conditional distributions and input dimensionality, LDA will
not always succeed, as illustrated in Figure 1. However, where LDA does succeed, different classes will
be well-separated and so the QMI along the features produced by LDA will be high. The AT&T Dataset
of Faces is one in which LDA does succeed in maximising the separation between classes, as shown in
Figure 4a. In fact, as a side-note, our experiments show that LDA succeeds in many high-dimensional
face datasets. The reasons for this have little to do with mutual information but rather a lot to do with
the high input dimensionality and the problem of over-fitting, and therefore are not within the scope of
this paper. The similarity in the values of QMI obtained by LDA and our EMI method is explained by
the similarity in their respective 2D projections shown in Figures 4a and 4b. Figure 4c, in contrast, does
not exhibit good separation between classes, which explains the relatively low values of QMI obtained
by the iterative method as shown in Figure 2. Furthermore, Figure 4c suggests that the iterative QMI
method in this case might have sought a local optimum, due to the scattering nature of individual classes
into more than one cluster.

2.1. Eigenvalue-Based Mutual Information (EMI)

The practical drawbacks of QMI with respect to its maximisation, as mentioned previously, can be
circumvented through the use of another measure of mutual information. This measure was implicitly
employed in [8] to address the practical problems with QMI. The maximisation of this measure of mutual
information, which for now we will call EMI (eigenvalue-based mutual information), has a closed-form
solution that is a set of eigenvectors of an objective matrix. Before we introduce EMI, we will briefly
review the pairwise interaction interpretation of QMI.

Mutual information is often interpreted as the difference or similarity between two probability
distributions: the true joint distribution and the joint distribution under the independence assumption.
In the context of estimating mutual information from data however, Equation (3) uncovers an alternative
view of mutual information, one in terms of pairwise interactions Gnm between each pair {xn,xm} of
training data points, weighted by the ρnm. This view is especially applicable and intuitive in classification
problems. Each pairwise interaction Gnm is monotonically decreasing in the distance |yn− ym| between
two data points along the feature w, as is clear from Equation (5). So for example if we simply wanted
to maximise the sum

∑N
n=1

∑N
m=1Gnm (rather than Equation (3)), then we will obtain a feature along

which the data points are as close to each other as possible, which is obviously not desirable from a
classification perspective. However the weights ρnm can be negative, in which case the corresponding
pairwise distance is maximised. Let us conceive of a simple example in which there are 2 classes
(c = 2), and each class has 5 training data points (N1 = N2 = 5 and N = 10). Then the reader may
verify from Equation (4) that if two data points xn and xm are in the same class, then ρnm = 1

200
; and if

they are in different classes, then ρnm = − 1
200

. This means that in the maximisation of IQ(Y ;C) as in
Equation (3), the within-class distances are minimised while the between-class distances are maximised.
On a side-note, we see that in this pairwise interaction view of mutual information maximisation, there
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is significant resemblance to LDA. However, unlike LDA, QMI has advantageous information-theoretic
properties as illustrated by Figure 1.

Another consequence of this view of mutual information is that we can now generalise the pairwise
interactions between data points. In QMI with Gaussian kernel density estimation, each pairwise
interaction Gnm is a Gaussian function of (yn − ym). The salient characteristics of Gnm that give
IQ(Y ;C) its information-theoretic properties are as follows. Note that since yn = wTxn by definition
and that ‖w‖ = 1, we always have 0 ≤ |yn − ym| ≤ ‖xn − xm‖.

• It is symmetric in (yn − ym) and monotonically decreasing in |yn − ym|.
• It reaches its maximum when yn − ym = 0, where the maximum is 1

σ
√
2π

.
• It reaches its minimum when |yn − ym| = ‖xn − xm‖, where the minimum is

1
σ
√
2π

exp
(
− ‖xn−xm‖

2

2σ2

)
.

All of these properties can be preserved by using an alternative, negative-parabolic (as opposed to
Gaussian) pairwise interaction, in the form of a− b(yn − ym)2. More precisely, define

enm :=
1

σ
√

2π

(
1− 1− e−

‖xn−xm‖2

2σ2

‖xn − xm‖2
(yn − ym)2

)
(7)

We see that if we view (yn − ym) as the abscissa, then the graph of enm in Equation (7) is a negative
parabola, hence the name negative parabolic pairwise interaction. Figure 5 illustrates the differences
and similarities between enm and gnm.

Figure 5. Graphs of enm as in Equation (7), and gnm as in Equation (5), where we view
(yn − ym) as the abscissa. The two pairwise interactions agree at their maximum (in the
middle) and at their minima (two sides).
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Now we can measure the mutual information between the data and the class label by using the
following, instead of QMI as in Equation (2).

IE(Y ;C) :=
N∑
n=1

N∑
m=1

ρnmenm (8)

where ρnm is the same as in Equation (4). For the example dataset in Figure 1, the black line is the feature
along which the maximum value of IE(Y ;C) is obtained. We call IE(Y ;C) eigenvalue-based mutual
information (EMI), for reasons that will become clear shortly. Figure 6 demonstrates the similarities
between EMI, QMI and Shannon’s MI (Equation (1)).

The real advantage of using EMI instead of QMI is that it can be optimised analytically, obviating the
need for any iterative procedure. enm can be written as wTEnmw where

Enm : =
1

σ
√

2π
exp
[
−(xn − xm)(xn − xm)T

2σ2

]
=

1

σ
√

2π

[
I − (1− e−

‖xn−xm‖2

2σ2 )

‖xm − x2
m‖

(xn − xm)(xn − xm)T
] (9)

where the second line follows from evaluating the matrix exponential in the first line. Thus, if we define
a matrix E by

E :=
N∑
n=1

N∑
m=1

ρnmEnm (10)

then we see that EMI can be written as IE(Y ;C) = wTEw. Now finding a feature that maximises
EMI is equivalent to maximising IE(Y ;C) in w, and we see that the maximising w are just the largest
eigenvectors of the matrix E.

The reader may notice some similarities between enm and the Epanechnikov kernel, which is defined
as follows.

hnm :=
3

4

(
1− (yn − ym)2

)
I[|yn − ym| ≤ 1] (11)

This also has a negative parabolic shape, but there are several fundamental differences between this and
our pairwise interaction enm. First, enm has a variable width that depends on ‖xn−xm‖, while in contrast
hnm does not, and is fixed-width. In particular, hnm does not take into account any pairs of points for
which |yn−ym| > 1. Moreover, the indicator function I[|yn−ym| ≤ 1] cannot be encoded in a matrix in
the way that enm can be encoded in the matrix Enm (Equation (9)) via enm = wTEnmw. It is the ability
of a pairwise interaction (or kernel) to be encoded in a matrix that allows the associated dimensionality
reduction algorithm to be formulated as an eigenvalue-problem.

We end this section with a brief illustration of a practical application of EMI. More experiments
using EMI can be found in [8]. Figure 7 shows the average classification error rates of the nearest-
neighbour classifier through 10 repeats of 5-fold cross-validation, for the subspaces computed by PCA,
the EMI method, and the iterative QMI method respectively, using the Pima Indians Diabetes Dataset
available from the UCI machine learning repository. Figure 8 shows the 2D projections computed by the
three methods. Note the similarity between the projections computed by the two information-theoretic
methods, in contrast to that of PCA. Note also that a 2D projection cannot be computed using LDA since
this is a 2-class problem and LDA would only be able to compute one feature.
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Figure 6. The values of the various measures of mutual information along a feature, as the
feature is rotated π radians. The dataset used is the one shown in Figure 1. Note that some
of the measures are rescaled so that all measures are visually comparable. However, it is
not the actual value of the measure that matters in the context of optimisation, but rather the
shape of the graph. We see that EMI, QMI and traditional MI peak at almost the same place.
For the sake of comparison, a non-information theoretic measure is included, that is, Fisher’s
discriminant (LDA). We see that Fisher’s discriminant measure does not peak at the “right”
place. The Fisher-optimal feature (computed by LDA) is shown as the blue dashed line in
Figure 1.
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Figure 7. Average classification error rates of the nearest-neighbour classifier through 10
repeats of 5-fold cross-validation, for the subspaces computed by PCA, EMI and the iterative
QMI method respectively. The dataset used is the Pima Indians Diabetes Dataset, available
from the UCI Machine Learning Repository. LDA was not included in this evaluation
because the dataset only has 2 classes and LDA would only be able to extract one feature.
We see that EMI has lower error rates than PCA and Torkkola’s iterative QMI method.

1 2 3 4 5 6 7

0.30

0.32

0.34

0.36

0.38

Iterat ive QMI

PCA

Eigenvalue-based MI

Dimensionality of subspace

E
rr

or
 r

at
e



Entropy 2013, 15 1701

Figure 8. 2D projections of the Pima dataset computed by three feature extraction
techniques.

(a) PCA

(b) EMI

(c) Iterative QMI

3. Relationship between EMI and Laplacian Eigenmaps

Laplacian eigenmaps [2,13] is a dimensionality reduction technique that is based on preserving local
properties of the data. While information-theoretic techniques aim to find low-dimensional subspaces
that maximise the mutual information between the data and the class label, Laplacian eigenmaps find
low-dimensional subspaces that minimize the distances between nearby data points. This is achieved by
using pairwise weights ωnm on pairs of data points {xn,xm}. The general problem is to maximise (or
minimise) (see Table 3 for notation)

N∑
n=1

N∑
m=1

ωnmtr[(yn − ym)(yn − ym)T] (12)

As an aside, this can be viewed as a generalisation to PCA, since the problem of PCA can be viewed as
the maximisation of a special case of (12) where all the weights ωnm are 1. The solution to the general
problem (12) are the (largest or smallest) eigenvectors of the matrix XTLX . L is called a Laplacian
matrix, it is symmetric and has the property that each row (column) sums to 0. We refer the reader
to [13] for more algebraic details regarding Laplacian eigenmaps.
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Table 3. Extra notation.

X Design matrix, whose nth row is the nth data point xT
n .

yn The nth data point projected onto a low-dimensional subspace. If the
dimensionality of the subspace is 1, then we use the notation yn (Table 1).

Y The design matrix in a low-dimensional subspace, whose nth row is the
projected data point yT

n .
e A vector, all of whose elements are 1.

ωnm Pairwise weights used in Laplacian eigenmaps.
Ω The N ×N weight matrix, whose (n,m)th element is ωnm.
L The Laplacian matrix, defined by diag(Ωe)− Ω.

From Equations (7) and (8), we can re-write the EMI along a feature w as the following.

IE(Y ;C) =
( N∑
n=1

N∑
m=1

ρnm

σ
√

2π

)
−
( N∑
n=1

N∑
m=1

ρnm
(1− e−

‖xn−xm‖2

2σ2 )

σ
√

2π‖xn − xm‖2
(yn − ym)2

)
(13)

Note that the first term on the right-hand-side of Equation (13) does not involve w, and so is irrelevant
in the maximisation. If we want a low-dimensional subspace spanned by M features w1, . . . ,wM that
maximises the EMI along each feature, then the quantity we aim to maximise can be written as follows.

IE(Y;C) =
(
M

N∑
n=1

N∑
m=1

ρnm

σ
√

2π

)
−
( N∑
n=1

N∑
m=1

ρnm
(1− e−

‖xn−xm‖2

2σ2 )

σ
√

2π‖xn − xm‖2
tr[(yn−ym)(yn−ym)T]

)
(14)

Now if we define the pairwise weights

ωnm := ρnm
(1− e−

‖xn−xm‖2

2σ2 )

σ
√

2π‖xn − xm‖2
(15)

noting that the first term on the right-hand-side of Equation (14) does not involve w1, . . . ,wM , we see
that maximising EMI as in Equation (14) is equivalent to minimising expression (12), whose solution is
given by the smallest eigenvectors of the matrix XTLX .

In Section 2.1 we saw that we can view EMI as an alternative to QMI where we use negative parabolic
pairwise interactions instead of Gaussian pairwise interactions between training data points. In this
section we see that another view of EMI maximisation is a special case of Laplacian eigenmaps, where
the weights are chosen as in Equation (15). While the Laplacian eigenmaps method has been shown
to bear some relation to maximum entropy methods in unsupervised dimensionality reduction [15], so
far it has not been shown to be related to mutual information. Hence, it is interesting to see that a set
of weights ωnm can be discovered (Equation (15)) that produces a special case of Laplacian eigenmaps
maximising an estimate of mutual information.

The difference between EMI maximisation and the original formulation of Laplacian eigenmaps
is that in the original formulation of Laplacian eigenmaps, the weight matrix Ω, and consequently
the Laplacian matrix L, is sparse. In contrast, the weight matrix and the Laplacian matrix for EMI
maximisation are dense.
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4. Conclusions and Further Research

We have introduced a measure of mutual information between a dataset and a discrete target variable
(class label) that can be maximised analytically and has practical advantages over the current state-of-
the-art QMI. The motivation for using information-theoretic measures in dimensionality reduction stems
from the fact that classic non-information-theoretic techniques, such as PCA and LDA, deteriorate for
some data distributions, as shown in Figure 1. We have studied the pairwise interaction view of QMI,
which led to the formulation of EMI. We have shown some similarities and differences between EMI
and other measures of mutual information, and have briefly demonstrated the practical applicability of
EMI in dimensionality reduction for classification. Finally, we have shown some relationships between
EMI and Laplacian eigenmaps, which is a widely used dimensionality reduction algorithm.

The behaviour of information-theoretic algorithms for dimensionality reduction can be
counterintuitive in high-dimensional spaces. The dataset used in our experiment in Figure 7 is relatively
low-dimensional. High dimensional datasets pose a computational challenge for information-theoretic
algorithms, due to the high computational complexity of iterative algorithms for QMI maximisation.
With the introduction of EMI, it is now possible study the behaviour of information-theoretic
dimensionality reduction for high-dimensional datasets, such as face and image recognition, at a
significantly lower computational cost. However, for high-dimensional data, our experiments have
shown that while EMI maximisation is good for data visualisation and representation, it gives poor
classification results. Our current experiments indicate that this is due to over-fitting [5,16]. A recent
review of dimensionality reduction algorithms [2] has found that despite the sophistication of more
modern algorithms, the best classification performance for real-world data is typically observed with
PCA. Our current experimental results agree with this. It seems that the reason for this lies in the
fact that the benefits offered by MI-based methods over traditional methods (Figure 1) become less
relevant in high-dimensional spaces, where classic non-information-theoretic methods such as LDA
often succeed in maximising class-discrimination. We briefly discussed this in Section 2 (Figure 4).
Future research into the exact mechanisms that generate this phenomenon and whether we can reliably
improve on PCA for real-world data (as opposed to for only a small subset of applications) will be of
great practical importance.
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