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Abstract: Receiver operating characteristic (ROC) curves have application in analysis of 

the performance of diagnostic indicators used in the assessment of disease risk in clinical 

and veterinary medicine and in crop protection. For a binary indicator, an ROC curve 

summarizes the two distributions of risk scores obtained by retrospectively categorizing 

subjects as cases or controls using a gold standard. An ROC curve may be symmetric about 

the negative diagonal of the graphical plot, or skewed towards the left-hand axis or the 

upper axis of the plot. ROC curves with different symmetry properties may have the same 

area under the curve. Here, we characterize the symmetry properties of bi-Normal and  

bi-gamma ROC curves in terms of the Kullback-Leibler divergences (KLDs) between the 

case and control distributions of risk scores. The KLDs describe the known symmetry 

properties of bi-Normal ROC curves, and newly characterize the symmetry properties of 

constant-shape and constant-scale bi-gamma ROC curves. It is also of interest to  

note an application of KLDs where their asymmetry—often an inconvenience—has a 

useful interpretation.  

Keywords: ROC curve; symmetry; asymmetry; Pareto distribution; bi-Normal;  

bi-exponential; bi-gamma; Kullback-Leibler divergence; relative entropy  
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1. Introduction 

Receiver operating characteristic (ROC) curve analysis provides a basis for describing the 

performance of a diagnostic indicator when deployed in a binary diagnostic test. ROC curve analysis 

has found application in clinical medicine, veterinary medicine and crop protection (e.g., [1–3]). For a 

comprehensive overview of the methodology, see [4,5].  

For the purpose of the present work, an outline description of the process by which an ROC curve 

may be derived allows us to introduce our terminology and notation. We refer generically to data 

provided by the diagnostic indicator as “risk scores”. During the process of characterizing a diagnostic 

indicator, a risk score is recorded for each of a number of experimental subjects. Each subject is also 

classified definitively as either a “case” (e.g., subject is diseased) or a “control” (e.g., subject is 

healthy) by a gold standard assessment (independent of the putative indicator). The ultimate goal of the 

experimental procedure as described is to provide a basis for decision-making in practice that does not 

require reference to the gold standard. When the decision in question is binary, an ROC curve is a 

useful summary of the performance of the diagnostic indicator [6]. 

We now have a number of subjects, and two values for each: a risk score provided by means of the 

diagnostic indicator and the true status (case or control) provided by the gold standard. We can present 

the results graphically as frequency distributions of risk scores plotted separately for cases and 

controls. It is normal practice to calibrate the output of the diagnostic indicator so that higher risk 

scores tend to be associated with case status, and lower risk scores tend to be associated with control 

status. Typically, then, the mean of the distribution of risk scores for cases is larger than the mean of 

the distribution of risk scores for controls.  

An ROC curve is, in essence, a summary of the (normalized) frequency distributions of risk scores 

for cases and controls. In this article, we are concerned with the properties of ROC curves based on 

continuous parametric models for the distributions of risk scores (e.g., [5,7]). In practice, then, model 

parameters must be estimated from the experimental data; we do not describe this part of the analysis. 

For a continuous indicator variable X we refer to the resulting probability density functions (pdfs) as 

f1(x) (for cases) and f2(x) (for controls). The corresponding cumulative distribution functions (cdfs) are 

F1(x) and F2(x), respectively. 

Now, consider the graphical plot of the pdfs of risk scores plotted separately for cases and controls. 

A diagnostic indicator and a threshold risk score together constitute a diagnostic test. In the process of 

developing a diagnostic test, our task is to characterize a threshold on the risk score scale such that 

subjects with risk scores above the threshold will be treated, and subjects with risk scores at or below 

the threshold will not be treated. The problem is that, typically, the distributions of risk scores for cases 

and controls overlap, so that there is no unequivocal “best” threshold risk score. Consider a particular 

choice of threshold risk score, and recall that we are working with the pdfs of risk scores for cases and 

controls. The proportion of cases correctly classified is the true positive proportion (TPP) and the 

proportion of controls correctly classified is the true negative proportion (TNP). The false negative 

proportion is FNP = 1 − TPP and the false positive proportion is FPP = 1 − TNP. The values of these 

proportions change with the choice of threshold risk score. 

An ROC curve is a graphical plot of TPP [=1 − F1(x)] against FPP [=1 − F2(x)], with pairs of TPP 

and FPP values obtained by allowing a single threshold risk score to vary over the range of the 
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indicator variable. Thus, points along the curve represent potential thresholds on the scale of the 

indicator variable, from each of which a binary test may be characterized. An ROC curve can therefore 

provide a useful summary of the characteristics of an indicator variable used as the basis for a binary 

test. Depending on the choice of model for risk scores for cases and controls, it may be possible to 

write down an analytical equation for the ROC curve, but this is immaterial in the present context. 

ROC curves that are monotone increasing above the main diagonal of the plot over the whole domain 

are sometimes referred to as “proper” ROC curves (see, e.g., Section 4.6 in [1]). Some continuous 

parametric ROC curves are proper, some are not; for example, it is well-known that the bi-Normal 

ROC curve is not in general proper, while the bi-gamma ROC curve is proper [8].  

While on the one hand the ROC curve represents a summary of the distributions of risk scores for 

cases and controls, on the other there are methods by which a summary of the ROC curve itself is 

sought [7,9]. By far the most common single-figure ROC curve summary measure in use is the area 

under the curve (AUC) as an index of diagnostic accuracy (e.g., [10]). Briefly, the idea is that 

diagnostic indicators with ROC curves which pass close to the top left-hand corner of the graphical 

plot of TPP against FPP (high AUC) provide tests for which TPP and TNP are both high, offering 

good discrimination between cases and controls. Diagnostic indicators with ROC curves close to the 

main diagonal of the plot of TPP against FPP (low AUC) have little to offer in terms of discrimination 

between cases and controls. However, in the present context, the AUC is unsuitable for use in the 

description of the symmetry properties of ROC curves. It is not difficult to see that ROC curves with 

the same AUC may have different symmetry properties (e.g., Figure 2A in [11]; Figure 2 in [12]).  

This article describes the symmetry properties of some parametric ROC curves based on continuous 

distributions. The article is set out as follows. The generic symmetry properties of ROC curves are 

described graphically. The application of the Kullback-Leibler divergence is outlined within the 

context of the present work. Some useful properties of the Pareto distribution are illustrated. The 

symmetry properties of bi-Normal, bi-exponential and bi-gamma ROC curves are analyzed. A general 

discussion is provided.  

2. Analytical Background 

2.1. Geometric Symmetry of ROC Curves 

Geometric symmetry of ROC curves refers to an axis of symmetry that is the negative diagonal of 

the ROC plot (i.e., the line TPP = TNP). Green and Swets [13], Killeen and Taylor [14] and  

Hughes [15] have discussed the conditions for symmetry of ROC curves. However, ROC curves may 

be asymmetrical (skewed)—for example, the curve may “cling to the left edge of the ROC space 

longer than it does to the top” [16]. We refer to this kind of skew as TPP-asymmetry, and to the kind 

of skew where the curve clings to the top edge of the ROC space longer than it does to the left as  

TNP-asymmetry [17]. Figure 1 provides graphical definitions of these symmetry and asymmetry 

properties. 
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Figure 1. Graphical description of symmetric and asymmetric ROC curves. The dotted 

lines show, for reference, TPP = 1 − FPP (the negative diagonal) and the lines FPP = a 

(vertical) and TPP = 1 − a (horizontal). The FPP coordinate of point A = a, and the FPP 

coordinate of point C = a*, such that a < a*. The solid line is a symmetric ROC curve 

passing through the points A (a, b) and B (a1, b1) (such that a1 = 1 − b, b1 = 1 − a). Point C 

(a*, 1 − a*) also lies on the symmetric ROC curve. Asymmetries are defined by reference 

to the symmetric curve passing through point A, as follows. The dashed line is a TPP-

asymmetric ROC curve passing through the points A (a, b) and D (a2, b2) (such that  

a2 > 1 − b, b2 = 1 − a). The dot-dashed line is a TNP-asymmetric ROC curve passing 

through the points A (a, b) and E (a3, b3) (such that a3 < 1 − b, b3 = 1 − a).  

 

2.2. Kullback-Leibler Divergences 

For a continuous indicator variable X we denote pdfs f1(x) (for cases) and f2(x) (for controls). Then 

the Kullback-Leibler divergences (KLDs) [18] are I(f1,f2) (with cases as the comparison distribution 

and controls as the reference distribution): 
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From Cover and Thomas [19] (who refer to continuous KLDs as differential relative entropies) we 

note that I(f1,f2) and I(f2,f1) ≥ 0, with equality only if f1(x) and f2(x) are identical. Typically,  

I(f1,f2) ≠ I(f2,f1) [10] although for an ROC curve based on f1(x) (for cases) and f2(x) (for controls) that is 

symmetric about the negative diagonal, I(f1,f2) = I(f2,f1) [17]. A KLD can be interpreted as a kind of 

distance between probability distributions [19], although the asymmetry in its arguments (apart from 

some special cases) clearly indicates it is not a distance in the Euclidian sense. We will work in natural 

logarithms, so the KLDs are denominated in nits [20]. For a discussion of measures of distance 

between distributions as used in summarizing ROC curves, see Section 4.3.4 in [1]. 

2.3. The Pareto Distribution 

Now, without for the moment invoking any ROC-related context, consider the Pareto densities: 
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2,1,0;0  ix i . Following Ullah (Equation (3) in [21]) we obtain KLDs for two Pareto 

distributions, as follows: 
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Let 12 z ; since  zz ln1  with equality only if z = 1 (lemma 6.1 in [21]) we have both 

I(f1,f2) and I(f2,f1) ≥ 0, with equality only if f1(x) and f2(x) are identical (i.e., if 21   ), as required. 

Figure 2A shows the graphical plots of the two Pareto KLDs     
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equality only if z = 1 (see also Figure 2B), and that this inequality describes the relationship between 

I(f1,f2) and I(f2,f1) shown in Figure 2. We will use these results on the Pareto distribution in the 

following sections.  
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Figure 2. (A). The figure shows graphical plots of Kullback-Leibler divergences for two 
Pareto densities:        zzffIzg 1ln11, 211   (the solid line), and 

     zzffIzg ln1, 122   (the dashed line), with 12 z . (B). The derivatives 

    2/
1 1 zzzg   (the solid line) and     zzzg 1/

2   (the dashed line). 

 

 
 

3. The Bi-Normal ROC Curve  
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the KLDs are equal    1221 ,, ffIffI   [17], and for the symmetric bi-Normal ROC curve in particular, 
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 ffIffI  [23]. For a numerical example, consider Killeen 

and Taylor’s Figure 1 (top) in [14]. In this example, the distribution of risk scores for cases f1(x) is 

Normal with mean μ1 = 3.4 and standard deviation σ1 = 1 and the distribution of risk scores for controls 

f2(x) is Normal with mean μ2 = 2 and standard deviation σ2 = 1. The resulting ROC curve is 

geometrically symmetric [14] and I(f1,f2) = I(f2,f1) = 0.980 nits. 
Asymmetric bi-Normal ROC curves are discussed by Green and Swets [13], Pepe [1] and  

Marzban [24]. In the terminology of the present article, bi-Normal ROC curves are TPP-asymmetric 

when 112   and TNP-asymmetric when 112  . Writing in the context of applications of  

bi-Normal indicators in clinical epidemiology, Pepe [1] notes that the distribution of risk scores for 

controls is typically less dispersed than the distribution of risk scores for cases, in which case a typical 

bi-Normal ROC curve would be TPP-asymmetric (e.g., Figure 4.1 in [1], where 85.012  ).  

The KLDs are now (e.g., [15]): 
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We compare this with the situation when 21   ,    1221 ,, ffIffI  , and the ROC curve is 
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The inclusion of the factor ½ does not affect the inequality portrayed. Thus, for TPP-asymmetry, we 
have    1221 ,, ffIffI   and for TNP-asymmetry, we have    1221 ,, ffIffI  . This is illustrated in 

Figure 3, using values of μ1 and μ2 from Killeen and Taylor (Figure 1 in [14]). We note also from 

Figure 3 that the point where the two curves intersect characterizes the symmetric ROC curve with 

I(f1,f2) = I(f2,f1) = 0.980 nits. 
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Figure 3. Analysis of a bi-Normal ROC curve. The graph shows the Kullback-Leibler 

divergences I(f1,f2) (the solid line) and I(f2,f1) (the dashed line) for two Normal densities; 

f1(x) for cases has μ1 = 3.4 and σ1 is varied over a range that includes σ1 = 1, and f2(x) for 

controls has μ2 = 2.0 and σ2 = 1. When σ2/σ1 = 1, I(f1,f2) = I(f2,f1) and the corresponding 

ROC curve is symmetric about the negative diagonal. When σ2/σ1 < 1, I(f1,f2) > I(f2,f1) and 

the corresponding ROC curve is TPP-asymmetric; when σ2/σ1 > 1, I(f2,f1) > I(f1,f2) and the 

corresponding ROC curve is TNP-asymmetric. 

 

4. The Bi-Exponential ROC Curve  

We deal with the bi-exponential ROC curve in passing, since it turns out to be a special case of the 

constant-shape bi-gamma ROC curve, below. Here, we have exponential densities for cases and 

controls (e.g., [25]), respectively:  

  









11
1 exp

1


x

xf  (11) 

  









22
2 exp

1


x

xf  (12) 

2,1,0;0  ix i . The indicator variable is calibrated so that the mean of the case distribution is 

larger than the mean of the control distribution, which requires 21   . A graphical plot of 1−F1(x) 
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fixed transformation. Note that in the notation of Asadi et al. [26], our Pareto parameterization 

0

1

2

3

4

5

0 0.5 1 1.5 2

K
L

D
s

σ2/σ1



Entropy 2013, 15 1350 

 

 

2,1,
1

 ii
i




. Then, following Asadi et al. [26], we obtain KLDs for two exponential distributions 

as follows: 
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Let 12 z  and refer to Figure 2A. For a useful ROC curve we require 21   , so we are only 

interested in the part of Figure 2A where z < 1, and here we have    1221 ,, ffIffI  . For 21   , the 

case and control distributions are identical,     0,, 1221  ffIffI , and the corresponding ROC curve 

follows the main diagonal of the plot; such diagnostic indicators offer no discrimination between cases 

and controls. 

5. The Bi-Gamma ROC Curve  

We start by writing a general gamma density: 
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0,;0  rx . We refer to r as a shape parameter and λ as a scale parameter. Mathiassen et al. [27], 

Faraggi and Reiser [28], Faraggi et al. [29], and Hussain [30] use the same format. For two such 

gamma densities, respectively f1(x) and f2(x), we have X~gamma(x, r1, λ1) and X~gamma(x, r2, λ2) and 

the corresponding KLDs (e.g., [27]) are: 
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in which Γ(·) is the gamma function and Ψ(·) is the digamma function (the derivative of the logarithm 

of the gamma function, [31]). Here, we describe separately a constant-shape ROC curve and a 

constant-scale ROC curve.  

5.1. The Constant-Shape Bi-Gamma ROC Curve 

Here, 0;0, 2121  rrrr . For f1(x) and f2(x) respectively, X~gamma(x, r, λ1) and 

X~gamma(x, r, λ2). The indicator variable is calibrated so that the mean of the case distribution is 
larger than the mean of the control distribution, which requires 21  rr  . A graphical plot of 1−F1(x) 

against 1−F2(x) then provides the ROC curve. Such curves are TPP-asymmetric (as described in 

Figure 1). For example, see Dorfman et al. [8]. If r = 1, f1(x) and f2(x) are the same as for the  
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bi-exponential ROC curve (above), and the symmetry properties then follow. Otherwise, the general 

gamma KLDs above simplify to: 
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and again, we can refer to Figure 2A (the inclusion of the (constant) factor r does not affect the 
inequality portrayed). For a useful ROC curve we require 21   , so we are only interested in the part 

of Figure 2A where z < 1, and here we have    1221 ,, ffIffI  . For 21   , the case and control 

distributions are identical,     0,, 1221  ffIffI , and the corresponding ROC curve follows the main 

diagonal of the plot; such diagnostic indicators offer no discrimination between cases and controls. 

5.2. The Constant-Scale Bi-Gamma ROC Curve 

Here, 0;0 2121  rr . For simplicity, we follow Hanley [32] and Tang et al. [33] who 

have λ = 1. For f1(x) and f2(x) respectively, X~gamma(x, r1, λ) and X~gamma(x, r2, λ). The indicator 

variable is calibrated so that the mean of the case distribution is larger than the mean of the control 
distribution, which requires  21 rr  . A graphical plot of 1−F1(x) against 1−F2(x) then provides the 

ROC curve. Such curves are TNP-asymmetric (as described in Figure 1). The general gamma KLDs 

above simplify to: 
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Now, we set r2 = 1 and r1 = ζ, ζ > 0. Figure 4A shows the graphical plots of: 

          )1(ln, 121 gffI   

          11ln, 212  gffI  

from which it appears that (for ζ > 0): 

   1221 ,, ffIffI   when ζ < 1, 

   1221 ,, ffIffI   when ζ = 1, 

   1221 ,, ffIffI   when ζ > 1.  

On calculating the derivatives,         1/
1 1 g  in which     1  is the trigamma function 

(the first derivative of the digamma function, [31]) and      /
2g  in which γ is Euler’s 

constant (= 0.5772…) (see also Figure 4B). Recall that    1 , then we have     011 /
2

/
1  gg , and 

the inequality portrayed in Figure 4 appears to have the same characteristics as that shown in Figure 2. 
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in which     2  is the tetragamma function (the second derivative of the digamma function, [31]).  

For     2,0   is negative [31], so (for ζ > 0): 
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describes the relationship between I(f1,f2) and I(f2,f1) shown in Figure 4.  

Figure 4. Analysis of a constant scale bi-gamma ROC curve. (A). Graphical plots of 
Kullback-Leibler divergences:           )1(ln, 211 ffIg  (the solid line), 

and           11ln, 122   ffIg  (the dashed line), with r2 = 1 and r1 = ζ, ζ > 0. 
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For a useful ROC curve we require 21 rr  , so we are only interested in the part of Figure 4A where 

ζ > 1, and here we have    1221 ,, ffIffI  . For 21 rr  , the case and control distributions are 

identical,     0,, 1221  ffIffI , and the corresponding ROC curve follows the main diagonal of the 

plot; such diagnostic indicators offer no discrimination between cases and controls. 

6. Discussion  

For continuous parametric ROC curves, we can define symmetry conditions. Notwithstanding, it is 

sometimes rather difficult to tell from a graphical plot whether an empirical ROC curve is actually 

symmetrical or only approximately so (e.g., Figure 2 in [24]). It is harder to define asymmetry 

conditions for continuous parametric ROC curves, although often relatively easy to tell from a 

graphical plot when an empirical ROC curve is asymmetric (e.g., Figure 2 in [10]). Marzban [24] asks 

if asymmetry can be explained in terms of the underlying case and control distributions, and concludes 

that asymmetry in an ROC curve “can be attributed to unequal widths of the underlying distributions”. 

What is lacking is an independent assessment of asymmetry for comparison with the statistical 

assessment based on the relative dispersion of the case and control distributions. Here, we bring 

together a graphical definition of asymmetry (Figure 1) with an analysis of the KLDs for the case and 

control distributions for some examples of continuous parametric ROC curves.  
The main findings are as follows. Bi-Normal ROC curves may be symmetric, TPP-asymmetric or 

TNP-asymmetric. For symmetric bi-Normal curves, we have    1221 ,, ffIffI  ; for TPP-asymmetric 

curves,    1221 ,, ffIffI  ; and for TNP-asymmetric curves,    1221 ,, ffIffI  . Of particular 

interest is the point of intersection of the two curves in Figure 3. The fact that at this point we have 

    0,, 1221  ffIffI  indicates the existence of symmetric curves that lie above the main diagonal of 

the bi-Normal ROC plot. This in itself is not surprising, of course, but it is noted here for reference below.  

Bi-exponential ROC curves may only be TPP-asymmetric. For these TPP-asymmetric curves, 

   1221 ,, ffIffI  . In this case the KLDs are equal only when     0,, 1221  ffIffI  (referring to 

Figure 2), indicating that (unlike the bi-Normal case) there is no symmetric curve that lies above the 

main diagonal of the bi-exponential ROC plot.  

Bi-gamma ROC curves may be TPP-asymmetric or TNP-asymmetric. A constant-shape bi-gamma 

ROC curve is always TPP-asymmetric and    1221 ,, ffIffI  . For the constant-scale bi-gamma 

ROC curve we considered the case of λ = 1. This is always TNP-asymmetric and    1221 ,, ffIffI  . 

In both cases (i.e., constant-shape and constant-scale) the KLDs are equal only when 

    0,, 1221  ffIffI  (referring to Figures 2A and 4A), indicating that (unlike the bi-Normal case) 

there is no symmetric curve that lies above the main diagonal of the bi-gamma ROC plot.  

The choice of operational threshold on an ROC curve amounts to specification of the error rates 

(FPP and FNP=1 − TPP) of the resulting diagnostic test. Recalling Figure 1 (for example), we can see 

that the symmetry properties of an ROC curve influence the trade-off between these error rates that is 

of interest in the process of choosing a threshold. ROC curve symmetry and both kinds of asymmetry 

are observed empirically in the study of disease diagnostics. This is beyond the scope of summaries 

based on area under curve calculations. As noted by Marzban [24], the ROC curve is a  

two-dimensional representation of a diagnostic indicator, so a single-figure summary measure cannot 

characterize all its properties. Further difficulties with the area under the ROC curve as a summary 
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measure of performance of a diagnostic indicator are discussed in [34]. Our work so far, relating to 

continuous parametric ROC curves, indicates the following. First, although the KLD is usually not a 

symmetric quantity [35], it is noteworthy that for an ROC curve based on f1(x) (for cases) and f2(x) (for 

controls) that is symmetric about the negative diagonal, I(f1,f2) = I(f2,f1) [17]. Second, although the lack 

of symmetry of the KLD has been referred to as a nuisance in applications [36], in this particular study 

we find that the asymmetry of the KLD usefully characterizes the asymmetry of bi-Normal and  

bi-gamma ROC curves.  
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