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Abstract: In this paper, the resilient minimum entropy filter problem is investigated for the
stochastic systems with non-Gaussian disturbances. The goal of designing the filter is to
guarantee that the entropy of the estimation error is monotonically decreasing, moreover, the
error system is exponentially ultimately bounded in the mean square. Based on the entropy
performance function, a filter gain updating algorithm is presented to make the entropy
decrease at every sampling instant k. Then the boundedness of the gain updating law is
analyzed using the kernel density estimation technique. Furthermore, a suboptimal resilient
filter gain is designed in terms of LMI. Finally, a simulation example is given to show the
effectiveness of the proposed results.
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1. Introduction

The estimation of the state variables of a dynamic system through noisy measurements is one of
the fundamental problems in control systems and signal processing. This problem has been an active
topic over the past few decades, and some effective estimation approaches have been exploited in the
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literatures, such as Kalman filtering schemes, H∞ filtering and robust filtering methods; see e.g., [1–4].
The celebrated Kalman filtering has been proven to be an optimal estimator for linear systems with
disturbances described as white noise. The filtering scheme is based on the assumption of having an
exact and accurate system model as well as perfect knowledge about the statistical properties of noise
sources. Compared with the Kalman filtering, the advantage of H∞ filtering is that the noise sources are
arbitrary signals with bounded energy, and the exact statistic information about the external disturbance
is not precisely known.

However, many well-established filtering techniques focus only on two quantities, i.e., mean and
variance or covariance, as key design targets. Since the output of a nonlinear stochastic system is usually
non-Gaussian, mean and variance or covariance are not enough to characterize the output process. Thus,
the existing classical stochastic filtering theory may be incomplete for non-Gaussian stochastic systems.
Entropy is a scalar quantity that provides a measure for the average “uncertain” information contained in
a given probability density function (PDF). When entropy is minimized, all moments of the error PDF are
constrained [5,6]. Entropy has been widely used in information, thermodynamics and control fields. The
minimum entropy filtering problem has recently received renewed research interests in dealing with the
stochastic state estimation problem for non-Gaussian systems. This subject is one of the important topics
of the research of stochastic distribution control (SDC). Differing from traditional stochastic control
where only the output mean and variance are considered, stochastic distribution control aims to control
the shape of the output probability density functions for non-Gaussian and dynamic stochastic systems;
see [7,8], and the reference therein. Based on SDC, current studies mainly focus on the problems of
the probability density function tracking control [9–12], fault detection and fault isolation of stochastic
systems [13,14], parameter estimation [15], etc.

The entropy optimization filtering methodology has been studied for non-Gaussian systems in [16],
where the concepts of a hybrid PDF and a hybrid entropy are introduced, and an optimal filter gain
design algorithm is proposed to minimize the hybrid entropy of the estimation error. Using the idea of
the iterative learning control, in [17], the filter gain is determined by the gradient ILC tuning law. The
learning rate is studied to guarantee the convergence of the proposed algorithm. In [18], based on the
form of the hybrid characteristic function of the conditional estimation error, a new Kullback–Leibler-
like performance function is constructed. An optimal PDF shaping tracking filter is designed such that
the tracking error between the characteristic function of the estimation error and the target characteristic
function is minimized.

It should be pointed out that, in the literatures mentioned above, only stochastic stability analysis
is given after the recursive solution, direct and analytical stabilization design and other closed-loop
performance design cannot be carried on along with the minimum entropy filtering. To the best of
the author’s knowledge, analytical filtering algorithm that links the minimum entropy filtering and the
stochastic stabilization together has not yet been addressed for non-Gaussian stochastic systems and still
remains a challenging problem.

Inspired by the aforementioned situations, we aim at solving the resilient minimum entropy filtering
problem for the stochastic systems subject to non-Gaussian noise. The main contributions of this paper
are as follows: (1) A recursive solution of the filter gain updating is proposed such that the entropy
of the estimation error decreases strictly, which means the shape of the distribution of the error is
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as narrow as possible; (2) Based on linear matrix inequality and the resilient control theory, a new
suboptimal stochastic stability filter gain updating law is proposed to guarantee that the estimation error is
stochastically exponentially ultimately bounded in the mean square. Compared with the previous works
on filtering for non-Gaussian stochastic systems, the advantage of the results presented in this paper is
that the relationship between the entropy performance and the stochastic stability, even other important
closed-loop performance can be established directly. In the future work, we will further discuss other
closed-loop performance of the non-Gaussian stochastic systems in detail.

The rest of this article is organized as follows. The problem formulations and preliminaries are given
in Section 2. Section 3 is dedicated to derive the filter gain updating algorithm to guarantee that the
entropy of the error reduces at every sampling time k. The boundedness of the filter gain is analyzed in
Section 4. A sufficient condition for the existence of the recursive resilient filter is given to ensure the
exponential ultimate boundedness of the error system in Section 4. Numerical example is included in
Section 5, which is then followed by concluding remarks.

Notation. The notations in this paper are quite standard. ∥ · ∥ means the Euclidean norm in Rn. AT

is the transpose of the matrix A. ∥A∥ is the operator of matrix A, i.e., ∥A∥ = sup{∥Ax∥ : ∥x∥ = 1} =√
λmax(ATA), where λmax(·) means the largest eigenvalue of A. Moreover, Ω is the sample space, F

is a set of events. Let (Ω, F, P ) be a complete probability space, and E{·} stands for the mathematical
expectation operator with respect to the given probability measure P . The expected value of a random
variable x is denoted by E{x}. V ar{·} represent the variance of random variables. The star ∗ represents
a transpose quantity.

2. Problem Formulation

Consider the following stochastic system:

x(k + 1) = Ax(k) + f(x(k)) +Gω(k + 1)

y(k) = Cx(k) (1)

where x(k) ∈ Rn is the state, y(k) ∈ R is the output, ω(k) ∈ Rp is the random disturbance. It should be
pointed out that ω(k) can be non-Gaussian vector. A, C and G are known system matrices.

It is assumed that ω(k) has known PDF γω(ξ) defined on a known closed interval [α, β]. There
are some identification methods, such as the kernel estimation technique, experiment technique, direct
physical measurement and other identification methods, that can be used to model the PDF. Therefore,
the assumption can be satisfied in many practical systems. Without loss of generality, we assume
E{ω(k)} = 0, and E{∥ω(k)∥2} ≤ ν2. The nonlinear function f(·) is assumed to be Lipschitz with
respect to x(k), which means

∥f(x1)− f(x2)∥ ≤ γ∥x1 − x2∥ (2)

for all x1, x2 ∈ Rn, and γ > 0.
For the system given by Equation (1), the full-order filter is of the form

xf (k + 1) = Axf (k) + f(xf (k)) + Lk(y(k)− yf (k))

yf (k) = Cxf (k) (3)
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where xf (k) is the state estimate and Lk is the gain to be determined. Let the estimation error be
e(k) = x(k)− xf (k), then it follows from Equations (1) and (3) that

e(k + 1) = Ae(k)− Lk(y(k)− yf (k)) + η(k) +Gω(k + 1) = g(Lk, ω(k + 1)) (4)

where η(k) = f(x(k))− f(xf (k)) is a nonlinear function. The PDF of the estimation error is defined as

P (a ≤ e(k) ≤ b) =

∫ b

a

γe(ξ)dξ (5)

where P (a ≤ e(k) ≤ b) is the probability of the estimation error e(k) ∈ [a, b]n when the filter gain Lk

is given. It can be seen from Equation (4) that the shape of the PDF of the estimation error at time k is
governed by the filtering gain Lk.

Let the initial estimation of the state x(0) be taken to be equal to the known mean of the initial state
x̄0. In order to study the stochastic behavior of the error system Equation (4), the following definition
is introduced.

Definition 1 ([19,20]) The dynamics of the estimation error e(k) is exponentially ultimately bounded
in the mean square if there exist constants a > 0, b > 0, c > 0 such that for any initial condition e(0),

E{∥e(k)∥2|e(0)} ≤ akb+ c (6)

where a ∈ [0, 1), b > 0 and c > 0. In this case, the filter in Equation (3) is said to be exponential.
Remark 1 When the error dynamic is exponentially ultimately bounded in the mean square, the

estimation error will initially decrease exponentially in the mean square, and remain within a certain
region in the steady state, again in the mean square sense. The stability bound is defined in terms of the
norm (E{∥e(k)∥2}) 1

2 of the Hilbert space of random vectors, and is specified by the coefficient c.
The main purpose of the proposed filter design scheme can be stated as follows:
(1). To design the filter gain Lk such that the dynamics of the estimation error is guaranteed to be

stochastically exponentially ultimately bounded in the mean square.
(2). The filter should be designed such that the shape of the PDF of the estimation error is made as

narrow as possible.
A narrow distribution generally indicates that the uncertainty of the related random variable is small,

i.e., the entropy is small. Considering the requirement of energy, we will design Lk such that the
following performance function is minimized at every sampling time k,

J(k) = −R1

∫ b

a

γe(ξ)ln(γe(ξ))dξ +
1

2
LT
kR2Lk (7)

where R1 > 0 and R2 > 0 are weighting matrices, −
∫ b

a
γe(ξ)ln(γe(ξ))dξ is the entropy of the

estimation errors.

3. The Minimum Entropy Filter Gain Updating Algorithm

In order to minimize the performance function in Equation (7), the PDF of e(k) is required. Applying
probability theory [21], the PDF of e(k) can be formulated as

γe(ξ) = γω(g
−1(Lk, ξ))|

dg−1(Lk, ξ)

dξ
| (8)
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where g−1(·) is the inverse function of g(·) with respect to the noise term ω(k). In this case, γe(ξ) is
continuous and first order differentiable with all its variables.

Then, using Equation (8), the filtering design algorithm can be developed by minimizing the
performance function Equation (7). Given

H(k) = −R1

∫ b

a

γe(ξ)ln(γe(ξ))dξ (9)

the optimal filtering strategy can be obtained via the following equality,

∂(H(k) + 1
2
LT

kR2Lk)

∂Lk

= 0 (10)

To formulate the recursive design procedure, we introduce

Lk = Lk−1 +∆Lk (11)

where k = 1, 2, ..., N, ...,+∞.
The function H(k) can be approximated via

H(k) = H0k +H1k∆Lk +
1

2
∆LT

kH2k∆Lk (12)

where

H0k = H(k)|Lk=Lk−1

H1k =
∂H(k)

∂Lk

|Lk=Lk−1

H2k =
∂2H(k)

∂L2
k

|Lk=Lk−1
(13)

Then the following result can be obtained.

Theorem 1 The recursive filtering gain design algorithm to minimize the performance function J(k)

subject to the estimation model Equation (4) is given by

∆Lk = −(H2k +R2)
−1(H1k +R2Lk−1) (14)

where the weight matrix R2 satisfies

H2k +R2 > 0 (15)

Proof. From Equation (11), it can be seen that

LT
kR2Lk = LT

k−1R2Lk−1 + 2Lk−1R2∆Lk +∆LT
kR2∆Lk (16)

Substituting Equation (16) into (10) yields

H1k +H2k∆Lk = −R2Lk−1 −R2∆Lk (17)

Then, we can obtain the recursive algorithm (Equation (14)) for k = 1, 2, ..., N, ...+∞.
Equation (14) is derived from a necessary condition for optimization. To guarantee its sufficiency, the

second-order derivative should be satisfied
∂2(H(k) + 1

2
LT
kR2Lk)

∂∆L2
k

> 0 (18)

which will hold when Equation (15) holds.�
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4. The Bound of the Filter Gain

In this section, we will study the bound of the filtering gain by introducing the kernel density
estimation technique for estimating the probability density function. For estimating the density function
γe(ξ), [22,23] studied a general class of consistent and asymptotically normal estimators as a kernel
weighted average over the empirical distribution

γe(ξ) =
1

N

N∑
i=1

Kσ(ek − ei) (19)

where the kernel Kσ is a Gaussian kernel function.
From Equation (10), we have

∂J(k)

∂Lk

= −R1

∫ b

a

∂γe(ξ)

∂Lk

(ln(γe(ξ)) + 1)dξ +R2Lk = 0 (20)

Then the filtering gain of model (1) is bounded as

∥Lk∥ ≤ ∥R−1
2 ·R1∥

∫ b

a

∥∥∥∥∂γe(ξ)∂Lk

∥∥∥∥ ∥ln(γe(ξ)) + 1∥dξ (21)

Using Equation (19), the partial differential term in Equation (21) can be written as follows

∂γe(ξ)

∂Lk

=
1

N

k∑
i=k−N

∂Kσ

∂ek
· ∂ek
∂Lk

(22)

From the dynamic equation of the estimation error in Equation (4), we have

∂ek
∂Lk

= −Ce(k − 1), e(k) ∈ [a, b]n (23)

Noting that e(k) ∈ [a, b]n, we get the following bound of ∂γe(ξ)
∂Lk

if
∥∥∥∂Kσ

∂ek

∥∥∥ ≤ ρ∥∥∥∥∂γe(ξ)∂Lk

∥∥∥∥ ≤ ∥C∥ ·max{∥a∥, ∥b∥} · ρ (24)

Furthermore, since γe(ξ) is a bounded function and ξ is defined on [a, b]n, ln(γe(ξ)) + 1 is bounded.
We denote ∥ln(γe(ξ)) + 1∥ = θ, by Equations (21) and (24), we get

∥Lk∥ ≤ (b− a) · θ · ρ · ∥C∥ · ∥R−1
2 ·R1∥ ·max{∥a∥, ∥b∥} = δ (25)

Thus,

∥∆Lk∥ = ∥Lk − Lk−1∥ ≤ 2δ, or ∆LT
k∆Lk ≤ 4δ2I = τ 2I (26)

Remark 2. It should be noted that the function Kσ is a Gaussian kernel function, and the error is
bounded in the interval [a, b]n. This guarantees that the upper bound of

∥∥∥∂Kσ

∂ek

∥∥∥ is easy to obtain.
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5. Resilient Filter Gain Design

In the section, we will show how the resilient filter gain is obtained to guarantee the stochastic stability
of the error system in Equation (4). Generally, it is difficult to analyze the closed-loop stability for the
stochastic distribution systems. In order to overcome the difficulty, using the results of Section 4, we will
design a gain-variation filter to assure Equation (4) to be stochastically exponentially ultimately bounded
in the mean square. We define the variable gain Lk as follows

Lk = L+∆Lk,∆LT
k∆Lk ≤ τ 2I (27)

where ∆Lk is given by Equation (14) of Theorem 1 to guarantee the decreasing of the performance
function Equation (7). In this case, Equation (27) is a suboptimal recursive strategy to make sure that the
distribution of the estimation error is made as narrow as possible.

Substituting Equation (27) into (4), the estimation error can be written as

e(k + 1) = (A− LkC)e(k) + η(k) +Gω(k + 1)

= (A− LC −∆LkC)e(k) + η(k) +Gω(k + 1) (28)

For the resilient gain design, we introduce the following Lemma.
Lemma 1 ([24]) Given matrices Y , M and N . Then

Y +M∆N +NT∆TMT < 0 (29)

for all ∆ satisfying ∆T∆ ≤ σI if and only if there exists a constant ε > 0 such that

Y + εMMT +
σ

ε
NTN < 0 (30)

Based on Lemma 1 and the resilient control theory [25], we present the following results to establish
the relationship between the entropy performance and the stochastic stability for stochastic distribution
control systems.

Theorem 2 Consider the error system in Equation (4), the filter gain variation is given by Equation (26),
for given constants ε1 > 0, ε2 > 0 and γ > 0, there exist a positive scalar β, and matrices P > 0 and Y

such that the following inequalities hold
P − βI < 0 (31)

−P + βγ2I βγI (1 + ε1)(A
TP − CTY T ) 0 −(1 + ε1)C

T

∗ −ε1βI 0 0 0

∗ ∗ −(1 + ε1)P ε2P 0

∗ ∗ ∗ −ε2I 0

∗ ∗ ∗ ∗ − ε2
τ2
I

 < 0 (32)

then system in Equation (28) is exponentially bounded in the mean square, and the filter gain is given by

Lk = P−1Y +∆Lk (33)

where ∆Lk is defined by Equation (14).
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Proof. Define a Lyapunov functional candidate for Equation (28) as

V (k) = eT (k)Pe(k) (34)

where P > 0. Since E{ω(k)} = 0, E{∥ω(k)∥2} ≤ ν2, we have

∆V (k) = E{V (k + 1)} − V (k)

= eT (k)(A− LC −∆LkC)TP (A− LC −∆LkC)e(k) + 2eT (k)(A− LC −∆LkC)TPη(k)

+ηT (k)Pη(k) + E{ωT (k)GTPGω(k)} − eT (k)Pe(k)

≤ eT (k)
[
(1 + ε1)(A− LC −∆LkC)TP (A− LC −∆LkC)− P

]
e(k)

+(ε−1
1 + 1)ηT (k)Pη(k) + E{ωT (k)GTPGω(k)} (35)

Note that P < βI and ∥f(x1)− f(x2)∥ ≤ γ∥x1 − x2∥, then

ηT (k)Pη(k) = (f(x(k))− f(xf (k)))
TP (f(x(k))− f(xf (k))) ≤ βγ2eT (k)e(k) (36)

then, if

(1 + ε1)(A− LC −∆LkC)TP (A− LC −∆LkC)− P + (ε−1
1 + 1)βγ2I = Πk < 0 (37)

holds, we have
∆V (k) ≤ eT (k)Πke(k) + ϕ, where ϕ = ν2 · λmax(G

TPG) (38)

From Equation (37), we have that there exists a sufficiently small scalar θ satisfying 0 < θ < λmax(P )

and
Πk < −θI (39)

On the other hand,

λmin(P )E{∥e(k)∥2} ≤ E{V (k)} ≤ λmax(P )E{∥e(k)∥2} (40)

Then, it follows from Equations (35) and (38) that

E{V (k + 1)} − E{V (k)} ≤ − θ

λmax(P )
E{V (k)}+ ϕ (41)

and subsequently,
E{V (k + 1)} ≤ θ̂E{V (k)}+ ϕ (42)

where
θ̂ = 1− θ

λmax(P )
, and 0 < θ̂ < 1 (43)

Therefore,

E{V (k)} ≤ θ̂kE{V (0)}+ 1− θ̂k

1− θ̂
ϕ (44)

By using inequality of Equation (40) again, we get

E{∥e(k)∥2} ≤ θ̂k
λmax(P )

λmin(P )
E{V (0)}+ ϕ

λmin(P )
· 1− θ̂k

1− θ̂
(45)



Entropy 2013, 15 1319

Then, it follows directly from Definition 1 that if Equation (38) holds, the dynamics of the error
system is exponentially bounded in the mean square.

Next, we will show the equivalence of Equation (32) and Equation (37).
By the Schur complement, Equation (37) is equivalent to the following inequality −P + βγ2I βγI (1 + ε1)(A− LC)TP

βγI −ε1βI 0

(1 + ε1)P (A− LC) 0 −(1 + ε1)P


+

 −(1 + ε1)C
T

0

0

∆LT
k

[
0 0 P

]
+

 0

0

P

∆Lk

[
−(1 + ε1)C 0 0

]
< 0 (46)

Then from Lemma 1 and ∆LT
k∆Lk ≤ τ 2I , we have −P + βγ2I βγI (1 + ε1)(A− LC)TP

βγI −ε1βI 0

(1 + ε1)P (A− LC) 0 −(1 + ε1)P


+ε2

 0

0

P

[
0 0 P

]
+

τ 2

ε2

 −(1 + ε1)C
T

0

0

[
−(1 + ε1)C 0 0

]
< 0 (47)

It follows that the above inequality is equivalent to Equation (37). This completes the proof.�
Remark 3 In Theorem 2, the filter gain updating law ∆Lk is a suboptimal recursive strategy that

guarantees the strictly decreasing nature of the entropy of the estimation errors. Meanwhile, Lk is a
control law to ensure the mean square exponential stability. Hence, based on the resilient control theory,
Theorem 2 establishes the relationship between the entropy performance and the stochastic stability for
stochastic distribution control systems.

6. Numerical Example

The proposed resilient filter gain algorithm is demonstrated via a numerical example in this section.
Consider the stochastic system given as follows,

x(k + 1) =

[
0.9 0.1

2 1.1

]
x(k) +

[
1

−1.25 sin(x1(k)) + 1

]
+

[
1

1

]
ω(k + 1)

y(k) =
[
1 1

]
x(k) (48)

The Lipschitz constant of the nonlinear part of the system is γ = 1.25. The random disturbance ω(k) is
defined by

γω(ξ) =

{
−3000

4
(ξ2 − 0.01), ξ ∈ [−0.1, 0.1]

0, ξ ∈ (−∞,−0.1)
∪
(0.1,+∞)

(49)

According to Equation (3), the designed filter is

xf (k + 1) =

[
0.9 0.1

2 1.1

]
xf (k) +

[
1

−1.25 sin(x1f (k)) + 1

]
+ (L+∆Lk)(y(k)− yf (k))
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yf (k) =
[
1 1

]
xf (k) (50)

where L is the solution of Equation (32), ∆Lk is given by Equation (14).
By solving Equation (32), we have

β = 1.2154

P = 1.0e+ 003

[
6.6854 −0.6550

−0.6550 0.1530

]

Y = 1.0e+ 003

[
4.6770

0.2210

]

L =

[
1.4483

7.6424

]

The response of the error dynamics is shown in Figure 1. It can be shown that the steady-state
estimation error variance is bounded. The response of the entropy is displayed in Figures 2. The 3D-mesh
plots of the PDF of e1(k) and e2(k) are given in Figure 3 and 4. These figures demonstrate that the
error system is exponentially bounded in mean square, the entropy of the estimation errors decreases
monotonically, and the PDF of the estimation error is close to a narrow Gaussian shape.

Figure 1. Trajectories of the estimation errors.
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Figure 2. The entropy of the estimation errors.
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Figure 3. The 3D-mesh plot of PDF of the estimation error e1(k).
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Figure 4. The 3D-mesh plot of PDF of the estimation error e2(k).
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7. Conclusions

This paper presented a new method to the problem of the PDF shaping filter for stochastic systems
with non-Gaussian noise. We have investigated both the minimum entropy performance design and
stochastic stabilization problems. The recursive solution of the filter gain is designed such that the
distribution of the error is made as narrow and as Gaussian as possible. Using Lyapunov theory,
considering the bound of the recursive solution, a suboptimal filter gain is obtained such that the
estimation error system is exponentially ultimately bounded in the mean square. The effectiveness of
the proposed approaches is demonstrated by a numerical simulation example.
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