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Abstract: Providing accurate load forecast to electric utility corporations is essential in 

order to reduce their operational costs and increase profits. Hence, training set selection is 

an important preprocessing step which has to be considered in practice in order to increase 

the accuracy of load forecasts. The usage of mutual information (MI) has been recently 

proposed in regression tasks, mostly for feature selection and for identifying the real 

instances from training sets that contains noise and outliers. This paper proposes a 

methodology for the training set selection in a least squares support vector machines  

(LS-SVMs) load forecasting model. A new application of the concept of MI is presented 

for the selection of a training set based on MI computation between initial training set 

instances and testing set instances. Accordingly, several LS-SVMs models have been 

trained, based on the proposed methodology, for hourly prediction of electric load for one 

day ahead. The results obtained from a real-world data set indicate that the proposed 

method increases the accuracy of load forecasting as well as reduces the size of the initial 

training set needed for model training. 

Keywords: input selection; mutual information; electric load forecasting;  

least squares support vector machines 
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1. Introduction 

With the promotion of the smart grid concept and the introduction of restructuring into the electric 

power industry, load forecasting has an even greater importance due to its applications in the planning 

of demand side management, distributed energy resources, electric vehicles, etc. Many operating 

decisions rely on accurate short-term load forecasting (STLF), such as generation capacity scheduling, 

scheduling of fuel and coal purchases, system security analyses, energy transaction planning, etc.  

It also plays a significant role in the coordination of hydro-thermal systems, generator maintenance 

scheduling, load flow analysis, etc. The non-linear and stochastic nature of electricity load forecasting 

is a challenging subject, primarily because of complicated relationships with other factors, such as 

weather conditions, social activities, seasonal factors, past usage patterns and calendar features. Each 

of these factors has a significant impact on future load. 

Consequently, improving STLF accuracy is crucial for increasing the efficiency of energy systems 

and reducing operational costs. Complex nonlinear relationships between load and its various 

influential factors cannot be properly represented by conventional linear models and for that purpose 

artificial intelligence-based techniques are employed. These methods include: Kalman filters [1], fuzzy 

inference [2], knowledge-based expert systems [3], artificial neural networks (ANNs) [4] and support 

vector machines (SVMs) [5]. Hybrid approaches are proposed to take advantage of the unique 

strengths of each method. An adaptive two-stage hybrid network with a self-organized map and 

support vector machines is presented in [6]. A hybrid method composed of a wavelet transform, neural 

network and an evolutionary algorithm is proposed in [7]. A combined model based on the seasonal 

ARIMA forecasting model, the seasonal exponential smoothing model and the weighted support vector 

machines is presented in [8] with the aim of effectively dealing with the seasonality and nonlinearity 

shown in the electric load. 

In addition to ANNs, which showed a good approximation capability for non-linear functions, 

SVMs proposed by Vapnik in [9] are also widely used for load forecasting. However, SVMs are based 

on the structural risk minimization principle in order to minimize the upper limit of the estimation 

error, rather than the empirical risk minimization which minimizes the training error used by ANNs. 

Consequently, by solving the quadric programming (QP) optimization problem, SVMs always manage 

to achieve the global optimum solution, instead of the possibility of getting stuck in a local optimum 

like ANN models. This approach, by using nonlinear kernels, leads to a very good generalization 

performance and sparse solutions. Reformulations of standard SVMs, LS-SVMs defined in [10], 

instead of solving the QP problem, which is complex to compute, obtain a solution from a set of linear 

equations. Therefore, LS-SVMs have a significantly shorter computing time and they are easier to optimize. 

In order to provide storage and computational savings and improve the accuracy of the predictions, 

two different approaches can be applied before training any forecasting model: feature selection and 

selection of an appropriate subset of instances that are in the training set. Feature selection chooses the 

most important features, finding an adequate subset of variables in such a way that it is possible to 

train a more accurate model while reducing the dimensionality of the features space. The selection of 

instances pulls out instances which do not meet the selection criterion, and thus determines a subset of 

the initial training data set in such a way that the accuracy of the model increases, but the 

computational cost and storage requirements are diminished. 
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Only a few papers have dealt so far with the approach of instance selection for increasing the STLF 
model accuracy. A method used to forecast electricity prices and load several hours ahead, which used 
an ANN model with a similar day approach, is presented in [11]. Therefore, a selection of similar days 
that represents a trend of load and temperature is performed using the Euclidian norm with weighted 
factors in order to evaluate the degree of similarity between a forecasted day and previous days. In [12] 
a system for power load forecasting using a support vector machine and ant colony optimization is 
presented. The colony optimization method is employed to process a large amount of data and 
eliminate redundant information. It is shown that the SVM-learning system performs better when the 
information preprocessing is based on ant colony optimization. The approach described in [13] 
presents a similar day-based wavelet neural network method to forecast tomorrow's load. The key idea 
is to select a similar day's load as the input load based on the correlation analysis and apply a wavelet 
to decompose it into a low frequency component and a high frequency component, and then use 
separate networks to predict the two components of tomorrow's load. The aim of similar day selection 
was to select the days with the same weekday index, similar weather index and day-of-the-year index 
to avoid seasonal variations. Only recently has the application of MI for instance selection been 
proposed in [14] aiming to remove outliers and noise from highly distorted data sets. The applied 
algorithm determines the loss of MI with respect to its neighbors in such a way that if a loss of MI is 
similar to the inputs near the examined instance, then this instance must be included in the training 
dataset. This approach has proved successful in situations when it is applied to training sets which are 
artificially distorted by adding noise or outliers. 

The work developed in this paper is framed within the instance selection approach with the aim of 
improving the accuracy of the load forecasting model above all. The MI will be used in order to decide 
which instances should be included or not in the training data-set, because of its ability to measure the 
dependence between random variables without prior knowledge of the nature of their underlying 
relationships. A new methodology for training subset selection is proposed based on the  
MI computation between initial training set instances and current testing instances. Accordingly, 
several LS-SVM models based on the proposed methodology have been built for the hourly 
forecasting of electric load for one day ahead. For each hour of the day for which forecasting is 
performed, a new training subset is selected, one that fits the current forecasting scenario better. As the 
experimental results show, in this way significant improvements to the accuracy of forecasting results 
can be achieved, as well as a great reduction in the training set size. 

The rest of the paper is organized as follows: Section 2 presents the formulation of the MI, describes 
the method used to compute it and introduces the basic of LS-SVM for regression. In Section 3, the 
analysis of the data-set used for methodology testing is given. Then, Section 4 presents the proposed 
input selection algorithm and the STLF model. The obtained numerical results are presented and 
discussed in Section 5. Section 6 concludes the paper. 

2. Methodology 

2.1. Review of Mutual Information 

Mutual information is commonly used for measuring dependencies between random variables in a 

way that does not make any assumptions about the nature of their underlying relationships. Therefore, 

MI is more powerful in some cases than estimators that only consider the linear relationships between 
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the variables. The MI of two random variables X and Y quantifies the information that X and Y share. 

More formally, MI measures how much knowing one variable reduces the uncertainty about the other. 

The definition of MI is derived from the entropy in information theory. Let us denote X and Y as 

continuous random variables with a joint probability density function ,X Y  and marginal density 

functions  X x  and  Y y . The MI between two random variables X and Y can be computed as: 

     
   

,
,

,
, , log X Y

X Y
X Y

x y
I X Y x y dxdy

x y




 
    (1) 

The estimation of the joint probability density function (PDF) for a pair (X, Y) is needed for the 

computation of MI. The most commonly used methods for PDF estimation are histograms and kernel 

estimators presented in[15,16]. However, they are commonly used with functions of one or two 

variables because the number of samples needed for the reliable PDF estimation increases 

exponentially with the number of variables. As a result, the PDF estimator used in this paper is a  

k-nearest neighbor (kNN) based MI estimator, proposed in [17]. The novelty of this estimator lies in its 

ability to estimate the MI between two multi-dimensional variables. 
Let us consider the set of N input-output pairs  , , 1,...,i i iz x y i N   which are the independent 

and identically distributed realizations of a random variable  ,Z X Y , where x and y can be either 

scalar or vector. For any pair of points z and z�, the maximum norm is used for the comparison of 

input-output pairs defined with: 

 max ,z z x x y y       (2) 

The basic idea is to estimate I(X, Y) from the average distances in the X, Y and Z spaces from zi to its 

k nearest neighbors, averaged over all zi. Let us denote       ,k i k i k iz x y  the kth nearest neighbor of zi. It 

should be noted that xk(i) and yk(i) are the input and output parts of zk(i) respectively, and thus not 

necessarily the kth nearest neighbor of xi and yi. Let us define  k ii i
Xd x x  ,  k ii i

Yd y y  ,
  k ii i

Zd z z  . Evidently, max( , )i i i
X Yd d d . Subsequently, the number i

Xn  of points jx  whose 

distance from xi is strictly less than di are counted, and similarly the number i
Yn  of points jy  whose 

distance from yi is strictly less than di are counted. Then, I(X,Y) can be estimated as presented in: 
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where   is the digamma function defined as: 
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and  t  is gamma function defined by: 

  1

0

t ut u e du


     (5) 

Function  satisfies the recursion equation 
1

( 1) ( )x x
x

     and (1) C   where 

0.5772156C    is the Euler-Mascheroni constant. The algorithm spends most of the execution time 
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searching for neighbors. When the basic version of kNN search is implemented, two nested loops are 

needed through all the points, which gives an algorithm complexity O(N2). This paper implements this 

type of estimator which is one of the two proposed in [17]. This type of MI estimator depends on the 

value chosen for k, which controls the bias-variance tradeoff. As it is recommended in [18] a  

mid-range value for k = 6 will be used. 

2.2. A Review of Least Squares Support Vector Machine 

Least squares support vector machines, as a reformulation of SVMs, are commonly used for 

function estimation and for solving non-linear regression problems. The main property of these 

methods is that they obtain a solution from a set of linear equations instead of solving QP problem, as 

in SVMs. Therefore, LS-SVMs have a significantly shorter computing time and they are easier to optimize. 
Let us consider a given training set  , , 1,...,k kx y k n  with inputs p

kx R  and outputs ky R . 

The following regression model can be built by using a non-linear mapping function ( ) : hppR R    
which maps the input space into a high-dimensional feature space and constructs a linear regression in it. 

The regression model in primal weight space is expressed as: 

( ) ( )Ty x x b    (6) 

where ω represents the weight vector and b is a bias term. 

LS-SVM formulates the optimization problem in primal space presented with: 

2
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subject to equality constrains expressed with: 

( ) , 1,...,T
k k ky x b e k n      (8) 

While ek represents error variables, γ is a regularization parameter which gives relative weight to 

errors and should be optimized by the user. In order to solve the optimization problem defined with (7) 

and (8), it is necessary to construct a dual problem using the Lagrange function. Once the 

mathematical calculations have been carried out, described in detail in [10], the following linear 

system, presented in (9), was obtained: 
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In (9),  1 , ,
T

ny y y  ,  1 1, ,1
T

v   ,  1 , ,
T

n     are Lagrange multipliers,  is an 

identity matrix and ( ) ( ) ( , ), , 1, ...,T
kl k l k lx x K x x k l n      denotes the kernel matrix. Training the 

LS-SVM is equivalent to computing the inverse of a full N x N matrix, so when it is implemented 

straightforwardly its complexity is O(N3), where N is the number of training examples. 

Once the system defined in (9) is solved, the solutions for α and b are obtained. It is shown in [10] 

that usually all Lagrange multipliers are non-zero, which means that all training data participate in the 

solution, i.e. every data point represents a support vector. Compared with SVM, the LS-SVM solution 

is not sparse. 

I
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The resulting LS-SVM model for function estimation in dual form is represented as: 

1

( ) ( , )
n

k k
k

y x K x x b


   (10) 

The dot product ( , ) ( ) ( )T
k kK x x x x   is known as a kernel function. Kernel functions that satisfy 

Mercer's condition enable computation of the dot product in a high-dimensional feature space by using 

data inputs from original space, without explicitly computing ( )x . 

A commonly used kernel function in non-linear regression problems, one that is employed in this 

study, is a radial basis function represented as: 
2

2
( , )

kx x

kk x x e 



  (11) 

where the kernel parameter σ2 denotes the square of the variance of the Gaussian function, which 

should be optimized by the user. 

When choosing the RBF kernel function with LS-SVM, the optimal parameter combination (γ, σ) 

should be established on the training set, in order to obtain the solutions for α and b from (9). The 

optimal values of these parameters are not known in advance for a given problem, and accordingly 

must be learned from the training set. In this purpose, a grid search algorithm in combination with  

k-fold cross validation (k = 10) was used in this study. The procedure goes as follows: the training set 

is randomly subdivided into k disjoint subsets of approximately equal size and the LS-SVM model is 

built k times with the current pair (γ,σ). Each time, one of the k subsets is used as the test set and the 

other k-1 subsets are put together to form a training set. After k iterations, the average model error is 

calculated for the current pair (γ,σ). The entire process is repeated with an update of the parameters 

(γ,σ) until the given stopping criterion (e.g. Mean Squared Error) is reached. The parameters (γ,σ) are 

updated exponentially in the given range using predefined equidistant steps, according to the grid-search 

procedure. After obtaining the optimal (γ,σ) combination, values for α and b are obtained from (9), and a 

LS-SVM regression model is formed according to expressions (10) and (11). Also, it can be noticed 

that in case of LS-SVM, only two additional parameters (γ, σ) need to be optimized, instead of three 

(γ, σ, ε) as in SVM. 

3. Data analysis 

Choosing the appropriate features is the first and one of the most important steps in building a 

forecasting model. In many related works [5,19,20] feature analyses were done, and their impact on the 

load forecasting model is explained and analyzed. To select the most valuable features, a load curve 

analysis and statistical analysis of the load pattern are the most commonly used approaches. In this 

paper, history load data from the Elia Company are used for method evaluation. The data are publicly 

available and can be downloaded from [21]. In Figure 1, the hourly load curve for one month 

(September 2010) is shown. 
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Figure 1. Hourly load for September 2010. 

 

In Figure 2, the daily load curve during the week is presented. It is obvious that the daily load on 

work days is greater than the load on weekend days. The reason for this is people's behavior during the 

week, and this pattern is periodically repeated each week. All this supports using a day of the week for 

the feature in the model. 

Figure 2. Hourly load during the week. 

 
Figure 3 shows the hourly load during the day for each day in one week. This curve is influenced 

and shaped by people's daily life. The load changes from hour to hour during the day, indirectly 

following consumer behavior. This brings one more important variable to the feature set, and that is 

the hour of the day. Also, it can be noticed that the curves have a similar shape but different magnitude 

from day to day in the week. This also confirms the validity of using the day of the week for the model 

feature with the aim of mapping this property. 
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Figure 3. Hourly load during the day. 

 

Past load can also provide useful information for the model about future load fluctuation. Several 

past hourly loads provide a model with the possibility of recognizing future behavior of the load and 

giving good load prediction in the next hour. The past load time horizon used in this paper is m=24, 

i.e., the model uses the last 24 hour loads from the prediction moment. 
The structure of the input vectors can be seen in Figure 4. Input vectors consist in total of m+s 

features, where m is the past load time-series features Pi, i=1,..,24 and s=2 non-time series features: 

the hour of the day Hi,  1,2,...,24iH  and the day of the week Di,  1,2,...,7iD  where 1 

corresponds to Monday, 2 to Tuesday and so on. 

4. The Proposed Input Selection Algorithm and Forecasting Model 

To achieve better model accuracy, the main goal before model training is to construct a new 

training set that fits the current forecasting scenario better. The idea behind this approach is to use 

some measurement criterion to recognize vectors from an initial training set which share the most 

information with the current forecasting scenario. While linear methods of analysis (like the 

correlation) can be useful, in general it is also essential to consider nonlinear relations between 

different variables. Because the mutual information measures arbitrary dependencies between random 

variables, it is suitable for assessing the “information content”, where methods based on linear 

relations in some cases may be prone to mistakes. 

If xk is the kth training instance and xt is the current forecasting instance, the MI between xk and xt is 

one criterion for measuring the dependence between them. In this way, by choosing instances which 

share a “greater” amount of MI with xt, a greater prediction accuracy can be achieved by committing 

the model with input xt. The proposed approach for instance selection according to the MI criterion is 

presented in Algorithm 1 and Figure 4. 

Let us first define the initial training set (X, Y), composed of N training vectors. The first step in the 

algorithm is the computation of MI between every instance in X and the current forecasting instance xt. 
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Accordingly, the vector of MI values is established, which defines the significance of inputs in  

X versus xt. Two options are available for the selection of instances: the “MI threshold” or the “number 

of instances”. 

Figure 4. Architecture of the proposed inputs selection algorithm and forecasting strategy. 

 

When choosing the “MI threshold” as an option, parameter α must be provided. The predefined 

threshold value of α determines the sensitivity of the algorithm, i.e. the minimum degree of similarity 

allowed between the examined instance and xt, and needs to be set manually. All input vectors that 
have a greater amount of MI with xt and then α will be added to the new training set ( , )X Y  . 

When the “number of inputs” is chosen as an option, the parameter r must be provided. The value 

of r defines the total number of instances that will be retained in the training set, and also needs to be 

set manually. First, the training set is sorted in descending order according to the values in the  

MI vector. Then the first r input vectors from the sorted initial training set are added into the new  

training set ( , )X Y  . 
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Algorithm 1. Instance selection according to MI. 

(1). Initialization of the algorithm: from the available data, form the initial training and testing 

set, and choose one forecasting instance xt from the testing set. 

(2). Calculate the MI between every vector from the initial training set xk k=1, ..., N and current 

forecasting instance xt, based on (3), and save these values in vector V(k). 

(3). Reorder the initial training set in descending order according the values in V vector. Then, 

based on V vector and the resorted initial training set: 

 a) define a total number of vectors that will remain in the training set, denoted with r, or, 

 b) define the lower allowed limit bound for MI between initial training set vector and 

current forecasting instance xt, denoted with α.  

(4). If the choice criterion is determined with α, based on vector V choose instances from  

the initial training set for which V(k) > α, k=1, ..., N holds and put them into a reduced  
training set ( ', ')X Y . 

(5). If the choice criterion is determined with r, form the reduced training set ( , )X Y   based on 

first r instances from the reordered initial training set. 

(6). Train the LS-SVM model based on the reduced training set obtained from steps 4. or 5., 

apply it to current testing instance xt, obtain prediction, and then update xt for the next 

prediction step. Go to step 2. until predictions for all steps (hours of the current day) have 

been obtained. 

(7). Choose another instance from the testing set xt and go to step 2. until predictions for all 

instances (daily loads by hours) in the training set have been obtained. 

5. Experimental Results 

For methodology evaluation, the forecasting of hourly loads from September 17 to September 30, 2011, 

was done for each day. The initial training set was formed by taking into account the calendar and 

weather congruence within the forecasting period. This is not necessary but it is obvious that using 

data for the model training from a similar calendar and weather period will give better forecasting 

accuracy. In this sense, the initial training set consists of the data for the month of September for the 

three previous years (2008, 2009 and 2010). The initial model is a recursive forecasting model 

generated with the initial training set. Three groups of models are generated with different training sets 

which are formed from the initial training set, each using different measurement criterion for input 

selection with an “MI threshold” or “number of inputs” option. Additionally, two models are generated 

with an initial training set, one based on simple average fitting and the other based on a recursive 

forecasting model with direct implementation. These models are denoted with: 

(1). M0—a model trained with an initial training set that contains 2160 vectors, 

(2). M1—a group of models trained with sets determined with a kNN MI criterion, 

(3). M2—a group of models trained with sets determined with a kernel MI criterion, 

(4). M3—a group of models trained with sets determined with a Pearson correlation coefficient 

criterion, 
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(5). M4—an average fit model, predictions are the average of the past 3 years of data based on 

day of the week and hour of the day congruence, 

(6). M5—and the direct model, recursive forecasting model with direct implementation (without 

usage of forecasted values in future steps, but with true values instead). 

Every model from M1–M3 is actually a group of models generated in each prediction step. To be 

precise, in each prediction step a new model is formed with the same feature set, but trained with a 

different training set which is prepared in accordance with the current prediction step. All models have 

the same structure, i.e. the feature set for every model M0–M5 is the same. Models M0, M4 and M5 

are generated with the same initial training set, while models M1–M3 are generated with different 

training set which are formed from the initial training set in every prediction step, each using different 

measurement criterion for input selection with “MI threshold” or “number of inputs” selection option. 

Error values shown in Table 1 are in terms of Mean Absolute Percentage Error (MAPE) defined by: 

 
1

ˆ1
% 100

n
i i

i i

P P
MAPE

n P


   (12) 

where iP  and îP  are the real and the predicted value of the load demand in the ith hour and n is the 

number of hours. As seen from Table 1, average, maximum and minimum daily MAPEs for the entire 

test set are given for each model. Models M1-M3 are based on input selection algorithm with the  

“MI threshold” or “number of inputs” selection option. For these models the results are obtained using 

both selection options, with “MI threshold” values: 0.5 and 0.6, 0.8 and 0.9, 0.98 and 0.99 for M1, M2 

and M3 model respectively, denoted with TH1 and TH2. Likewise with “number of inputs” values: 50 

and 100 for M1–M3 models, denoted with NI1 and NI2. The obtained results from Table 1 indicate that 

model M1 has the best average MAPE over the entire test set in NI1, TH1 and TH2 selecting scenarios 

while model M3 show the best results in the NI2 scenario. To be precise, this is true if we disregard the 

results obtained with model M5 which gained the best results in general. However, it should be borne 

in mind that this model is not real because it uses true values in each prediction step which are not 

known in real situations. 

Table 1. Average, max and min daily MAPEs of the entire test set [%]. 

Model M0 M1 M2 M3 M4 M5 

 − TH1 TH2 NI1 NI2 TH1 TH2 NI1 NI2 TH1 TH2 NI1 NI2 − − 
Avr. 2.83 2.03 2.14 1.91 2.11 2.3 2.21 2.13 2.27 2.31 2.14 2.29 1.96 5.24 1.42 
Max 4.64 4.09 4.9 3.65 4.08 5.65 4.96 5.55 5.53 3.31 5.27 5 4.28 7.95 2.72 
Min 1.42 0.93 0.96 1 1.01 1.16 1.22 1.1 0.93 1.05 0.92 1.21 0.82 3.51 0.89 

In order to gain a better insight, the average gaily MAPEs obtained by committing models with the 

test set are shown in Figure 5. In this figure, a direct comparison in terms of MAPEs between the 

initial model M0, models with input selection M1–M3 and models without input selection M4 and M5, 

is given. Figure 5 a, b, c and d show the results obtained with models M1–M3 using both selection 

options: the “MI threshold” and “number of inputs” option with two cases in both scenarios like in Table 1. 

Figure 5e presents the results gained with models without the input selection option (M0, M4, M5) and 

model M1 for comparisons. In terms of MAPE, from Table 1 and Figure 5, it can be noted that the 
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winning model is M1–NI1 i.e., a model with input selection using kNN MI estimator and “number of 

inputs” selection option with 50 input vectors for the training set. With the obtained results, the other 

models with input selection (M2 and M3) are close to model M1 and all these models with input 

selection outperform the initial model. 

Beside the average daily MAPEs, from Table 1 it can be noticed that model M1 reduces Max 

MAPEs in comparison to model M0 in three of the four cases, but also compared to models M2 and 

M3, which even increases Max MAPEs above 5% in some cases. Model M3 outperforms M1 only in 

one case in terms of Max MAPE. In respect of Min MAPEs, the situation is rather uniform even 

between models M1 and M3, which both have two winning entries. Nevertheless, model M1 

outperforms models M0 and M2 in terms of Min MAPEs. 

Figure 5. Daily MAPEs for all of the generated models. (a) “MI threshold” selection 

option with 0.5 for M1, 0.8 for M2 and 0.98 for M3 (TH1), (b) “MI threshold” selection 

option with 0.6 for M1, 0.9 for M2 and 0.99 for M3 (TH2), (c) “number of inputs” selection 

option with 50 vectors for M1–M3 (NI1), (d) “number of inputs” selection option with 100 

vectors for M1–M3 (NI2), (e) models without input selection with M1 for comparison. 

(a) (b) 

 

(c) (d) 
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Figure 5. Cont. 

(e) 

 

Vector number distribution in the initial training set, determined with a kNN MI estimator, kernel 

MI estimator and correlation coefficient, for the first hour of each day, is shown in Figure 6. On the 

horizontal axis we find the MI or Person correlation coefficient values, while the vertical axis 

represents the test day. Each field in Figure 6 is represented by the appropriate color to match the 

number of vectors, i.e., each color signifies a certain number of vectors. Thus, black blocks in the 

figure denote the number of vectors greater than 900 or 1200 and the opposite gray blocs mark the 

number of vectors smaller than 25 or 50. 

As described in Section 4, parameter α determines the “MI threshold” which defines one selection 

option. In the experiments described in this section, the selected values for model M1 are α = 0.5 and  

α = 0.6 respectively, for model M2 are α = 0.8 and α = 0.9 and for model M3 are α = 0.98 and  

α = 0.99. To avoid any confusion, in the case of model M3, the “MI threshold” refers to the value of 

the Pearson correlation coefficient. As can be seen from Figure 6, these are the values of MI or the 

correlation coefficient, for which an appropriate number of vectors to train a model were expected. It is 

appropriate in the sense that this number of vectors is sufficient for model training and on the other 

hand is not too large to load the model with unnecessary information. But as it turned out from Table 1 

and Figure 5, the wining model uses a smaller number of training vectors which implies that the 

appropriate number of training vectors in this case is somewhere around 50. 

In Figures 7, real and predicted hourly loads for two weeks in September are given, obtained from 

models M0 and M1. From these Figures it can be noticed that the predictions for model M1 have 

improved the shape and trend of the load curve in comparison to model M0. As seen from Figures 5c, d 

and 7, the winning model behavior on day 19 is not like on the other predicted days. On this day, 

model M1 has a worse MAPE than the initial model, while model M2 has the best MAPE. In this 

situation the number of training vectors from model M1 is sufficient, but model M2, with a large 

number of vectors, gains better results. 
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Figure 6. Vector number distribution in the initial training for the first hour of each day. 

(a) by kNN MI. (b) by kernel MI. (c) by correlation coefficient. 

(a) (b) 

 
(c) 

 

Figure 7. Real and predicted loads of models M0 and M1. (a) period from September 17 to 23, 

(b) period from September 24 to 30. 

(a) (b) 
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The experiments were conducted on a computer with a Core i5 processor. The computational costs 

of the used algorithms are shown in Table 2, where a comparison of the runtime is done in seconds. 

For each model three times are measured: one-step input selection time is an average runtime of input 

selection procedure in one forecasting step i.e. this is the time of the calculation of the MI or Pearson 

correlation coefficient between one test vector and all the vectors in the initial training set and the 

selection of a new training set based on the selection criterion; one-step training time is an average 

runtime of model training on one forecasting step; total time is an average runtime of one day load 

forecasting i.e. the total time needed to predict 24 hourly loads. The obtained results show that model 

M3 outperforms the others in terms of runtime, regardless of whether it is a case of input selection 

time, training time or total time. In addition, model M1 shows higher runtimes compared to models 

M2 and M3, as a result of the calculation need for kNN MI estimation. However, the smaller runtimes 

of model M1 shows its advantage in comparison to the initial model M0. 

Table 2. Comparison of the runtime [s]. 

Model Time M1 M2 M3 M0 

One-step input 
selection time 

3.72 1.34 1.04 - 

One-step training 
time 

1.13 0.78 0.91 24.41 

Total time 116 50.8 47 584 

4. Conclusions 

In this paper, a new load forecast strategy is proposed. The strategy is based on training set 

selection using the kNN based mutual information estimator in order to make an objective evaluation 

of how relevant an input vector is for the training set, i.e. how well it fits into the current prediction step.  

Compared to other selection criteria, such as the kernel MI estimator and Pearson correlation 

coefficient, the kNN based MI estimator achieves better forecasting accuracy in most of the prediction 

scenarios, despite the fact that it has the longest selection time. As the experiment results present, 

improvements are especially evident in terms of reduction of average and max MAPEs. 

In regard to other widely used methods that have dealt with input selection for STLF, such as 

similar day approaches and the clustering of load patterns, the proposed method is more general in 

terms of its ability to select appropriate inputs without the need for prior knowledge of the 

relationships between their features. Moreover, the presented method could be applied to various types 

of time-series prediction problems in addition to STLF. 

As the experimental results have shown, all of the generated models which implement input 

selection strategy generally performed better than the initial model, despite the chosen input selection 

criterion, the kNN MI estimator, kernel MI estimator or Pearson correlation coefficient in combination 

with “number of inputs” or the “MI threshold” selection options. It has been shown that the quality of 

the training set is more significant than the size, that the models trained with sets of vectors which 

share a large amount of information with the forecasting input achieved greater accuracy than the 

models trained with a much larger set, chosen to fit the forecasting period. 
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Although the complexity of the calculations in the algorithms is quite robust, they bring significant 

improvements to load forecasting accuracy and could lead to an even more significant reduction in the 

time needed for models formation. 

Furthermore, the development of a methodology for finding the optimum balance between the 

quality of the prediction and the size of the training sets for every prediction step can be the subject 

matter of future research. 
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