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Abstract: In this paper we propose an approach to the estimation and simulation of loss
distributions based on Maximum Entropy (ME), a non-parametric technique that maximizes
the Shannon entropy of the data under moment constraints. Special cases of the ME density
correspond to standard distributions; therefore, this methodology is very general as it nests
most classical parametric approaches. Sampling the ME distribution is essential in many
contexts, such as loss models constructed via compound distributions. Given the difficulties
in carrying out exact simulation,we propose an innovative algorithm, obtained by means of
an extension of Adaptive Importance Sampling (AIS), for the approximate simulation of
the ME distribution. Several numerical experiments confirm that the AIS-based simulation
technique works well, and an application to insurance data gives further insights in the
usefulness of the method for modelling, estimating and simulating loss distributions.
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1. Introduction

The Maximum Entropy (ME) method is a powerful non-parametric technique for density
approximation, first proposed by [1] in an information theory setup. By maximizing the Shannon’s
entropy contained in the data subject to moment constraints, it provides the best-fitting distribution given
that the only information available are the first k empirical moments, where “best-fitting” is defined
in terms of maximum entropy. An appealing feature is that, besides working well in setups where a
parametric approach would fail, the ME density nests most commonly used parametric distributions.
Thus, when the true data generating process is a parametric model but the investigator is unable or
unwilling to assume it a priori, the ME density identifies it a posteriori, i.e., according to the empirical
properties of the data. It also provides a rough measure of the distance between a specific parametric



Entropy 2013, 15 1101

model and the true data-generating process, estimated by the ME distribution. In other words, the method
gives a “data-driven” indication whether a parametric or a non-parametric approach should be employed.
This is a distinctive feature that makes it more interesting than other non-parametric techniques.

Estimation of the ME distribution may be performed in a relatively straightforward manner by means
of a sequential updating algorithm proposed by [2]. On the other hand, exact simulation is not trivial.
In general, the distribution function does not exist in closed form, so that the inverse transform method
is computationally very expensive. An accept-reject scheme can be used for specific versions of the
ME density (that is, for any given value of the parameters and of the number of constraints k), but is
difficult to set up in general, because the density can have very different tail behaviors, and therefore an
instrumental density that works when the tail is heavy would be inefficient for light-tailed versions of
the distribution. Thus, the method would require different implementations for each member of the ME
family, making it quite impractical.

In this paper we resort to Adaptive Importance Sampling (AIS) for approximate simulation of the ME
density. The version of AIS based on mixture distributions was first introduced by [3]. [4] extend it to
general mixture classes; recently, it has been employed for estimation of cosmological parameters [5]
and for simulating copulas [6]. The method is a generalization of standard Importance Sampling (IS)
because, at each iteration, a sample is simulated from the instrumental density and used to improve the IS
density itself. So, “adaptivity” means that the instrumental density sequentially provides a progressively
better approximation of the target density. It also rigorously formalizes the well-known capacity of
mixtures to approximate most distributions.

The implementation of AIS proposed by [3] is based on mixtures of normal or Student-t densities. In
this paper we develop a modification using mixtures of lognormal distributions, which is necessary for
the simulation of densities supported on [0,+∞). The AIS-based simulation methodology fits perfectly
the ME setup, because it only requires the knowledge of the density function. Moreover, it is easily
implemented, being based on simulation of lognormal random variables, and extremely accurate, as will
be shown by means of numerical experiments.

The ME density is especially appropriate as a model for loss distributions in contexts where there
are no theoretical reasons for choosing a specific parametric model. So, for example, even though the
ME approach can give a satisfactory approximation of the P&L distribution of the log-returns obtained
from equity prices, in this case the distribution is expected to be normal from standard financial theory,
which is largely based on the hypothesis of Geometric Brownian Motion in continuous time. Thus,
the use of the ME approach (similarly to the use of other ad hoc parametric distributions) is grounded
on empirical reasons, but may be difficult to justify theoretically. On the other hand, the distribution
of claims in non-life insurance or losses in operational risk is usually not expected to belong to any
specific parametric family, and therefore, in absence of theoretical a priori information about the model,
a non-parametric methodology such as ME can be very useful, as the choice has to be mostly motivated
by the empirical features of the data. Finally, from the point of view of risk management, being able
of sampling the ME distribution is crucial: although in simple cases risk measures can be computed by
numerical integration, in a loss model obtained via compound distribution simulation is often the only
way of measuring risk.
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The main contribution of this paper is threefold. First, we extend the AIS methodology to the setup
where the target distribution is supported on [0,+∞), instead of R. Second, we use this technique for
approximate simulation of the ME density. In this way, we overcome the difficulties encountered in exact
simulation of the ME distribution. Finally, we show that the combination of ME and AIS provides an
effective non-parametric approach for modelling different kinds of loss distributions and assessing the
improvement with respect to classical parametric distributions.

The rest of this work is organized as follows. Section 2 reviews the ME method. Section 3
details the AIS approach to the simulation of the ME density. Section 4 shows selected results of the
simulation experiments and applies the technique to the estimation and simulation of the distribution of
indemnity payments. A thorough analysis of this example shall show the precision of the AIS simulation
method and the merits of the ME approach in fitting the data and identifying the appropriateness or
inappropriateness of standard parametric approaches. Finally, Section 5 concludes.

2. Background about the Maximum Entropy Method

The Maximum Entropy method is best described by Jaynes’ (1957) words: the ME distribution is
“uniquely determined as the one which is maximally noncommittal with respect to missing information,
and it agrees with what is known, but expresses maximum uncertainty with respect to all other matters”.
The ME density takes the form

f(x) = exp

{
−

k∑
i=0

λigi(x)

}
(1)

where k is the number of moment constraints and gis are the functional forms of the so-called
“characterizing moments”. In most cases, they are the arithmetic or logarithmic moments, corresponding
respectively to gi(x) = xi and gi(x) = (log x)i, but other choices are possible [7]. The k + 1 parameters
are customarily defined using the Greek letter λ because they are the Lagrange multipliers obtained by
solving the maximization problem

max
f

{
W (f) =

∫
f(x) log f(x)dx

}
(2)

under the constraints ∫
gi(x)f(x)dx = µ̂i, i = 0, 1, . . . , k

where f is a density, W is the Shannon entropy associated to f and µ̂i is the sample counterpart of
the i-th characterizing moment. It can be shown [7] that the solution, called ME density, takes the
form Equation (1).

Despite its interesting properties, only very recently the method has been used more extensively in
economics and finance ([8–13]). One reason is that Equation (2) cannot be solved analytically for k ≥ 2,
and the preferred algorithm for finding a solution, namely the Newton–Raphson algorithm, requires
a very precise initialization to reach convergence, even for moderately large k [2]. However, [2] has
developed a generalization of the algorithm that makes it easier to find the optimal density. The idea is
that there is no need to impose all the moment constraints simultaneously. Instead, one can impose the
constraints one at a time, from the lowest to the highest moment, and update the ME density sequentially,
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every time a new constraint is taken into account. The advantage of such a procedure is twofold: first,
the maximization subject to few moment constraints can be easily carried out with standard Newton–
Raphson. Second, the moments are not independent, so that the estimates of the first k parameters will
typically be little changed when considering the ME density of order k+1, and can therefore be used as
starting values for the (k + 1)-order problem.

The other relevant problem in practical applications is the choice of the “optimal” value of k. In
general, a larger number of constraints results in a more precise approximation, but the estimation of
more parameters introduces further noise and may lead to overfitting. There are two possible ways
of proceeding.

Since the maximized log-likelihood is equal to −n
∑k

i=0 λ̂
(k)
i µ̂i, where the λ̂(k)

i s are the parameters of
the fitted ME(k) density and n is the sample size, a log-likelihood ratio (llr) test is easily computed. The
test of the hypothesis k = s (s = 1, 2, . . . ) against k = s + 1 is given by llr = −2n(

∑s+1
i=0 λ̂

(s+1)
i µ̂i −∑s

i=0 λ̂
(s)
i µ̂i); from standard limiting theory, its asymptotic distribution is χ2

1. The model-selection
procedure would thus be based on the following steps: (a) estimate sequentially the ME density with
s = 1, 2, . . . ; (b) perform the test for each value of s; (c) stop at the first value of s (s0, say) such that
the hypothesis s = s0 cannot be rejected and conclude that the optimal value of k (from now on denoted
by k∗) is equal to s0.

The preceding solution does not take into account the cost of estimating a model with a larger number
of parameters. A possible remedy consists in computing an information criterion, such as the Akaike
(AIC) or Bayesian (BIC) Information Criterion. To avoid overfitting, one can stop at the value k∗ such
that at least one of the following two conditions holds: (1) the llr test cannot reject the hypothesis k = k∗;
(2) the numerical value of AIC(k∗ + 1) [or BIC(k∗ + 1)] is larger than the numerical value of AIC(k∗)

[or BIC(k∗)]. In the following we will mostly employ this approach.
The ME method is practically very important when the distribution to be approximated is

non-standard, with features such as high skewness and/or kurtosis and heavy tail: in this case the ME
distribution is able to catch them, whereas a standard parametric model would fail. In the latter case, it
may be necessary to consider many terms in the exponent of the ME density, with the consequence that
application of standard Newton–Raphson is unfeasible and Wu’s (2003) sequential algorithm is the only
way of estimating the parameters.

On the other hand, classical distributions, such as the normal, lognormal, exponential, Pareto and
others are obtained (exactly) from Equation (1) for small values of k, so that if the empirical distribution
is “similar” to one of them, usually one or two moments will suffice to find a very good approximation.
In this case estimation results based on the ME distribution and on the correct parametric model are
essentially the same.

For the purposes of risk analysis of loss models, the most important distributions encompassed by
the ME distribution are the lognormal and the Pareto. The lognormal Logn(µ, σ2) is a logarithmic ME
density with k = 2; the values of the parameters are

λ0 =
µ2

2σ2
+ log σ +

1

2
log(2π), λ1 = 1− µ

σ2
, λ2 =

1

2σ2
(3)

The Pareto Par(c, α) is a logarithmic ME density with k = 1 and parameters

λ0 = − log(αcα), λ1 = α+ 1 (4)
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See [7] for further details as well as for other examples.
This discussion suggests to use the ME approach as a procedure for verifying the appropriateness of a

certain parametric model and/or assessing the distance of the data at hand from a given distribution: for
example, when the investigator is uncertain between the Pareto and the lognormal distribution, a possible
way of proceeding consists in fitting sequentially the ME(k) distribution with k = 1, 2, . . . , stopping at
the smallest value of k such that the llr test cannot reject the null hypothesis. The data-generating process
is Pareto if the test accepts k = 1, lognormal if it accepts k = 2, neither Pareto nor lognormal if it accepts
k > 2; moreover, a large value of k implies a large difference between the lognormal and the fitted ME
distribution. See [14] for details.

3. Approximate Simulation of the ME Distribution

The ME distribution function F (x) does not exist in closed form, because the density (1) cannot be
integrated analytically. Resorting to numerical integration may be reasonable for computing quantiles
of X , but is rather cumbersome for the implementation of the inverse transform method. On the other
hand, the flexibility of the ME distribution and, in particular, its widely varying tail-heaviness, make it
difficult to find an envelope instrumental distribution general enough to set up an accept-reject scheme
that works efficiently for any ME density.

Given these difficulties in simulating the ME distribution exactly, we propose a method based on
Adaptive Importance Sampling (AIS; see [15–17]). The implementation of AIS used here was developed
by [3,4] in a Bayesian setup and can also be used for approximate simulation of any absolutely
continuous random variable [6]. Instead of a fixed IS density g, AIS finds a sequence of importance
densities g(t) (t = 1, . . . , T ) aimed at approximating the target density f . Thus, even starting from an
initial instrumental density that is quite different from the optimal one, the algorithm eventually provides
the most efficient (in a sense that shall be clarified below) IS density. A pseudo-code description of the
algorithm is as follows:

• Simulate a first sample x
(1)
n = (x

(1)
1 , . . . , x

(1)
n )′ ∼ g(1) by means of standard IS; compute the IS

weights w(1)
j = f(x

(1)
j )/g(1)(x

(1)
j ) (j = 1, . . . , n).

• Use this sample to approximate the moments of f and construct the updated importance
function g(2).

• Measure the goodness of the approximation by means of the relative entropy (or Kullback–Leibler
divergence; see ([18][Section 3.3]) from the target:

K(f ||g(2)) =
∫

log

(
f(x)

g(2)(x)

)
f(x)dx (5)

• “Adjust” the density g(2) so that K(f ||g(2)) ≤ K(f ||g(1)). More formally, compute
minθ K(f ||g(2)), where θ is the vector of parameters of g(2).

• Repeat the preceding steps until some convergence criterion is met.
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The functional form of g must satisfy the requirements of being positive for all values in the support
of the target and making minimization of Equation (5) as straightforward as possible. [3,4] show that a
convenient instrumental density is a finite mixture of normal distributions, namely

g(t)(x) = g(x;π(t),µ(t),σ2(t)) =
D∑

d=1

π
(t)
d ϕd(x;µ

(t)
d σ

2(t)
d ) (6)

where π(t) = (π
(t)
1 , . . . , π

(t)
D )′, µ(t) = (µ

(t)
1 , . . . , µ

(t)
D )′ and σ2(t) = (σ

2(t)
1 , . . . , σ

2(t)
D )′ are respectively the

vector of weights, expected values and variances of the D mixture components. If the target density
is p-variate with p ≥ 2, Equation (6) is a p-variate normal mixture and the dimensions of the normal
parameters change accordingly.

All parameters of Equation (6) are adaptable, that is, they are supposed to be updated at each iteration
of the algorithm. Furthermore, it is possible to use mixtures of different densities: [3,4] extend the
algorithm to mixtures of Student-t densities. The key issue is the minimization of the relative entropy
at step 4. Clearly, this depends on the choice of the instrumental density g: a detailed analysis when g

is a Gaussian mixture is presented below (see the description of Algorithm 2). We can now give a more
precise formulation of the algorithm.

Algorithm 1 (Adaptive Importance Sampling)

• For t = 1:

– Choose an importance function g(1);
– Simulate x

(1)
n = (x

(1)
1 , . . . , x

(1)
n )′ independently from g(1);

– Compute the importance weights w(1)
1 , . . . , w

(1)
n , where w

(1)
j = f(x

(1)
j )/g(1)(x

(1)
j ).

• For t > 1:

– Update the importance function to g(t+1) according to the minimum Cross-Entropy criterion,
using of the previous weighted sample (x

(t)
1 , w

(t)
1 ), . . . , (x(t)

n , w
(t)
n ).

– Simulate x
(t+1)
n = (x

(t+1)
1 , . . . , x

(t+1)
n )′ independently from g(t+1);

– Compute the importance weights w(t+1)
1 , . . . , w

(t+1)
n .

An approximate sample from the target density is obtained by sampling with replacement from g(t)

and weighting the observations by means of the vector w(t). This algorithm cannot be, however, directly
applied to the simulation of the ME density based on logarithmic moments. The reason is that the
support of a normal (or Student-t) mixture is the real line, whereas the support of the logarithmic ME
density is [0,+∞). It follows that the approximation is necessarily bad because, when simulating from
the mixture, there is a non-zero probability of obtaining negative values. To overcome this difficulty,
we need an instrumental distribution with support [a, b), with a ≥ 0 and b ≤ +∞. Fortunately, there
is a convenient solution, whose great advantage consists in leaving unchanged the updating equations
obtained for a normal mixture. Assume the instrumental density is a finite mixture of lognormal
distributions: g(x) =

∑D
d=1 πdg(x;µd, σ

2
d), where g(x;µd, σ

2
d) is the lognormal density with parameters

µd and σ2
d; it is immediate to verify that, if X has density g, the density of Y = logX is Equation (6),

namely a normal mixture where both the mixing weights and the parameters of the component densities
are the same of g. For the setup at hand, Algorithm 1 can thus be rewritten as follows.
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Algorithm 2 (Lognormal mixture Adaptive Importance Sampling)

• For t = 1:

1. Let g(1) =
∑D

d=1 πdg(x;µd, σ
2
d), where g(x;µd, σ

2
d) ∼ Logn(µd, σ

2
d);

2. Simulate x
(1)
n = (x

(1)
1 , . . . , x

(1)
n )′ independently from g(1);

3. Compute the importance weights w(1)
1 , . . . , w

(1)
n , where w

(1)
j = f(x

(1)
j )/g(1)(x

(1)
j ).

• For t > 1:

1. Update the importance function to g(t+1) according to the minimum Cross-Entropy criterion,
using the logarithm of previous weighted sample (x

(t)
1 , w

(t)
1 ), . . . , (x(t)

n , w
(t)
n ).

2. Simulate x
(t+1)
1 , . . . , x

(t+1)
n independently from g(t+1);

3. Compute the importance weights w(t+1)
1 , . . . , w

(t+1)
n .

It is worth stressing that at step 2(a) we take the logarithm of the current sample, which has a normal
distribution, so that we can update π, µ = (µ1, . . . , µD)

′ and σ2 = (σ1, . . . , σD)
′ using the updating

equations of the normal distribution. Then, at step 2(b), we use the updated values of the parameters for
simulating the lognormal distribution.

The main technical issue is the update of the importance function g at each iteration. When it is
a p-variate normal mixture, the algorithm works as follows. At iteration t, the importance weights
associated with the sample x

(t)
1 , . . . , x

(t)
n are given by

w
(t)
j =

f(x
(t)
j )∑D

d=1 π
(t)
d g(x

(t)
j ;µ

(t)
d , σ

2(t)
d )

, j = 1, . . . , n

and the normalized weights are w̄
(t)
j = w

(t)
j /

∑n
j=1 w

(t)
j . Let now y = log x. Similarly to [3], the update

is performed by iterating, for any i = 1, . . . , D, the equations:

π
(t+1)
i =

n∑
j=1

w̄
(t)
j τi(y

(t)
j ;π(t),µ(t),σ2(t)) (7)

µ
(t+1)
i =

∑n
j=1 w̄

(t)
j y

(t)
j τi(y

(t)
j ;π(t),µ(t),σ2(t))

π
(t+1)
i

(8)

σ
2(t+1)
i =

∑n
j=1 w̄

(t)
j (y

(t)
j − µ

(t+1)
i )(y

(t)
n − µ

(t+1)
i )′τi(y

(t)
j ;π(t),µ(t),σ2(t))

π
(t+1)
i

(9)

where

τi(y;π,µ,σ
2) =

πig(x;µi, σ
2
i )∑D

d=1 πdg(x;µd, σ2
d)

(10)

Convergence of the algorithm has been established by [4]. In practice, to determine a
stopping criterion, the goodness of the approximation must be evaluated at each iteration. An
approximate diagnostic directly related to the relative entropy Equation (5) is the normalized perplexity
perpn = exp{Hn}/n, where Hn = −

∑n
j=1 ω̄j log ω̄j is the Shannon entropy of the normalized

weights ω̄j . ([4][Section 2.1]) show that perpn is an estimator of exp{K(f ||g)} and that 0 ≤ perpn ≤ 1.
On average, the normalized perplexity increases at each iteration, so that it is reasonable to stop the
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algorithm when it cannot be further increased (hence the entropy cannot be further decreased). Thus,
the algorithm can be stopped when the normalized perplexity does not change significantly over some
(five, say) successive iterations or a predefined “large” number of iterations is reached. Alternatively, it
is possible to fix in advance a perplexity value xperp such that the algorithm stops the first time that the
normalized perplexity reaches xperp: this guarantees the desired accuracy level.

In a simulation setup such as the present one, we are interested in assessing whether the simulated data
can actually be treated as generated by the ME density. To this aim, we shall also test the discrepancy
between the simulated data and the cdf of the ME density, computed numerically, by means of the
Kolmogorov–Smirnov test.

4. Simulation and Application

In this section we perform some simulation experiments and analyze a real dataset with four aims:
(i) determining the goodness of fit of the ME distribution; (ii) studying the relationship of the goodness
of fit to the number of moment constraints k; (iii) evaluating the precision of the AIS-based simulation
methodology; (iv) assessing the comparative performance of the ME and of two commonly used
parametric approaches.

4.1. Simulation

If the true distribution is a member of one of the parametric families encompassed by the ME density,
the estimates should be equal to the values of the parameters corresponding to that family. We check this
for the versions of the ME distribution corresponding to the Lognormal and Pareto distribution.

4.1.1. Simulate Lognormal

For B = 10, 000 replications, we simulate n = 1000 observations from the standard Lognormal
distribution and fit the ME density. The Lognormal distribution is a logarithmic ME density with k = 2

(see Section 2). We estimate the ME density with k ∈ {2, 3, 4} and use the likelihood ratio criterion
to determine the appropriate value of k (k∗, say). Using Equation (3), we know that, when µ = 0 and
σ2 = 1, the true values of the parameters are λ0 = (1/2) log(2π) = 0.9189, λ1 = 1 and λ2 = 1/2.

Table 1. Averages of estimated parameters of the ME density across 10,000 replications of
the simulation of the Logn(0, 1) distribution. Sample size is n = 1, 000 at each replication.

k = 1 k = 2 k = 3 k = 4

λ0 1.855 0.926 0.925 0.905
λ1 1 1.001 1.002 1.002
λ2 0.492 0.493 0.537
λ3 −0.000 −0.000
λ4 −0.008
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Tables 1 and 2 respectively show the averages of the estimated parameters and the values of the
tests; llr is the log-likelihood ratio test (p-values in parentheses) and ST is the indistinguishability test
proposed by [19]. All the tests give a clear indication in favor of the ME(2) (lognormal) distribution.
The values of the estimated parameters in Table 1 for k = 2 also confirm that the ME coincides with the
lognormal distribution.

Table 2. Averages of the values of the tests (for llr, p-values are in parentheses) across 10,000
replications of the simulation of the Logn(0, 1) distribution. Sample size is n = 1, 000 at
each replication.

llr ST AIC BIC

k = 1 5.058 5.068
k = 2 172.590 (0) 0.355 5.500 5.515
k = 3 0.250 (0.617) 0.000 5.503 5.523
k = 4 0.422 (0.516) 0.001 5.506 5.530

Table 3. Averages of the values of the tests (for llr, p-values are in parentheses) across 10,000
replications of the simulation of the Par(5, 1.5) distribution. Sample size is n = 1, 000 at
each replication.

llr ST AIC BIC

k = 1 5740.623 5750.411
k = 2 0.015 (0.902) 0.000 5742.394 5757.276
k = 3 0.058 (0.810) 0.000 5743.412 5763.355
k = 4 0.060 (0.806) 0.000 5744.478 5769.333

Table 4. Averages of estimated parameters of the ME density across 10,000 replications of
the simulation of the Par(5, 1.5) distribution. Sample size is n = 1000 at each replication.

k = 1 k = 2 k = 3 k = 4

λ0 −2.834 −2.879 −3.101 −3.583
λ1 2.505 2.538 2.764 3.362
λ2 −0.006 −0.076 −0.331
λ3 0.007 0.051
λ4 −0.003

4.1.2. Simulate Pareto

For B = 10, 000 replications, we simulate n = 10, 000 observations from the Pareto distribution
Par(c, α) with scale c = 5 and shape α = 1.5 and fit the ME density. The Pareto distribution is a
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logarithmic ME density with k = 1 (see Section 2): in particular, from Equation (4), λ0 = −2.8196

and λ1 = 2.5. We estimate the ME density with k ∈ {1, 2, 3, 4} and use the likelihood ratio criterion to
determine k∗. All the tests in Table 3 strongly suggest k∗ = 1, i.e., a Pareto distribution, and the average
estimated parameter values in Table 4 obtained for k = 1 are in good agreement with the theoretical
values corresponding to c = 5 and α = 1.5.

4.1.3. Simulate a Lognormal–Pareto Mixture

To assess how well the ME method fits a non-standard distribution, we simulate a mixture of a
right-truncated lognormal and a Pareto distribution. The density is given by

f(x) = r
1

Φ
(
log µ−c

σ

)f1(x)I{x≤c} + (1− r)f2(x)I{x≥c} (11)

where Φ is the cdf of the normal distribution, f1 and f2 are the Logn(µ, σ2) and the Par(c, α) densities
and IA is the indicator function of the set A. If we impose the condition that the density be continuous
and differentiable at c, the lognormal expected value µ and the mixing weight r are no longer free
parameters; in particular, they are given by [20]:

µ = log c− ασ2; r =

√
2πασΦ(ασ)e

1
2
(ασ)2

√
2πασΦ(ασ)e

1
2
(ασ)2 + 1

(12)

In this case, estimating the parameters of the true data-generating process in a parametric approach
is rather difficult, and the ME method is an appealing alternative. The model-selection strategy fits
sequentially the ME density with k = 1, 2, . . . , computes the llr test and the BIC criterion, stops at the
first value of k (k0, say) such that either the llr test cannot reject the hypothesis k = k0 or BIC(k0) <

BIC(k0 + 1) and concludes that k∗ is equal to k0. As before, in the simulation experiment we use
B = 10, 000 replications and sample size n = 1000; moreover, we set α = 2, c = 20 and σ2 = 0.25,
resulting in µ = 2.5 and r = 0.777.

Table 5. Averages of estimated parameters of the ME density across 10,000 replications of
the simulation of the Lognormal–Pareto mixture distribution. Sample size is n = 1000 at
each replication.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

λ0 0.654 8.772 14.398 18.295 12.552 4.458 8.703 14.827 22.264 −71.207
λ1 1.380 −5.372 −12.024 −17.483 −6.895 11.823 −0.512 −20.404 −45.028 347.685
λ2 1.223 3.682 6.345 −0.968 −17.743 −3.542 22.756 56.542 −641.972
λ3 −0.286 −0.821 1.553 9.054 0.580 −18.050 −43.331 652.963
λ4 0.037 −0.326 −2.101 0.752 8.533 19.917 −413.034
λ5 0.021 0.233 −0.312 −2.280 −5.482 170.761
λ6 −0.010 0.045 0.342 0.901 −46.851
λ7 −0.002 −0.027 −0.085 8.446
λ8 0.001 0.004 −0.961
λ9 -0-.000 0.062
λ10 −0.002
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Table 6. Averages of the values of the tests (for llr, p-values are in parentheses) across 10,000
replications of the simulation of the Lognormal–Pareto mixture distribution. Sample size is
n = 1000 at each replication.

llr ST AIC BIC

k = 1 85031.171 85046.559
k = 2 13563.365 (<0.001) 0.491 71470.822 71492.978
k = 3 842.316 (<0.001) 0.041 70630.336 70658.398
k = 4 68.841 (<0.001) 0.003 70563.734 70599.448
k = 5 28.944 (<0.001) 0.001 70536.392 70579.887
k = 6 29.659 (<0.001) 0.001 70508.056 70559.811
k = 7 3.692 (0.055) <0.001 70506.924 70564.493
k = 8 2.286 (0.131) <0.001 70506.664 70571.292
k = 9 3.049 (0.081) <0.001 70505.268 70577.853
k = 10 896.16 (<0.001) <0.001 70511.546 70585.093

The averages of the estimated parameters and the values of the tests are reported in Tables 5 and 6.
The llr test is marginally significant for k∗ = 6 and non-significant for k∗ = 7; the BIC also suggests
k∗ = 7. Figure 1 displays the histogram of the simulated data superimposed with the Lognormal–Pareto
mixture and the ME(7) density; for readability, in the graph we only show the observations smaller
than 200. The fit is extremely good, as the two densities are virtually indistinguishable. The ME(6)
density, not shown in the graph, is essentially identical to the ME(7), so that choosing k∗ = 6 would be
appropriate as well.

Figure 1. The simulated Lognormal–Pareto observations, the true Lognormal–Pareto
mixture density and the fitted ME(7) density.
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4.2. Application

In Section 4.1 we have studied numerically some properties of the ME estimation methodology. Now
we turn to the AIS simulation method. Thus, after finding the ME density that best fits a loss dataset,
we implement AIS simulation of the estimated ME distribution and evaluate its performance; finally, we
perform a risk assessment and a comparison with standard parametric models.

4.2.1. The General Liability Claims Dataset: Estimation and Simulation

For the empirical analysis, we use a loss dataset from the insurance field. The data consist of n = 1500

indemnity payments (losses) in USD and are available in the R package evd [21]. We find it more
convenient to divide the original data by 1000, so that in the following the observations are in thousands
of USD. The analysis consists of four steps:

• Estimate the ME density.
• Simulate the estimated ME density;
• Compute the Kolmogorov–Smirnov (KS) distance and the significance level;
• Estimate tail probabilities using various models and compare the outcomes.

As concerns the implementation of these three steps, some remarks are in order. The fitted ME density
is only non-zero for x(1) ≤ x ≤ x(n), where x(1) and x(n) are respectively the smallest and the
largest observation. On the other hand, the AIS procedure based on lognormal densities simulates
random numbers on (0,∞). As a result, the efficiency of the algorithm is reduced, because all the
simulated observations not belonging to (x(1), x(n)) have zero weight. Thus, it would be better to
define the ME density on (0,∞). Such an extension can be constructed as follows. First, estimate
the parameters λ0, . . . , λk. The corresponding ME density is defined on (x(1), x(n)), and can be seen as
a truncated version of the ME density f defined on (0,+∞). Thus, it must exist cnorm ∈ R such that
cnorm

∫∞
0

f(x)dx =
∫ x(n)

x(1)
f(x)dx = 1. The value of cnorm can be found by solving numerically for cnorm

the equation cnorm
∫∞
0

f(x)dx = 1, and the density cnormf is the extension of the estimated ME density
from (x(1), x(n)) to (0,+∞).

We now proceed to the estimation of the ME density. The results shown in Table 7 are not univocal:
according to the llr p-value, the test for H0 : k = 2 is marginally significant, k = 3 is rejected and k = 4

is accepted. On the other hand, the AIC and BIC criteria would both suggest k = 4. According to the
model-selection criterion in Section 2, we conclude that k∗ = 4.

Figure 2 shows the estimated ME(2), ME(3) and ME(4) densities superimposed on the normalized
histogram of the data smaller than 100. The inset focuses on the tail of the distribution, i.e., the
observations larger than 100. The main differences between the distributions are concentrated in the
left tail, which is not particularly important for risk analysis purposes. On the other hand, the differences
in the right tail, shown in the inset, are very small (note the different scale in the main graph and in the
inset): the ME(2), ME(3) and ME(4) densities are respectively equal to 3 · 10−5, 1 · 10−4 and 9 · 10−5

when x = 1, 000 (the largest claim in the sample).
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Table 7. Values of the tests for the General Liability Claims dataset.

k llr p-value AIC BIC

1 13345.157 13355.781
2 1569.080 < 0.001 11778.075 11794.012
3 4.213 0.040 11775.878 11797.126
4 20.254 < 0.001 11757.628 11784.199
5 0.128 0.721 11759.495 11791.378
6 0.787 0.374 11760.726 11797.987

Figure 2. The histogram of the General Liability Claims data with the estimated ME(3),
ME(4) and ME(5) densities.
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Next we simulate the ME density using AIS. The algorithm is implemented with D = 7 and with the
following starting values:
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With several different initializations the algorithm always converges to the same parameter values. It
therefore seems that the starting values are not particularly important, a result not unexpected because
the EM algorithm is quite insensitive to the initial values of the parameters [22].

We simulate n = 10, 000 observations obtaining a normalized perplexity equal to 0.9981 at the 17-th
iteration, a large value that guarantees a very high precision level. Figure 3 displays the estimated
ME(4) density superimposed on the normalized histogram of the simulated observations. The graph
confirms that the fit is excellent. As a final check, we compute the one-sample Kolmogorov–Smirnov
test KS = max |Fn(x) − F (x)|, where Fn is the empirical cdf of the simulated data and F (x) is the
theoretical cdf of the estimated ME(4) distribution. We got KS = 0.0098, whose p-value is 0.289. Thus,
we accept the hypothesis that the data-generating process of the simulated observations is the estimated
ME(4) density.

Figure 3. The estimated ME(4) density superimposed on the normalized histogram of the
simulated observations.

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

200 400 600 800 1000 1200
0

0.005

0.01

0.015

Turning now to risk analysis, we estimate tail probabilities using the ME density and compare them
with those obtained by means of traditional parametric approaches. With loss data, typical choices are
the Lognormal or the Pareto distribution, depending on tail heaviness.

Specifically, for various values x between 60 and 900 we compute tail probabilities px = P (L > x)

for the lognormal (which coincides with ME(2)), Pareto, ME(3) and ME(4) distributions, with the aim
of assessing the robustness of the results with respect to the ME densities that we were uncertain about
in the analysis carried out above. We also show the frequencies #{li > x}/n, where li (i = 1, . . . , n)
are the observed losses. According to the discussion in Section 2, the Pareto distribution should be ruled
out, as the llr test rejects the hypothesis k∗ = 1 at any significance level. Nonetheless, we include it
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either because it is a commonly used model for this kind of data or because by so doing we can check ex
post whether the decision made on the basis of the ME test is correct. As often happens, the choice of
the Pareto threshold u is not easy: from the mean excess function and the Hill plot we find that u = 14

seems to be a reasonable compromise between bias and variance. The outcomes are shown in Table 8.
Among the distributions considered in the experiment, the ME(4) and the lognormal (i.e., ME(2))

show the minimum distances from the observed frequencies. Such a similarity is not surprising because
the ME(4) is the best distribution according to the llr test and the information criteria, but the lognormal
(ME(2)) is nearly accepted by the llr test. The Pareto tail is definitely too heavy, as expected from the
results of the ME test. The ME(3) is heavier-tailed than the ME(4) distribution, but the difference is
not dramatic.

Table 8. Tail probabilities obtained via various ME densities and standard parametric
approaches for the General Liability Claims dataset.

Threshold Logn(2.04, 2.54) Par(14, 0.94) ME(3) ME(4) Obs

60 0.0986 0.2066 0.0990 0.0965 0.0960
80 0.0708 0.1647 0.0736 0.0676 0.0673

100 0.0537 0.1372 0.0582 0.0501 0.0493
120 0.0423 0.1177 0.0480 0.0386 0.0427
140 0.0343 0.1032 0.0408 0.0306 0.0353
160 0.0284 0.0919 0.0354 0.0249 0.0293
180 0.0239 0.0829 0.0313 0.0205 0.0267
200 0.0204 0.0756 0.0281 0.0172 0.0220
220 0.0176 0.0694 0.0255 0.0146 0.0193
240 0.0154 0.0642 0.0233 0.0125 0.0180
260 0.0135 0.0598 0.0215 0.0109 0.0160
280 0.0120 0.0559 0.0200 0.0095 0.0140
300 0.0107 0.0526 0.0187 0.0083 0.0107
350 0.0083 0.0457 0.0161 0.0062 0.0093
400 0.0066 0.0404 0.0142 0.0047 0.0073
450 0.0053 0.0363 0.0127 0.0037 0.0060
500 0.0044 0.0329 0.0116 0.0030 0.0020
550 0.0037 0.0302 0.0106 0.0024 0.0020
600 0.0031 0.0278 0.0098 0.0020 0.0020
650 0.0027 0.0259 0.0092 0.0017 0.0020
700 0.0023 0.0241 0.0086 0.0014 0.0020
750 0.0020 0.0226 0.0081 0.0012 0.0013
800 0.0018 0.0213 0.0076 0.0010 0.0013
850 0.0016 0.0201 0.0072 0.0009 0.0013
900 0.0014 0.0191 0.0069 0.0008 0.0007
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Finally, Figure 4 shows the ME(4) and the lognormal densities superimposed on the histogram of the
data. The fit is very good, and the two densities are almost indistinguishable.

5. Conclusions

In this paper we have developed a non-parametric approach to loss distribution analysis based
on the concept of Maximum Entropy. The main technical contribution is a flexible procedure for
approximate simulation of the ME distribution, based on an extension of the Adaptive Importance
Sampling algorithm introduced by [3,4]. More generally, the paper details the merits of the ME approach
in the typical risk analysis process of loss distributions, from model building to estimation, simulation
and risk measurement.

Figure 4. The estimated ME(4) and lognormal densities superimposed on the histogram of
the General Liability Claims observations.

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 
ME(4)
Lognormal

200 400 600 800 1000 1200
0

0.005

0.01

0.015

 

 
ME(4)
Lognormal

200 400 600 800 1000 1200
0

0.005

0.01

0.015

The method is appealing for various reasons. First, it allows to fit the best distribution (“best” being
defined according to the Maximum Entropy principle) for the data at hand, which is particularly useful
when there are no theoretical reasons for adopting a parametric distribution. Second, it may serve as a
test of the choice between two (or more) parametric models. Finally, both estimation and simulation are
computationally feasible.

The simulation method proposed in this paper has proved to be very precise and may be of crucial
importance in models such as the compound Poisson distribution commonly used for modelling non-life
insurance claims and operational losses.

A relevant topic that requires further research is the extension of the AIS instrumental density to
mixtures that can approximate target distributions with support [c,+∞) for some c > 0, such as the
Pareto or the truncated lognormal distribution.
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