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Abstract: We investigate the statistical properties of maximum entropy density estimation,
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1. Introduction

The maximum entropy (ME) principle, originally proposed by Jaynes in 1957 [1], is an effective
method for combining different sources of evidence from complex, yet structured, natural systems.
It has since been widely applied in science, engineering and economics. In machine learning, ME
was first popularized by Della Pietra et al. [2], who applied it to induce overlapping features for a
Markov random field model of natural language. Later, it was applied to other machine learning areas,
such as information fusion [3] and reinforcement learning [4]. It is now well known that for complete
data, the ME principle is equivalent to maximum likelihood estimation (MLE) in a Markov random



Entropy 2013, 15 5440

field. In fact, these two problems are exact duals of one another. Recently, Wang et al. [5] proposed
the latent maximum entropy (LME) principle to extend Jaynes’ maximum entropy principle to deal with
hidden variables, and demonstrated its effectiveness in many statistical models, such as mixture models,
Boltzmann machines and language models [6]. We show that LME is different from both Jaynes’
maximum entropy principle and maximum likelihood estimation, but it often yields better estimates
in the presence of hidden variables and limited training data. This paper investigates the statistical
properties of maximum entropy density estimation for both the complete and incomplete data cases.

Large sample asymptotic convergence results for MLE are typically based on point estimation
analysis [7] in parametric models. Although point estimators have been extensively studied in
the statistics literature since Fisher, these analyses typically do not consider generalization ability.
Vapnik and Chervonenkis famously reformulated the problem of MLE for density estimation in the
framework of empirical risk minimization and provided the first necessary and sufficient conditions for
consistency [8,9]. However, the model they considered is still in a Fisher–Wald parametric setting.
Barron and Sheu [10] considered a density estimation problem very similar to the one we address here,
but only restricted to the one-dimensional case within a bounded interval. Their analysis cannot be easily
generalized to a high dimensional case. Recently, Dudik et al. [11] analyzed regularized maximum
entropy density estimation with inequality constraints and derived generalization bounds for this model.
However, once again, their analysis does not easily extend beyond the specific model considered.

Some researchers have studied the consistency of maximum likelihood estimators under the Hellinger
divergence [12], which is a particularly convenient measure for studying maximum likelihood estimation
in a general distribution-free setting. However, Kullback–Leibler divergence is a more natural measure
for probability distributions and is closely related to the perplexity measure used in language modeling
and speech recognition research [13,14]. Moreover, convergence in the Kullback–Leibler divergence
always establishes consistency in terms of Hellinger divergence [12], but not vice versa. Therefore, we
concentrate on using the Kullback–Leibler divergence in our analysis.

In this paper, we investigate consistency and generalization bounds for maximum entropy density
estimation with respect to the Kullback–Leibler divergence. The main technique we use in our
analysis is Rademacher complexity, first used by Koltchinskii and Panchenko [15] to analyze the
generalization error of combined classification methods, such as boosting, support vector machines and
neural networks. Since then, the convenience of Rademacher analysis has been exploited by many to
analyze various learning problems in classification and regression. For example, Rakhlin et al. [16] have
used this technique to derive risk bounds for the density estimation of mixture models, which basically
belong to directed graphical models using a conditional parameterization. Here, we use the Rademacher
technique to analyze the generalization error of maximum entropy density estimation for general Markov
random fields.

2. Maximum Entropy Density Estimation: Complete Data

Let X ∈ X be a random variable. Given a set of feature functions F(x) = {f1(x), ..., fN(x)}
specifying properties one would like to match in the data, the maximum entropy principle states that we
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should select a probability model, p(x), from the space of all probability distributions, P(x), over X , to
maximize entropy subject to the constraint that the feature expectations are preserved:

max
p(x)∈P(x)

[
−
∫
x∈X

p(x) log p(x) µ(dx)

]
(1)

s.t.

∫
x∈X

fi(x) p(x)µ(dx) =

∫
x∈X

fi(x) p0(x)µ(dx); i = 1...N , (2)

where p0(x) denotes the unknown underlying true density and µ denotes a given σ-finite measure on X .
If X is finite or countably infinite, then µ is the counting measure, and integrals reduce to sums. If X is
a subset of a finite dimensional space, µ is the Lebesgue measure. If X is a combination of both cases,
µ will be a combination of both measures. The dual problem is:

min
λ∈Ω

[
−
∫
x∈X

p0(x) log pλ(x) µ(dx)

]
(3)

where pλ(x) = Φ−1
λ exp

(∑N
i=1 λifi(x)

)
and Φλ =

∫
x∈X exp

(∑N
i=1 λifi(x)

)
µ(dx) is a normalizing

constant that ensures
∫
x∈X pλ(x)µ(dx) = 1.

We will use the following notation and terminology throughout the analysis below. Define:

Ω =

{
λ ∈ <N :

∫
x∈X

exp

(
N∑
i=1

λifi(x)

)
µ(dx) < ∞

}
and let:

E(x) =

{
pλ(x) ∈ P(x) : pλ(x) =

1

Φλ

exp

(
N∑
i=1

λifi(x)

)
, λ ∈ Ω

}
denote the exponential family induced by the set of feature functions. The restriction, λ ∈ Ω, will
guarantee that the maximum likelihood estimate is an interior point of the set of λ’s for which pλ(x)

is defined. The optimal solution, pλ̂(x), of Equation (1) or Equation (3) is called the information
projection [10,17] of p0(x) to the exponential family, E(x).

In practice, the true distribution, p0(x), is not known, but instead, a collection of data X̃ =

(x1, · · · , xM) sampled from p0(x) is given. Therefore, instead of using the true distribution, p0(x),
we use the empirical distribution, p̃(x), to calculate the feature expectations. The ME principle
then becomes:

max
p(x)∈P

[
−
∫
x∈X

p(x) log p(x) µ(dx)

]
(4)

s.t.

∫
x∈X

fi(x) p(x)µ(dx) =
∑
x∈X̃

p̃(x)fi(x); i = 1...N , (5)

and the dual problem using these constraints becomes:

min
λ∈Ω

[
− 1

M

M∑
j=1

log pλ(xj)

]
(6)
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The optimal solution, pλ∗(x), of Equation (4) or Equation (6) is the information projection of p̃(x) to the
exponential family, E(x); see Figure 1.

Figure 1. In the space of all probability distributions, P(x) over X , pλ̂(x) is the information
projection of the true (but unknown) distribution, p0(x), to the exponential family, E , and
pλ∗(x) is the information projection of the empirical distribution, p̃(x), to E .

ξ

p(x)

p(x)
~

(x)

P(x)

0
Λ
λ

p (x)

λ∗
p (x)

2.1. Consistency and Generalization Bounds of Estimation Error

There are two standard ways to measure the quality of the estimate, pλ∗(x).
One approach, based on the Kullback–Leibler divergence, was first considered by Barron and

Sheu [10]. Basically, it uses the following well-known Pythagorean property (see Lemma 3 in [10]):

D (p0(x)‖pλ(x)) = D (p0(x)‖pλ̂(x)) +D (pλ̂(x)‖pλ(x)) ∀pλ(x) ∈ E (7)

and, in particular, the decomposition:

D (p0(x)‖pλ∗(x)) = D (p0(x)‖pλ̂(x)) +D (pλ̂(x)‖pλ∗(x)) (8)

Here, the first term, D(p0(x)‖pλ̂(x)), is the approximation error introduced by the bias of the set of
feature functions, F , which measures how closely the feature functions are able to approximate the true
probability distribution. The second term, D(pλ̂(x)‖pλ∗(x)), is the estimation error for densities in the
exponential family, introduced by the variance of using a finite sample size. These two terms resemble
the bias-variance tradeoff in least squares cost estimation [18]. The approximation error always exists
unless the set of feature functions, F , is rich enough [19]. In this paper, we assume that the set of feature
functions is given and study how close pλ̂(x) is to pλ∗(x).

Another way to evaluate the quality of pλ∗(x) is to measure the difference between the best expected
likelihood and the empirical likelihood of the estimate, which is a more desirable approach, because we
can directly calculate the empirical likelihood of the estimate from the training data.

Both approaches, in fact, fall under the umbrella of Vapnik’s empirical risk minimization principle [8]
for density estimation. Here, we use the first approach to show that the maximum entropy solution
converges to the best possible solution, pλ̂(x), and the second approach to show that the value of
empirical likelihood converges to the maximum expected likelihood.
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2.1.1. Maximum Entropy Principle

Exploiting tools from empirical process theory, including symmetrization, concentration and
contraction inequalities, Koltchinskii and Panchenko [15] were able to give bounds on the generalization
error of boosting, support vector machines (SVMs) and neural networks. We show through the following
theorem that we can use similar tools to establish generalization bounds for the estimation error of
maximum entropy density estimation. All proofs can be found in the Appendix.

Theorem 1. Assuming supλ∈Ω ‖λ‖1 <∞ and supf∈F ,x∈X ‖f(x)‖∞ <∞, then there exist 0 < ζ < α <

∞, such that, for any η ∈ (0, 1), with a probability of at least 1− η,

D(pλ̂(x)‖pλ∗(x)) = D(p0(x)‖pλ∗(x))−D(p0(x)‖pλ̂(x)) (9)

≤ 4C1√
M
EX̃

[ ∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ C2

√
2 log( 1

η
)

M

where M is the number of instances, N (F(x), ε, dx) is the random covering number [20,21] for linear
combinations of functions in F(x) at scale ε with empirical Euclidean distance dx on sample X̃ , and C1

and C2 are positive constants that do not depend on the instance.

If the linear combination of feature functions belongs to a VC-subgraph with Vapnik-Chervonenkis
(VC) dimension V , it is well known that the Dudley integral is bounded by

√
V [12,20,22].

Rakhlin et al. [16] first applied a similar technique to derive generalization bounds for the density
estimation of mixture models. Here, we apply the technique to derive bounds for maximum entropy
density estimation in general Markov random fields. Even though the analysis we use is standard,
our results show that the generalization bound is not related to the log partition function, but instead
is upper bounded by the covering number of linear combinations of feature functions. This is an
important observation, because the log partition function—a fundamental quantity associated with any
graph-structured distribution—is NP-hard to compute in general [23].

Although the assumption that supf∈F ,x∈X ‖f(x)‖∞ < ∞ seems rather restrictive, most of the
graphical models studied in machine learning [23] are, in fact, discrete Markov random fields, which
always satisfy this condition.

To eliminate the assumption of boundedness on the parameters and feature functions, we use a result
adapted from [24].

Theorem 2. Assume that there exists a positive number, K(F), such that for all τ > 0,

logEp0(x)

(
pλ•(x)2τ − 1

pλ•(x)2τ

)
≤
(
τK(F)

)2

(10)

where λ• are parameters, such that Epλ• (x)

(
f(x)

)
= f(x). Then, for all λ ∈ Ω, we have, with a

probability of at least 1− η,

Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj) (11)

≤ EX̃ sup
λ∈Ω, f(x)∈F(x)

(
Ep0(x)〈λ, f(x)〉 − Ep̃(x)〈λ, f(x)〉

)
+K(F)

√
2 log( 1

η
)

M
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By the above result, Theorem 1 can be proven by replacing C2 with K(F). Since the value, K(F),
is hard to determine in practice, we state our results in terms of the bound on feature functions instead.
Nevertheless, the reader should keep in mind that this bound can be replaced by K(F) in all our results.

Using the result of [21], the following theorem gives a useful bound on the covering number.

Theorem 3. Assume supλ∈Ω ‖λ‖2 < a and supf∈F , x∈X ‖f(x)‖2 < b, then:

log2N (F(x), ε, dx) ≤
⌈a2b2

ε2

⌉(
min (log2(2M + 1), log2(2N + 1))

)
(12)

We then have the following corollaries. The first is a direct consequence of Theorem 1. The second
provides a generalization bound on the expected value of the estimation error, which can be shown using
the proof in [16,20].

Corollary 1. Universal consistency: If
∫ α
ζ

√
logN (F(x), ε, dx)dε is bounded, then as M →∞, pλ∗(x)

will converge to pλ̂(x) in terms of the Kullback–Leibler divergence with rateO( 1√
M

), independent of the
form of the true distribution, p0.

Corollary 2. Under the conditions of Theorem 1, the generalization bound of the expected estimation
error is:

EX̃D(pλ̂(x)‖pλ∗(x)) = EX̃D(p0(x)‖pλ∗(x))−D(p0(x)‖pλ̂(x)) (13)

≤ 4C1√
M
EX̃

[ ∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+
C2

2

M

Next, we turn to the second approach to evaluating the quality of pλ∗(x); namely, by measuring the
difference between the expected log-likelihood and the empirical log-likelihood. This is the approach
used by Dudik et al. [11].

Define L0(λ) = −
∫
x∈X p0(x) log pλ(x) µ(dx) and L̃(λ) = − 1

M

∑M
j=1 log pλ(xj). Then, from

Theorem 1 and the McDiarmid concentration inequality, we obtain the following result for the sample
log-likelihood, which is similar to Dudik et al. [11].

Theorem 4. There are 0 < ζ < α <∞, such that, with a probability of at least 1− η:

∣∣∣L0(λ̂)− L̃(λ∗)
∣∣∣ =

∣∣∣Ep0(x) log pλ̂(x)− 1

M

M∑
j=1

log pλ∗(xj)
∣∣∣ (14)

≤ 6C1√
M
EX̃

[ ∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ 3C2

√
log( 1

η
)

2M

By the Glivenko–Cantelli theorem [9], we know that the empirical distribution converges to the true
distribution. Therefore, under certain conditions, the entropy of empirical distribution will also converge
to the entropy of the true distribution. Whenever such convergence holds, we can combine this with
Theorem 3 to show that D(p0(x)‖pλ̂(x)) − D(p̃(x)‖pλ∗(x)) → 0 as M → ∞, establishing a stronger
form of consistency than Corollary 1.
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2.1.2. Regularized Maximum Entropy Principle

In many statistical modeling settings, the constraints used in the ME principle are subject to errors
from the empirical nature of the data. This is particularly true in domains with sparse, high dimensional
data. One way to gain robustness, though, is to relax the constraints and add a penalty to the entropy,
leading to the regularized ME (RME) principle [25]:

max
p(x),a

[
−
∫
x∈X

p(x) log p(x)µ(dx)− U(a)

]
(15)

s.t.

∫
x∈X

p(x)fi(x)µ(dx) =
∑
x

p̃(x)fi(x) + ai; i = 1, ..., N (16)

Here, a = (a1, ..., aN)T , ai is the error for each constraint, and U : <N → < is a cost function that has
a value of zero at zero. The function penalizes any constraint violations, and can be used to penalize
deviations in the more reliably observed constraints to a greater degree than deviations in less reliably
observed constraints.

The dual problem of RME becomes:

min
λ∈Ω

[
− 1

M

M∑
j=1

log pλ(xj) + U∗(λ)

]
(17)

which is equivalent to maximum a posteriori (MAP) estimation with prior U∗(λ). Note that the prior,
U∗(λ), is derived from the penalty function, U , over errors a, by setting U∗ to the convex (Fenchel)
conjugate [26,27] of U , i.e., U∗(λ) = supa〈λ, a〉 − U(a). This function is always convex, regardless of
the convexity of U . Conversely, given the convex conjugate cost function, U∗, the corresponding penalty
function, U , can be derived by using the property of Fenchel biconjugation [26]; that is, the conjugate of
the conjugate of a convex function is the original convex function, U = U∗∗.

Conventionally, U(a) is chosen to be nonnegative and have a minimum of zero at zero. To illustrate,
consider a quadratic penalty U(a) =

∑N
i=1

1
2
σ2
i a

2
i . Here, the convex conjugate U∗(λ) =

∑N
i=1

λ2i
2σ2
i

can

be determined by setting ai = λi
σ2
i
, which specifies a Gaussian prior on λ. A different example can

be obtained by considering the Laplacian prior on λ, U∗(λ) = ‖λ‖1 =
∑N

i=1 |λi|, which leads to the
penalty function:

U(a) =

{
0 ‖a‖∞ = maxNi=1 |ai| ≤ 1

∞ otherwise

that forces hard inequality constraints.
However, there is an important aspect of the validity of choosing a legal (log) prior, U∗, which has

been ignored in previous studies on the RME principle [11,25,28,29]. To see this, consider the following.
By plugging the true distribution, p0(x), instead of the empirical distribution into Equation (16),
one obtains:

max
p(x),a

[
−
∫
x∈X

p(x) log p(x)µ(dx)− U(a)

]
(18)
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s.t.

∫
x∈X

p(x)fi(x)µ(dx) =

∫
x∈X

p0(x)fi(x) + ai; i = 1, ..., N (19)

The dual problem is:

min
λ∈Ω

[
−
∫
x∈X

p0(x) log pλ(x) + U∗(λ)

]
(20)

Since pλ̂(x) is the information projection of p0(x) to the exponential family, E(x), we must have U(â) =

U∗(λ̂) = 0 and â = 0, where â denotes the a corresponding to λ̂. Moreover, as a penalty term, the prior,
U∗(λ), should be nonnegative with a minimum of zero. We call the prior satisfying these conditions a
legal prior. Both the standard Gaussian prior U∗(λ) =

∑N
i=1

λ2i
2σ2
i

and standard Laplacian prior U∗(λ) =

‖λ‖1 do not satisfy U∗(λ̂) = 0. The correct choices for these priors should be U∗(λ−λ̂) =
∑N

i=1
(λi−λ̂i)2

2σ2
i

for a Gaussian prior and U∗(λ− λ̂) = ‖λ− λ̂‖1 for a Laplacian prior, respectively. Consequently, U(a)

should be chosen as U(a) + 〈a, λ̂〉. Note that U(a) + 〈a, λ̂〉 does have a value of zero at zero, but it is
no longer nonnegative.

If we let pλ4 denote the solution to Equation (17), we then obtain the following generalization bound
on estimation error without any restrictions on U(a) or U∗(λ).

Theorem 5. Assume supλ∈Ω ‖λ‖1 < ∞ and supf∈F , x∈X ‖f(x)‖∞ < ∞. Then, there exist
0 < ζ < α <∞, such that with a probability of at least 1− η,

D(pλ̂(x)‖pλ4(x)) = D(p0(x)‖pλ4(x))−D(p0(x)‖pλ̂(x)) (21)

≤ 4C1√
M
EX̃

[ ∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ C2

√
2 log( 1

η
)

M

+U∗(λ̂)− U∗(λ4)

We then have the following result that guarantees the universal consistency of RME.

Corollary 3. Universal consistency: If
∫ α
ζ

√
logN (F(x), ε, dx)dε is bounded and U∗(λ̂) ≤ U∗(λ4),

then as M →∞, pλ4(x) will converge to pλ̂(x) in terms of their Kullback–Leibler divergence with rate
O( 1√

M
), for any true distribution, p0(x), and prior distribution.

If we choose U∗(λ) to be a legal prior, then we also have a further result.

Corollary 4. Assume supλ∈Ω ‖λ‖1 < ∞, supf∈F , x∈X ‖f(x)‖∞ < ∞ and that U∗(λ) is a legal prior.
Then, there exist 0 < ζ < α <∞, such that, with a probability of at least 1− η,

D(pλ̂(x)‖pλ4(x)) = D(p0(x)‖pλ4(x))−D(p0(x)‖pλ̂(x)) (22)

≤ 4C1√
M
EX̃

[ ∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ C2

√
2 log( 1

η
)

M
− U∗(λ4)

Moreover, as M → ∞, both U∗(λ4) → 0 and pλ4(x) will converge to pλ̂(x) in terms of their
Kullback–Leibler divergence with rate O( 1√

M
), for any true distribution, p0(x), and prior distribution.
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The legal prior guarantees RME’s consistency without introducing any regularization parameter, as
commonly done in machine learning [9,19]. Since U∗(λ4) ≥ 0 for any legal prior, this result shows that
RME always obtains a lower generalization bound than ME, even without assuming the truth of the prior.

Using the result of Theorem 5 and the McDiarmid concentration inequality, we are able to derive
a generalization bound on the difference between the best expected log-likelihood and the log of the
MAP probability. This holds for any regularization cost function, as long as U∗(λ̂) ≤ U∗(λ4), without
requiring that U∗(λ) be convex. We note that Dudik et al. [11] gave a similar result, but only for the
special case of using the l1 norm as a penalty in the dual formulation; see Equation (17).

For a broad family of regularization functions, i.e., log priors in Equation (17), such that the Hessian
matrices of λ (the prior information matrices) are positive definite, we can improve the convergence rate
from O( 1√

M
) to O( 1

M
). The techniques needed to prove the O( 1

M
) convergence rate were first proposed

by Zhang [19,30,31] to show the consistency and generalization bounds of various classification methods
based on convex risk optimization with the l2-penalty.

Define the convex function:

Lλ(x) = − log pλ(x) = − log
exp(〈λ, f(x)〉)∫

x′
exp(〈λ, f(x′)〉)µ(dx′)

= log

∫
x′

exp(〈λ, f(x′)− f(x)〉)µ(dx′) (23)

Consider training samples X̃M+1 = (x1, · · · , xM+1). Let λ̃ be the solution of Equation (24) with training
data X̃M+1.

min
λ∈Ω

[
1

M

M+1∑
j=1

Lλ(xj) + U∗(λ)

]
(24)

Let λ̃k be the solution of Equation (24) with training sample xk removed from the set, X̃M+1. We have
the following lemma that extends the quadratic case considered in [19,31]. We prove the result in its full
generality, though our proof is essentially a variant of the stability results by Zhang [19,30,31].

Lemma 1. Assume the Hessian matrix of U∗(λ) is positive definite with smallest eigenvalue κ. Then,
‖λ̃− λ̃k‖2 ≤ 2

κM
|∇Lλ̃(xk)|.

Finally, we can obtain the following leave-one-out error bound, which has a convergence rate
of O( 1

M
).

Theorem 6. LetC = supx,x′ ‖f(x)−f(x′)‖. When the legal prior, U(λ), is chosen, such that its Hessian
matrix of λ is positive definite with smallest eigenvalue κ, the expected generalization error can then be
bounded as:

EX̃D(pλ̂(x)‖pλ4(x)) = EX̃D(p0(x)‖pλ4(x))−D(p0(x)‖pλ̂(x)) (25)

≤ C2

κM

(
1− exp(−EXLλ̂(X)

)
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3. Maximum Entropy Density Estimation: Incomplete Data

Here, we consider a variable to be “latent” or “hidden” if it is never observed, but causally effects
the observations [6]. In practice, many of the natural patterns we wish to classify are the result of
causal processes that have a hidden hierarchical structure, yielding data that does not report the value
of latent variables [6]. Obtaining fully labeled data is tedious or impossible in many realistic cases.
This motivates us to propose an unsupervised statistical learning technique, the latent maximum entropy
(LME) principle, which is still formulated in terms of maximizing entropy, except that we must now
change the problem formulation to respect hidden variables.

Following the terminology of the expectation-maximization (EM) algorithm [6], let Y ∈ Y be the
observed incomplete data, Z ∈ Z be the missing data and then X = (Y, Z) ∈ X be the random variable
denoting the complete data That is, X = (Y, Z). For example, Y might be observed natural language in
the form of text and Z might be its missing syntactic and semantic information. If we let p(x) and p(y)

denote the densities of X and Y , respectively, and let p(z|y) denote the conditional density of Z given
Y , then p(y) =

∫
z∈Z p(x) µ(dz), and p(x) = p(y)p(z|y). The LME principle can be stated as follows.

Given features f1(x), ..., fN(x), specifying the properties that we would like to match in the data,
select a joint probability model, p(x), from the space of all probability distributions, P(x), over X , to
maximize the entropy:

max
p(x)∈P

[
−
∫
x∈X

p(x) log p(x) µ(dx)

]
(26)

s.t.

∫
x∈X

fi(x) p(x)µ(dx) =
∑
y∈Ỹ

p̃(y)

∫
z∈Z

fi(x) p(z|y)µ(dz), i = 1, ..., N (27)

where x = (y, z) and p̃(y) is the empirical distribution of the observed data, Ỹ = (y1, · · · , yM) denotes
the set of observed Y values and p(z|y) is the conditional distribution of latent variables given the
observed data. Intuitively, the constraints specify that we require the expectations of fi(X) in the joint
model to match their empirical expectations on the incomplete data, Y , taking into account the structure
of the implied dependence of the unobserved component, Z, on Y .

Note that the conditional distribution, p(z|y), implicitly encodes the latent structure and is a nonlinear
mapping of p(x). That is, p(z|y) = p(y,z)∫

z′∈Z p(y,z
′)µ(dz)

= p(x)∫
z′∈Z p(x

′)µ(dz′)
, where x = (y, z) and x′ = (y, z′)

by definition. Clearly, p(z|y) is a nonlinear function of p(x) because of the division.
Unfortunately, there is no simple optimal solution for p(x) in Equations (26) and (27). However,

a good approximation can be obtained by restricting the model to pλ(x) = Φ−1
λ exp

(∑N
i=1 λifi(x)

)
where Φλ =

∫
x∈X exp

(∑N
i=1 λifi(x)

)
µ(dx) is the normalization constant. This restriction provides a

free parameter, λi, for each feature function, fi(x). By adopting such a “log-linear” restriction, it turns
out that we can formulate a practical algorithm for approximately satisfying the LME principle.

In [5], we exploited the following connection between LME and maximum likelihood estimation
(MLE) to derive a practical training algorithm.

Theorem 7. [5] Under the log-linear assumption, maximizing the likelihood of log-linear models on
incomplete data is equivalent to satisfying the feasibility constraints of the LME principle. That is, the
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only distinction between MLE and LME in log-linear models is that, among local maxima (feasible
solutions), LME selects the model with the maximum entropy, whereas MLE selects the model with the
maximum likelihood.

Define Lλ(y)) = −
∑

y∈Ỹ p̃(y) log pλ(y) andH(λ, λ) = −
∑

y∈Ỹ p̃(y)
∫
z∈Z pλ(z|y) log pλ(z|y)µ(dz).

The latter is the conditional entropy of a hidden variable over observed sample data Ỹ that measures the
uncertainty of the hidden variables. Then, in the case where λ is a feasible log-linear solution according
to Equation (27), we have the following relationship between likelihood over observed data and the
entropy of the joint model.

Corollary 5. [5] If λ is in the set of feasible solutions, then:

Lλ(y) = H(pλ(x))−H(λ, λ) (28)

We will use the following notation and terminology throughout the analysis below. Denote
the manifold of the nonlinear constraint set in Equation (27) as C. We then define pλ̂(y) =

arg maxpλ(x)∈E
∫
y∈Y p0(y) log pλ(y) as the nearest point in terms of D

(
p0(y)‖pλ(y)

)
from p0(y) to the

marginalized exponential family over z, using pλ(y) =
∫
z∈Z pλ(y, z)µ(dz), where pλ(x) ∈ E(x); see

Figure 2.

Figure 2. The operator, T , denotes the marginalization of p(x) over z and maps the
entire space of all probability distributions, P(x) over X , into the space of all probability
distributions, P(y) over Y . Here, pλ̂(y) is the information projection of p0(y) to the
marginalized exponential family, E ; pλ∗(y) is the information projection of p̃(y) to the
marginalized exponential family, E ; and pλ�(y) is the distribution that in joint model space
has the highest entropy among the intersection points of the exponential family, E , and the
nonlinear constraint set, C.

T

P(x)

p(y)~

P(y)

λ

(x)ξT(       )

ξ

C(x)

(x)

p (y)
*

p (y)
λ
Λ

p (y)
λp (y)

0

In [29,32], we formulate the regularized latent maximum entropy principle (RLME) as the following:

max
p(x),a

[
−
∫
x∈X

p(x) log p(x)µ(dx)− U(a)

]
(29)

subject to: ∫
x∈X

p(x)fi(x)µ(dx) =
∑
y

p̃(y)

∫
z

p(z|y) fi(y, z)µ(dz) + ai; i = 1, ..., N (30)
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Again a = (a1, ..., aN), where ai is the error for each constraint, and U : <N → < is a convex function
with its minimum at zero.

The standard maximum a posteriori (MAP) estimate minimizes the negative penalized log-likelihood
R(λ) = −

∑
y p̃(y) log pλ(y) + U∗(λ).

Our key result in [29,32] is that locally minimizing R(λ) is equivalent to satisfying the feasibility
constraints in Equation (30) of the RLME principle.

Theorem 8. [29,32] Under the log-linear assumption, locally maximizing the posterior probability of
log-linear models on incomplete data is equivalent to satisfying the feasibility constraints of the RLME
principle. That is, the only distinction between MAP and RLME in log-linear models is that, among local
maxima (feasible solutions), RLME selects the model with the maximum regularized entropy, whereas
MAP selects the model with the maximum posterior probability

Corollary 6. [29,32] If λ∗ is in the set of feasible solutions of Equation (30), then R(λ) = H(pλ) −
U(a)−H(λ, λ).

3.1. Consistency and Generalization Bounds for Estimation Error

To measure the quality of the maximum likelihood and maximum entropy estimates, we do not
consider the divergence of the models in the original joint space, P(x). Instead, we consider
the marginalized models in the observed data space, P(y). However, to measure the divergence
between models in the observed data space, we have to take the difference of D(p0(y)‖pλ∗(y)) and
D(p0(y)‖pλ̂(y)), even though, technically, the Pythagorean property no longer holds in this case.
Nevertheless, this still gives a useful measure of the approximation quality.

3.1.1. Maximum Likelihood Estimate

We first establish consistency and provide generalization bounds for the maximum likelihood density
estimate, pλ∗(y). Note that if we attempt to use a technique similar to the complete data case here,
we will obtain a bound that is governed by the covering number of the log of the marginal feature
functions F(y) =

∫
z∈Z exp

(
〈λ, f(y, z)〉

)
µ(dz). Bounding the covering number of log-int-expF(x) is

more difficult than bounding it for F(y) directly. To cope with this issue, we use the refined version
of the Rademacher comparison inequality proposed in [24] to eliminate the log function. This is a
slightly different approach than that taken by Rakhlin et al. [16], who, instead, use the contraction
technique of [15,20,33] to derive bounds for mixture model density estimation. Here, we pursue a
streamlined analysis that avoids working with the likelihood ratio (also, see [34]),hence avoiding the
second application of contraction,which results in tighter constants.

Theorem 9. Assume for all λ ∈ Ω and for all y ∈ Y , we have 0 < a ≤ F(y) ≤ b. Then, there exist
0 < ζ < α <∞ and positive constants, C3, C4 ∈ <+, such that, with a probability of at least 1− η, for
any dataset of size M drawn from p0(y),

D(p0(y)‖pλ∗(y))−D(p0(y)‖pλ̂(y)) (31)

≤ 4C3√
M
EỸ

[ ∫ α

ζ

√
logN (F(y), ε, dy)dε

]
+ C4

√
2 log( 1

η
)

M
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where N (F(y), ε, dy) is the random covering number of the marginal feature functions, F(y) =∫
z∈Z exp

(
〈λ, f(y, z)〉

)
µ(dz), at scale ε with empirical Euclidean distance dy on sample data Ỹ .

Similarly, we can eliminate the assumption of boundedness on the parameters and feature functions,
F(y), by using a result adapted from [24].

Theorem 10. Assume that there exists a positive number, K(F), such that for all τ > 0:

logEp0(y)

(
pλ•(y)2τ − 1

pλ•(y)2τ

)
≤
(
τK(F)

)2

(32)

where λ• are the parameters
(
pλ•(y)2τ − 1

pλ• (y)2τ

)
achieving the maximum subject to Epλ• (x)

(
f(x)

)
=

Epλ• (z|y)

(
f(y, z)

)
. Then, for all λ ∈ Ω, we have with a probability of at least 1− η,

Ep0(x) log pλ(y)− 1

M

M∑
j=1

log pλ(yj) (33)

≤ EỸ sup
λ∈Ω, f(x)∈F(x)

(
Ep0(x) logF(y)− Ep̃(x) logF(y)

)
+K(F)

√
2 log( 1

η
)

M

Using the above result, Theorem 9 can be proven by replacing C4 with K(F). Again, since the
value, K(F), is hard to determine in practice, we will state our results below in terms of a bound on
feature functions, but as before, the reader should bear in mind that the bound on feature functions can
be replaced by K(F).

From the results above, we can establish the following consistency property.

Corollary 7. Universal consistency: If
∫ α
ζ

√
logN (F(y), ε, dy)dε is bounded, then pλ∗(y) will converge

to pλ̂(y) (in terms of the difference of the Kullback–Leibler divergence to the true distribution, p0(y))
with rate O( 1√

M
), regardless of the form of true distribution p0(y).

Similar to the complete data case, using the result of Theorem 9 and the McDiarmid concentration
inequality, we are also able to derive the generalization bound for the difference of the best expected
log-likelihood and the maximum empirical log-likelihood.

3.1.2. Latent Maximum Entropy Estimate

Let pλ�(y) denote the maximum entropy estimate of Equation (26) over the exponential family, E .
We use similar techniques to the case of complete data regularized maximum entropy (Section 2.1.2)
to prove consistency and generalization bounds for using the latent maximum entropy density estimate,
pλ�(y).

Theorem 11. (LME principle) Assume for all λ ∈ Ω and for all y ∈ Y , we have 0 < a ≤ F(y) ≤ b.
Then, there exist 0 < ζ < α <∞, such that with a probability of at least 1− η,

D(p0(y)‖pλ�(y))−D(p0(y)‖pλ̂(y)) ≤ 4C3√
M
EỸ

[ ∫ α

ζ

√
logN (F(y), ε, dy)dε

]
(34)

+C4

√
2 log( 1

η
)

M
+ Ep̃(y) log

pλ̂(y)

pλ�(y)
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Using this result, we can then easily establish the following consistency property.

Corollary 8. Universal consistency: If
∫ α
ζ

√
logN (F(y), ε, dy)dε is bounded and alsoEp̃(y) log pλ̂(y) ≤

Ep̃(y) log pλ�(y), then pλ�(y) will converge to pλ̂(y) (in terms of the difference of the Kullback–Leibler
divergence to the true distribution, p0(y)) with rate O( 1√

M
), for any true distribution, p0(y).

Corollary 8 gives a sufficient condition, i.e., Ep̃(y) log pλ̂(y) ≤ Ep̃(y) log pλ�(y), that leads to the
universal consistency of latent maximum entropy estimation. This perhaps partially explains our
observations of experimental results on synthetic data conducted in [5].

Note that in the proof of Theorem 11 and Corollary 8, it is not necessary to restrict pλ� to be the
model that has global maximum joint entropy over all feasible log-linear solutions. It turns out that the
conclusion still holds for all feasible log-linear models, pλ(y), that have greater empirical log-likelihood,
Ep̃(y) log pλ(y), than the empirical log-likelihood, Ep̃(y) log pλ̂(y), of the optimal expected log-likelihood
estimate, pλ̂(y). That is, as the sample size grows, any of these feasible log-linear models will converge
to pλ̂(y) (in terms of the difference of the Kullback–Leibler divergence to the true distribution, p0(y))
with rate O( 1√

M
).

3.1.3. Maximum a Posteriori Estimate

In a similar manner, it is straightforward to have the following generalization bound for the MAP
estimate, pλ4(y).

Theorem 12. (MAP principle) Assume for all λ ∈ Ω and for all y ∈ Y , 0 < a ≤ F(y) ≤ b. Then, with
a probability of at least 1− η,

D(p0(y)‖pλ4(y))−D(p0(y)‖pλ4(y)) (35)

≤ 4C3√
M
EX̃

[ ∫ α

ζ

√
logN (F(y), ε, dx)dε

]
+ C4

√
2 log( 1

η
)

M
+ U∗(λ̂)− U∗(λ4)

By the above theorem, one can easily obtain the following consistency result.

Corollary 9. Universal consistency: If
∫ α
ζ

√
logN (F(y), ε, dy)dε is bounded and U∗(λ̂) ≤ U∗(λ4),

then pλ4(y) will converge to pλ̂(y) in terms of the difference of the Kullback–Leibler divergence to the
true distribution, p0(y), with rate O( 1√

M
) without assuming the form of the true distribution, p0(y), nor

the true prior distribution.

3.1.4. Regularized Latent Maximum Entropy Estimate

We can also, in a similar manner, establish the following generalization bound for the RLME estimate,
pλ�(y).

Theorem 13. (RLME principle) Assume for all λ ∈ Ω and for all y ∈ Y , 0 < a ≤ F(y) ≤ b. Then, with
a probability of at least 1− η,

D(p0(y)‖pλ�(y))−D(p0(y)‖pλ̂(y)) ≤ 4C3√
M
EX̃

[ ∫ α

ζ

√
N (F(y), ε, dx)dε

]
+ C4

√
2 log( 1

η
)

M
(36)

+Ep̃(y) log pλ̂(y)− Ep̃(y) log pλ�(y) + U∗(λ̂)− U∗(λ�)
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By the above theorem, we can easily obtain the following consistency result.

Corollary 10. Universal consistency: If
∫ α
ζ

√
logN (F(y), ε, dy)dε is bounded and Ep̃(y) log pλ̂(y) +

U∗(λ̂) ≤ Ep̃(y) log pλ�(y) + U∗(λ�), then pλ�(y) will converge to pλ̂(y) in terms of the difference of the
Kullback–Leibler divergence to the true distribution, p0(y), with rateO( 1√

M
) without assuming the form

of true distribution p0(y) and true prior distribution.

4. Conclusions

We have investigated the statistical properties of using the maximum entropy principle for density
estimation, in both the complete and incomplete data cases. For complete data, maximum entropy is
equivalent to maximum likelihood estimation in a Markov random field. Here, we derived bounds on the
generalization error based on the complexity of linear combinations of feature functions, and used this to
establish a form of universal consistency. We then provided a similar analysis for regularized maximum
entropy estimation, which, interestingly, yields a better generalization bound (and maintains consistency)
for any legal prior. Moreover, if the information matrix of the prior is positive definite, we can further
show that the convergence rate can be improved to O( 1

M
) instead of O( 1√

M
). For incomplete data,

maximum entropy is no longer equivalent to maximum likelihood estimation, and the analysis becomes
more difficult. Nevertheless, we established bounds on the generalization error of maximum likelihood
in terms of the complexity of the marginalizedfeature functions, again achieving a form of universal
consistency. With additional assumptions, we were able to extend this analysis to apply it to latent
maximum entropy estimation and to prove its universal consistency, as well. Analogous conclusions can
be drawn for regularized situations. Finally, we note that an alternative analysis can be based on replacing
the Kullback–Leibler divergence with the more general Bregman distance [35,36]. The analysis here can
be easily extended to this more general setting.

In our future work, we are planning to study the trade-off between approximation error and estimation
error to select the best set of feature functions.
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In the appendix, we give proofs of the theorems, lemmas and corollaries.
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Proof of Theorem 1.

Proof. The techniques we use are quite standard [15,16,20,37] and have appeared in many papers. To
be concise, following lecture notes 14–15 in [37], the first key technique we are using is the method of
bounded differences [38]. Define:

h(x1, · · · , xM) = sup
pλ(x)∈E

∣∣∣Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj)
∣∣∣

= sup
λ∈Ω,f∈F

∣∣∣Ep0(x)〈λ, f(x)〉 − Ep̃(x)〈λ, f(x)〉
∣∣∣

Then: ∣∣∣h(x1, · · · , xM)− h(x1, · · · , xk−1, x
′
k, xk+1, · · · , xM)

∣∣∣ (37)

=

∣∣∣∣∣ sup
λ∈Ω,f∈F

∣∣∣Ep0(x)〈λ, f(x)〉 − 1

M

M∑
j=1

〈λ, f(xj)〉
∣∣∣

− sup
λ∈Ω,f∈F

∣∣∣Ep0(x)〈λ, f(x)〉 − 1

M

( M∑
j=1,j 6=k

〈λ,f(xj)〉+ 〈λ, f(x′k)〉
)∣∣∣∣∣∣∣∣

≤ sup
λ∈Ω,f∈F

1

M

∣∣∣ 〈λ, (f(xk)− f(x′k))〉
∣∣∣

≤ 2

M
sup

λ∈Ω,f∈F
‖λ‖1 sup

x∈X
‖f(x)‖∞ =

C2

M

By the McDiarmid concentration inequality in Equation [38], we have:

P
(
h(x1, · · · , xM)− EX̃h(x1, · · · , xM) ≥ δ

)
≤ exp

(
−2δ2∑M
j=1(C2

M
)2

)
= exp

(
−2Mδ2

C2
2

)

Let η = exp
(
−2Mδ2

C2
2

)
, i.e., δ = C2

√
log( 1

η
)

2M
. Then:

P

h(x1, · · · , xM)− EX̃h(x1, · · · , xM) ≥ C2

√
log( 1

η
)

2M

 ≤ η (38)

Therefore, with a probability of at least 1− η,

sup
pλ(x)∈E(x)

∣∣∣Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj)
∣∣∣

≤ EX̃ sup
λ∈Ω,f(x)∈F(x)

∣∣∣Ep0(x)〈λ, f(x)〉 − Ep̃(x)〈λ, f(x)〉
∣∣∣+ C2

√
log( 1

η
)

2M

Next, we use the symmetrization technique of [33,39], which states that if:

Z(X̃ ) = sup
g∈G

∣∣∣Eg(x)− 1

M

M∑
j=1

g(xj)
∣∣∣ and R(X̃ ) = sup

g∈G

∣∣∣ 1

M

M∑
j=1

ωjg(xj)
∣∣∣
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then:

EZX̃ (X̃ ) ≤ 2ERX̃ ,ω(X̃ )

where ω = (ω1, · · · , ωM) is a Rademacher sequence. We then have with a probability of at least 1− η,

sup
pλ(x)∈E(x)

∣∣∣Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj)
∣∣∣

≤ 2EX̃ ,ω sup
λ∈Ω,f∈F

∣∣∣ 1

M

M∑
j=1

ωj〈λ, f(xj)〉
∣∣∣+ C2

√
log( 1

η
)

2M

A classical result of Dudley establishes that Rademacher averages over linear combinations in F(x)

are bounded by Dudley’s entropy integral [16,20,22,37],

Eω sup
λ∈Ω,f(x)∈F(x)

∣∣∣ 1

M

M∑
j=1

ε〈λ, f(xj)〉
∣∣∣ ≤ C1√

M

∫ α

ζ

√
logN (F(x), ε, dx)dε

where 0 < ζ < α < ∞; provided, as observed in [20,40], that supλ∈Ω ‖λ‖∞ and supf∈F ,x∈X ‖f(x)‖∞
are bounded. One can then show that with a probability of at least 1− η,

sup
pλ(x)∈E(x)

∣∣∣Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj)
∣∣∣ (39)

≤ 2
C1√
M
EX̃

[∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ C2

√
log( 1

η
)

2M

Therefore:

D(pλ̂(x)‖pλ∗(x)) = D(p0(x)‖pλ∗(x))−D(p0(x)‖pλ̂(x)) by Equation (8)

=
(
Ep0(x) log pλ̂(x)− Ep̃(x) log pλ̂(x)

)
+
(
Ep̃(x) log pλ∗(x)

−Ep0(x) log pλ∗(x)
)

+
(
Ep̃(x) log pλ̂(x)− Ep̃(x) log pλ∗(x)

)
≤ 2 sup

pλ(x)∈E(x)

∣∣∣Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj)
∣∣∣+

1

M

M∑
j=1

log
pλ̂(xj)

pλ∗(xj)

≤ 2 sup
pλ(x)∈E(x)

∣∣∣Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj)
∣∣∣

where the second inequality comes from the fact that 1
M

∑M
j=1 log

pλ̂(xj)

pλ∗ (xj)
≤ 0, since pλ∗(x) has maximum

likelihood in the exponential family, E(x).
Therefore, with a probability of at least 1− η,

D(pλ̂(x)‖pλ∗(x)) = D(p0(x)‖pλ∗(x))−D(p0(x)‖pλ̂(x))

≤ 4C1√
M
EX̃

[∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ C2

√
2 log( 1

η
)

M
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Proof of Theorem 2.

Proof. Choose the function to be log pλ(x), λ ∈ Ω, then cosh
(

2τ log pλ(x)
)

= 1
2

(
pλ(x)2τ − 1

pλ(x)2τ

)
.

By Theorem 3 in [24], we have that if there exists a positive number, K(F), such that for all τ > 0,

logEp0(x) sup
λ∈Ω

(
pλ(x)2τ − 1

pλ(x)2τ

)
≤
(
τK(F)

)2

then, for all λ ∈ Ω with a probability of at least 1− η, (14) will hold.
Next, take the derivative of

(
pλ(x)2τ − 1

pλ(x)2τ

)
with respect to λ and set this to zero. After some

routine calculation, we obtain:(
pλ(x)2τ−1 − 1

pλ(x)2τ+1

)
pλ(x)

(
Epλ(x)

(
fi(x)

)
−fi(x)

)
= 0; i = 1...N

Thus, λ• = arg supλ∈Ω

(
pλ(x)2τ − 1

pλ(x)2τ

)
are those λ•, such that Epλ• (x)

(
f(x)

)
= f(x), which can

be uniquely determined by the maximum entropy approach for each fixed x.

Proof of Theorem 3.

Proof. Define ui = fi(x), i = 1, · · · , N . We consider real valued linear function classes of the
following form:

L(λ, u) = λ · u =
N∑
i=1

λiui (40)

Zhang showed that logN2(L(λ, u), ε, du) ≤
⌈
a2b2

ε2

⌉
log(2N + 1) (Theorem 3 in [21]) and

logN2(L(λ, u), ε, du) ≤
⌈
a2b2

ε2

⌉
log(2M + 1) (Corollary 3 in [21]) Since N2(L(λ, u), ε, du) =

N2(F(x), ε, dx), we have the conclusion.

Proof of Theorem 4.

Proof.

∣∣∣L0(λ̂)− L̃(λ∗)
∣∣∣ =

∣∣∣Ep0(x) log pλ̂(x)− 1

M

M∑
j=1

log pλ∗(xj)
∣∣∣

≤
∣∣∣Ep0(x) log pλ̂(x)− Ep0(x) log pλ∗(x)

∣∣∣+
∣∣∣Ep0(x) log pλ∗(x)− 1

M

M∑
j=1

log pλ∗(xj)
∣∣∣

Thus, combining the inequalities of Equation (9) and the uniform bound Equation (12), we have with
probability 1− η,

∣∣∣L0(λ̂)− L̃(λ∗)
∣∣∣ ≤ 6C1√

M
EX̃

[ ∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ 3C2

√
log( 1

η
)

2M
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Proof of Theorem 5.

Proof. The proof is similar to the ME case. Consider the chain of inequalities:

D(pλ̂(x)‖pλ4(x)) = D(p0(x)‖pλ4(x))−D(p0(x)‖pλ̂(x) by (7)

=
(
Ep0(x) log pλ̂(x)− Ep̃(x) log pλ̂(x)

)
+
(
Ep̃(x) log pλ4(x)

−Ep0(x) log pλ4(x)
)

+
(
Ep̃(x) log pλ̂(x)− Ep̃(x) log pλ4(x)

)
≤ 2 sup

pλ(x)∈E

∣∣∣Ep0(x) log pλ(x)− 1

M

M∑
j=1

log pλ(xj)
∣∣∣

+
(

[Ep̃(x) log pλ̂(x)− U∗(λ̂)]− [Ep̃(x) log pλ4(x)− U∗(λ4)]
)

+U∗(λ̂)− U∗(λ4)

where the second inequality follows from the fact that [Ep̃ log pλ̂−U∗(λ)]− [Ep̃ log pλ4−U∗(λ4)] ≤ 0,
since pλ4 maximizes the a posteriori objective over the exponential family, E .

Therefore, with a probability of at least 1− η,

D(pλ̂(x)‖pλ4(x)) = D(p0(x)‖pλ4(x))−D(p0(x)‖pλ̂(x))

≤ 4C1√
M
EX̃

[∫ α

ζ

√
logN (F(x), ε, dx)dε

]
+ C2

√
2 log( 1

η
)

M
+ U∗(λ̂)− U∗(λ4)

Proof of Corollary 4.

Proof. Since U∗(λ) is a legal prior, U∗(λ̂) = 0. We thus have the inequality by the last theorem. As
M →∞, the right-hand side of the last inequality goes to −U∗(λ4), which is nonpositive; however, the
left-hand side is nonnegative. Therefore, we must have U∗(λ4) = 0.

Proof of Lemma 1.

Proof. By the definition of λ̃, we have:

1

M

M+1∑
i=1

∇Lλ̃(xi) +∇U∗(λ̃) = 0 (41)

The Bregman divergence of Lλ for the Markov random field model can be written as:

BL(x)

(
λ1, λ2

)
= Lλ2(x)− Lλ1(x)−∇Lλ1(x)T (λ2 − λ1)

which is always nonnegative.
Then, we have:

1

M

M+1∑
i=1,i 6=k

Lλ̃k(xi) ≥
1

M

M+1∑
i=1,i 6=k

[
Lλ̃k(xi)−BL(x)

(
λ̃(xi), λ̃k(xi)

)]
(42)

=
1

M

M+1∑
i=1,i 6=k

Lλ̃(xi) +
1

M

M∑
i=1,i 6=k

∇Lλ̃(x)T (λ̃k − λ̃)
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By Taylor’s expansion, we know there exists θ4 ∈ Ω ⊆ <L, such that:

U∗(λ̃k) = U∗(λ̃) +∇U∗(λ̃)(λ̃k − λ̃) +
1

2
(λ̃k − λ̃)T∇2U∗(θ4)(λ̃k − λ̃)

≥ U∗(λ̃) +∇U∗(λ̃)(λ̃k − λ̃) +
κ

2
‖λ̃k − λ̃‖2

2 (43)

where the last inequality is due to the assumption that the Hessian matrix of U∗(λ) is positive definite
with the smallest eigenvalue κ > 0.

Furthermore, note that by the definition of λ̃k, we have:

1

M

M+1∑
i=1,i 6=k

Lλ̃(xi) + U∗(λ̃) ≥ 1

M

M+1∑
i=1,i 6=k

Lλ̃k(xi) + U∗(λ̃k) (44)

Combining the results of three inequalities in Equations (42), (43) and (44), we then obtain:

κ

2
‖λ̃− λ̃k‖2

2 ≤
1

M

M+1∑
i=1,i 6=k

∇Lλ̃(xi)
T (λ̃− λ̃k) + U∗(λ̃)T (λ̃− λ̃k)

≤

∥∥∥∥∥ 1

M

M+1∑
i=1,i 6=k

∇Lλ̃(xi) + U∗(λ̃)

∥∥∥∥∥ ‖λ̃− λ̃k‖
=

1

M
|∇Lλ̃(xk)| ‖λ̃− λ̃k‖

The last equality follows from Equation (41). By canceling ‖λ̃ − λ̃k‖ from the above inequality, we
obtained the desired bound.

Proof of Theorem 6.

Proof. We use the same leave-one-out technique in [19,30,31]. It follows from Lemma 1 that:

‖λ̃k − λ̃‖ ≤
1

κM
‖ 5 Lλ̃(xk)‖ ≤

C

κM

(
1− exp(−Lλ̃(xk))

)
Therefore:

Lλ̃k(xk)− Lλ̃(xk) ≤
C2

κM

(
1− exp(−Lλ̃(xk))

)
After summing over k from one to M + 1, then taking the expectation with respect to the training data
and using Jensen’s inequality, we obtain:

EX̃EXLλ4(X)) = EX̃M+1
ExkLλ̃k(xk))

≤ EX̃M+1

1

M + 1

M+1∑
k=1

Lλ̃(xk) +
C2

κM

(
1− EX̃M+1

1

M + 1

M+1∑
k=1

exp(−Lλ̃(xk))
)

≤ EX̃M+1

1

M + 1

M+1∑
k=1

Lλ̃(xk) +
C2

κM

(
1− exp

(
− EX̃M+1

1

M + 1

M+1∑
k=1

Lλ̃(xk)
))

(45)



Entropy 2013, 15 5459

Since U∗(λ) is a legal prior, U∗(λ) ≥ 0 and U∗(λ̂) = 0, and since λ̃ is the optimal solution of
Equation (24), we have:

EX̃M+1

1

M + 1

M+1∑
k=1

Lλ̃(xk) ≤
M

M + 1
EX̃M+1

(
1

M

M+1∑
k=1

Lλ̃(xk) + U∗(λ̃)

)

≤ M

M + 1
EX̃M+1

(
1

M

M+1∑
k=1

Lλ̂(xk) + U∗(λ̂)

)
= EXLλ̂(X) (46)

Combining the results of inequalities in Equations (45) and (46), yields:

EX̃D(pλ̂(x)‖pλ4(x)) = EX̃D(p0(x)‖pλ4(x))−D(p0(x)‖pλ̂(x))

= EX̃EXLλ4(X))− EXLλ̂(X) ≤ C2

κM

(
1− exp(−EXLλ̂(X)

)

Proof of Theorem 9.

Proof. By working with pλ(y) and using the same techniques as before, i.e., the McDiarmid
concentration inequality [38] and symmetrization [33,39], we have with a probability of at least 1− η,

sup
λ∈Ω

∣∣∣Ep0(y) log pλ(y)− 1

M

M∑
j=1

log pλ(yj)
∣∣∣ (47)

≤ 2EỸ,ω sup
λ∈Ω,f(x)∈F(x)

∣∣∣ 1

M

M∑
j=1

ωj logF(y)
∣∣∣+ C2

√
log( 1

η
)

2M

Now, we apply the refined version of the Rademacher comparison inequality proposed in Theorem 7
of Meir and Zhang [24], which says that for l-Lipschitz functions φi : < → <, i = 1, · · · ,M , one
obtains the inequality:

Eω

(
sup
f∈F

M∑
i=1

ωiφi(fi)

)
≤ lEω

(
sup
f∈F

M∑
i=1

ωifi

)
By the arguments in [20,33], it is easy to show that the absolute value version is valid as:

Eω

(
sup
f∈F

∣∣∣ M∑
i=1

ωiφi(fi)
∣∣∣) ≤ 2lEω

(
sup
f∈F

∣∣∣ M∑
i=1

ωifi

∣∣∣)
Let φ(x) = log(x), where a ≤ x ≤ b. It is easy to verify that φ(x) is 1

a
-Lipschitz, so:

EỸ,ω sup
λ∈Ω

∣∣∣ 1

M

M∑
j=1

ωj logFλ(yj)
∣∣∣ ≤ 2

a
EỸ,ω sup

λ∈Ω

∣∣∣ 1

M

M∑
j=1

ωjFλ(yj)
∣∣∣

Combining this inequality with that of Dudley’s entropy integral, one can then establish that with a
probability of at least 1− η,

sup
λ∈Ω

∣∣∣Ep0(y) log pλ(y)− 1

M

M∑
j=1

log pλ(yj)(yj)
∣∣∣ (48)

≤ 2
C3√
M

∫ α

ζ

√
logN (F(y), ε, dy)dε+ C4

√
log( 1

η
)

2M
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where 0 < ζ < α < ∞. These two quantities depend on supλ∈Ω ‖λ‖∞, a and b. Furthermore, C3 is
the constant in the bound of Rademacher averages over linear combinations in F(y), obtained by by
Dudley’s entropy modified by a and b. Finally, the constant, C4, depends on a, b and η.

Putting the pieces together, with a probability of at least 1− η, we obtain:

D(p0(y)‖pλ∗(y))−D(p0(y)‖pλ̂(y))

=
(
Ep0(y) log pλ̂(y)− Ep̃(y) log pλ̂(y)

)
+
(
Ep̃(y) log pλ∗(y)− Ep0(y) log pλ∗(y)

)
+
(
Ep̃(y) log pλ̂(y)− Ep̃(y) log pλ∗(y)

)
≤ 2 sup

λ∈Ω

∣∣∣Ep0(y) log pλ(y)− 1

M

M∑
j=1

log pλ(yj)
∣∣∣+

1

M

M∑
j=1

log
pλ̂(yj)

pλ∗(yj)

≤ 4C3√
M
EỸ

[ ∫ α

ζ

√
logN (F(y), ε, dy)dε

]
+ C4

√
2 log( 1

η
)

M

Proof of Theorem 10.

Proof. Choose the function to be log pλ(y), λ ∈ Ω. Then, cosh
(

2τ log pλ(x)
)

= 1
2

(
pλ(y)2τ − 1

pλ(y)2τ

)
.

By Theorem 3 in [24], we have that if there exists a positive number, K(F), such that for all τ > 0,

logEp0(y) sup
λ∈Ω

(
pλ(y)2τ − 1

pλ(y)2τ

)
≤
(
τK(F)

)2

then, for all λ ∈ Ω with a probability of at least 1− η, (41) will hold.
Next, we take the derivative of

(
pλ(y)2τ − 1

pλ(y)2τ

)
with respect to λ and set this to zero. After some

routine calculation, we obtain for i = 1...N :(
pλ(x)2τ−1 − 1

pλ(y)2τ+1

)
pλ(y)

(
Epλ(x)

(
fi(x)

)
− Epλ(z|y)

(
fi(y, z)

))
= 0

Thus, λ• = arg supλ∈Ω

(
pλ(y)2τ − 1

pλ(y)2τ

)
are those parameters, such that they achieve

Epλ• (x)

(
f(x)

)
= Epλ(z|y)

(
fi(y, z)

)
. Moreover, they achieve the maximum of

(
pλ(y)2τ − 1

pλ(y)2τ

)
.

Even though these parameters can be uniquely determined for each fixed y, unlike the complete data
case, they may not be the same as the MLE or LME estimates, due to the existence of multiple
feasible solutions.

Proof of Theorem 11.

Proof. The coefficients are the same as in Theorem 8, and the proof is similar.

D(p0(y)‖pλ�(y))−D(p0(y)‖pλ̂(y))

=
(
Ep̃(y) log pλ̂(y)− Ep0(y) log pλ̂(y)

)
+
(
Ep̃(y) log pλ�(y)− Ep0(y) log pλ�(y)

+
(
Ep̃(y) log pλ̂(y)− Ep̃(y) log pλ�(y)

)
≤ 2 sup

λ∈Ω

∣∣∣Ep0(y) log pλ(y)− 1

M

M∑
j=1

log pλ(yj)
∣∣∣+

1

M

M∑
j=1

log
pλ̂(yj)

pλ∗(yj)
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Therefore, by using inequality in Equation (48), we have with a probability of at least 1− η,

D(p0(y)‖pλ�(y))−D(p0(y)‖pλ̂(y)) ≤ 4C3√
M
EỸ

[∫ α

ζ

√
logN (F(y), ε, dy)dε

]

+C4

√
2 log( 1

η
)

M
+ Ep̃(y) log

pλ̂(y)

pλ�(y)
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