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Abstract: The topic of ommunity detection in social networkbkas attraced a lot of
attention in recent years. Existing methods always depict the relationship of two nodes
using thesnapshot of the netwarkutthese snapshotannotreveal therealrelationships
especiallywhen the connectionhistory among nodess considered.The problem of
detecting the stable community in mobile social netwtrks been studied in this paper
Community cores are considered as stable subsets of the networkigupneerk.Based
on these observations, this paper diwsdal nodesinto a few of communities due to the
community coresMeanwhile, communitiesan be tracked through incrementamputing
Experimenal resultsbasedon reatworld social networks demomate that our proposed
method performs better than the wd&hown static community detection algorithim
mobile social networks.
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1. Introduction

In recent years, the wageople communica¢ has experienced dramatithangs. Thanks to the
development of mobile communication technology, the relative geograpdpcddgy of people can be
easily determinedHence, clustering people in such mobile social network, which camtberused in
information recommendation and other social servitg@sattracedmore and moreesearch interest
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There is a lot of literature concemg the topic of community detection in social networks,
including static and dynamic approashNodes are uslly depicted as people thereal world, and
links are denoted to the conta@mong nodes. The static approagtfocuson high aggregation of
nodeswhich have same featurgk,2], while the dynamic approaebdivide the network's evolving
process int@few of timestamps, not only pang attention to thelegreeof aggregation, but also the
computational complexity at each timestaf®y4]. However, few of these methods consider the
stability of communities between two timestamps. Intuitively, in oa weorld, the relationship
among people will not change sharpBeifi [5] consideed the stability in community detection, but
tried to obtain a community partition astable modularitgcenarigrather than stable contact.

Moreover,Pan[6] has pointedout that intercontact time among people follows the powaew
distribution, which meang1) we spend most of our time contacting with fisemmunity people
(2) thereare a few temporary contastbetweeniistrangers. If all of links are considered whe
detectinga community, somdtemporary linké amongiistrangers will influence the effect. In order
to eliminate the negative influence, orifiamiliar linkso should be concerne@hen, the key problem
is: howto find thestablecommunitieshroughfifamiliar linksd in mobile social netwod?

The biggest feature of mobile social netwsik that nodes andinks are always changing.
Researcher$3,7] have classified all of the situatiotisat occur at each timestamp into several events,
including nodeaddtion/removal andlink addtion/remowal. Their experiment results demonstrate that
discretization of the continuous time is a useful way to model the evolutgometivork. In this paper, the
discretizationof the continuous time istill adopted whenmodeling the evolution procesbut the
prominent difference of our method compared with others is the discrimitegioreerfifamiliar linko
andftemporary link.

Based on previous work8], the number oiifamiliar linkso is higher tharthat offtemporary liniso.

In other words, people who come from the same community have higher contact frequency than those
who come from different communitieBhe frequency oftthang of fifamiliar linkso is lower tharthat of
fitemporary linko, that is to say, thpeoplecomingfrom the same community alwaggintainrelatively

stable contasf while contacts among people who come from different communities seem to be uncertain.

This papeusesthe concept oficommunity coreto solvethe problemabove whichis basedonthe
previous workdescribedin [9]. Community coresare subsets of nodes in the network. On the one
hand, nodes in community cores have more stable links than outside. On the other hand, the number ¢
community coress stable.Based on communitgores, all nodes in the network can be divided into a
few communitiesthenthe community partition can be obtained.

Due to the dynamic featwsef many social networkid 0], community evolutiorhasattraced much
researchattention in recent years. Curteesearchon community evolution invoh&ethe following
categoriesevolutionaryclustering[11i 13] usually aims to find an optimal cluster sequence by finding
a clustering at each timestamp that optimizes the incremental quality. Meanwhile, probafodstis
andparameter estimatiomethods have also been propofk#i15] Non-negative matrix factorization
was introduced to evolution analysid6] as well. Besides these algorithms conedrwith the
evolution proceduriof communities, community detéah in dynamic social networks agto detect
the optimal community partition at each timestapd¥ 171 19]. Moreover, in order to describe the
change of communitieat different timestamg tracking algorithms[20,21] based on similarity
comparison have also bestudied
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In this paper, watudy the characteristics of human contacts first, especialyuthelative contact.
Then,a novel approach for community detectimnmobile social networks proposedMoreover,in
order to recognize the charsgef communites at each timestamp, the tracking mechanism is also
discussedTo the best of our knowledge, we are the first to find the relatively stable community using
the cumulative contachistory in mobile social netwds, and the first to find the pow&aw
distribution of these contactshanging between consecutive timestamps.

The rest of this paper is organized as follows introduce the preliminaries used in this paper in
Section 2. InSection 3, we discuss theharacter of cumulative stable contact. Then, we present our
community core detection and tracking algorithm separately in Section 4. We evaluate our algorithms
in Section 5, and finally conclude the work in Section 6.

2. Preliminary

In this section, we psent the notion and the mobile network model that we will use throughout the paper.

Definition 1 (Mobile Social Network) Amobile social network is denoted &= (E,V), where V is
the vertex set anH the link set.Topologies oimobile social network are always changing due to the
time variation, which is thenain difference compared witktaticnetworks. Like previous works, we
treat thecontinuougstime as a sequence of timestanpstthermore nodes and links may be different
in the consecutivéimestamps. Hence, we use the following four events to describe the evolution of
network: node add, node remove, link add, link remove.

Definition 2 (Cumulative Stable Contact, CSC) The cumulative stable contact is denoted as the
histoiic contact duratiorwhich is higher than a threshold (we will discuss this threshold in the
following section).As mentioned before, theemporarylink cannot depict the relationship between
two nodes in thenobile social network. Inversely, two nodes disconnect att canrot demonstrate
that they are irrelevant. Considering the history connection among nodes, we use cumulative contact tc
judge the stability of links.

Definition 3(Community A group of nodes in the network which have higher contact frequency
Differentfrom existing definition of community, we aim to find the stable communities in the network,
so the contact frequency is considered when detecting communities.

Definition 4 (Community Core) The community cores are the subset of communities. Nodes in
communitycores have higher contact frequency, and few changes will astinre changs

3. Cumulative Stable Link

In this section, we study the character of CSC. First, a-kmeNvn mobile social network is
introduced. Then a stable link extraction method is proposed to find the CSC. Finally, we discuss the
distribution about th€hange of CSQCCSC).

3.1. Dataset

Due to the increasingterest inmobile social networks, various datasetsatpeo p| e s b e h e
have beertollected ResearcherbBaveseparatelycollected for example the traces information about
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attenctesat INFOCOMO6 [8] and SIGCOMMO0922]. The features of these datasets are as follows:
(1) thesedatasets include not only the contact information but also the attributatteoiites
SIGCOMMO09had 76 attenakes and INFOCOMO6had 78 attenckes; (2) both of these datasets contain
several day®f traces informationand more than 30000 timestamps cabhe usedio describe the
evolution ofthe networks.

SIGCOMMO9 collects the traces information amattgnetesat SIGCOMM 2009. The datasabt
only records the contact time of each device pair, but also includes the profile eftteadre such as
country, city, instituon, interess etc The most important information is the friendsinientionedby
attenckes at the beginning of the experiment, which is used as the basic friendship graph in this paper.
The contact information is recorded in the fornrxbmestamp; user_id; seen_user_id; device _major_cod;
device_minor_codp>and the cumulative contact pair at each timestamp is easier to obtain.

Like SIGCOMMO09, INFOCOMOG6 collects the contact traeenongattenees at INFOCOM 2006.
Each participant was asketb fill a questionnaire including name, nationality, affiliation,
country, etc. The contact information is also well refined by the author soithatin the form of
<user_id, seen_user_id, start time, end time,. Orly the front four columns are ed in this paper.

3.2. Stable Link Extraction

Both the SIGCOMMO09 and INFOCOMOQO#atasetsontain connection duration between each pair
of nodes. We use a contact matvxdenoting the contact among nodés;, is the cumulative contact
duration betweem andv; from T= 0to T = t. We usey' denoting the maximum elements\dfat T = t.

Pan[8] has studied the correlation between regularity and familiarity on Cambridge stuachelits,
was observed that most @bntacts among nodes reveal a short duratiiie few of them have long
duration, which is denoted &sommunity. In this paper, we udd' = [mj;] to denote whether; and
v; have a contact duration higher than a thresh@d. Then we cluster thattengesinto several
groups by their friendship graptvhich are extracted from the two datasets

, a e 13X
. nha 13X (1)
3.3. Distribution of CCSC

We first construct a contadurationmatrix M = [m;;], wherem; presents théistory of the contact
durationbetweenv; andyv; during the whole lifethe of the network (INFOCOMOGN [6207, 340927],
SIGCOMMO09: T~ [21, 349811]). Without loss of geneitg] we denoteX andY as two consecutivisl,
then compute th€hange dHistory Contac{CHC), which is depicted as the distanc&XandY using

00i ¢ vy Y ¥ 0 , 'ﬁQﬁ' ‘ﬁQ T[F('b o
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In order to avoid the mismatching caused by differens@z& andY, all of nodes irthe networks
are included in contact durationatrix. The distribution of the distance is plotted a log-log scale
(Figure 1). The powettaw distribution of intercontact time in thanobile social network is fully
discussed in existing literaturesowever, the change of contacisconsecutive timestamps does not
follow the powerlaw distribution. Then, we udd', wherem';; denotes wether a link betweerandy;
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is a CSC or not, and compute the distance of two consecMtiyehen the CCSC adlifferent
timestamps is obtainedrigurel). It is clear that the CCSC extracted from SIGCOMMO09 follows the
powerlaw distribution,and ranges fromtwo changes tcsix changes. In INFOCOMO6, when the
changes range fromo to seven the CCSC also follows ¢hpowerlaw distribution. The diversity of
distribution betweeistolic contact duration andumulative stable contachange might be caused

by removal of the temporary contact. Considering two people in the real world, the more familiar, the
more stal# their relationship is. Moreover, people denotedfasiliard have longer contact duration

and contact time, which has been proven in previous works. According to the discussion above, the
CSC removethe temporary links among nodes, which can be us#gtinommunity detection.

Figure 1. (a) Distribution of Contact DuratioHlistory; (b) Distribution of CCSC.
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4. Core-basedCommunity Evolution

In this sectiona corebased community evolution mechanism nar@e€E is presentedwWe first
introduce the community detection algorithm, then discuss the community tracking mechanism in

mobile social networks.

4.1.Core basedCommunity Detection

In order to find the stable communities in the netwotke, community detection algorithm will
start whent detecs the community core using the cumulative stable link. The community cores can be
seen as the most stable subsets of communities. After that, the remaining nodes outside the communit
cores will jan into community cores byhe shortest distan¢@3]. Thenthe initial community division
can be obtaineddn example of thigprocedure is depicted in Figuze

Letobdés first di scuss the networ k dsoopes brodgnk ¢ h e
change through different timestamps. The increasing nodes or links can be decomposed as a sequen
of node or link insertions, while the decreasing nodes or links can be decomposed as a sequence
node or link removals. We define four events that maysedhe network evolution: node add, node
remove, link add, link remove. However, the community core is based on links between two nodes.
Hence, a single node which links to no CSC cannot exikte community core. Then, we refine the

events as followsHigure3).
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Figure 2. Community detection procedure. Firstly, the cumulative stable contacts are
extracted from theontact informatiorhistory. Then the community cores are constructed
from the cumulative stable contacts. Finally, nodes in the network ifgm cores
respectivelyBecause the cumulative contacts reveal the relationship among nodes during
the longterm, while the current contacts reveal the relationshipeaturrent timestamp.

The community structure is different fraime current networkopology.
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Figure 3. Two events cause the structure variation of network. Left: a link betweerbnode
andc is added into the network becadse | & . Right:a link between nodd ande
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Link Add the cumulative contact betweenandv; is higher than current threshold, then link e
associated with two nodes andv; adds to a community core. Botl andv; will be added tahe
community core, even ifoneof them belong to community cores.

Link Removethe cumulative contact betwegnandy; is lower tharthe current threshold, thethe
link &; associated with two nodesandv; is removeal from a community core. N; or v; has no link
associated with other nodestire community core, then the corresponding node will be remérosal
thecommunity core.

In order to detect communities at different timestamps, @€E adopts the incremental
computation paradigmAt each timetamp, the variation of cumulative stable knwill firstly be
divided into two partsthe added link set andremowed link set. Then, nodes in these two sets will be
clustered into community corgespectively. Finally, the remaining nodasremainingnode setwill
join into communities according to the shortest distance to each commurtyToer construction of
communitiess depicted in Figure4i 6.
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Figure 4. Link removing procedure

Algorithm 1: Link Remoal
While link remowals et 1 1
Extractlink; from link removal set
If vi andy; in the same coréhen
If v andv; have a stable cumulative contdtten
Removeink; from existing community cores.
If vi andy; connect with anpthernodesThen
If there is a path conneatsandv; Then
Split the core into two parts, includinvgandy; separately(Splitting)
Elself vandvdondt connect Whenh any of
Removev; andy, from cores (Contractionor Death)
Elselfvyoryvdoesndt conneThen wi th any
Removeviorviwhi ch doesndt c o(Congaction w

Figure 5. Link addtion procedure

Algorithm 2: Link Addition
While link addtions et 1 1
Extractlink; from link addtion set.
If vi andv; have a stable cumulative contadtten
If vi andy; notin the same coréhen
If vi andy; have only one neighbdihen
Create a new community coi@irth)
Else If vi or v, have one neighbdrhen
Merge the two coregMerging)
Else
Add link; from existing community coreg¢Growth)

Figure 6. Remaining nodeaddtion procedure

Algorithm 3: RemainingNode Addition
While remaining node sét |

Extractv; from remaining node set
If there isonly onepath fromv; to any coreg hen

Vi join into the connected core.
Elself there are multipl@aths fromv; to any coreIhen

Vi join into the core which has the shortest distance to it.
Else

A community is created including and nodes connected wih

The connectivityamong nodesvill be judgedin the link removing algorithmwhich operates in
O(p+q) time, wherep denotes the number clrrentvertexes and) denotes the number clrrent
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links. Supposing the worst situation in networks, the time complexitiiedink removal algorithmat

each timeis O(u(p+q)), whereu is the length ofthe link remoal set. The complexity ofthe link
addtion algorithmis O(w), wherew is the length othelink addtion set.Finally, the remaining nodes
addtion algorithm needs to detect the shortest distameeng nodedespite the optimal methode

time complexity otthe shortest distance detectiatgorithm isO(r®), wherer is the number of nodes in

the network.Hence, the total time complexity of our algorithmghe worst case ar®(max u(p+q),

w, P} O(r®). However, the complexity can be reduced through the optimal methods in shortest
distance detection algorithms, whican be seen as a further improvementwiidnot be discussedan

this paper.

4.2.CommunityEvolution

In order to study th ecommuniy evolution processwe should track the communitiest each
timestamp. léw to distinguish two communities the consecutive timestas s the biggest problem
in this tracking.

4.2.1. Model

In previous literatures broad consensus on the basic events #watbe used to describe the
evolution of dynamiccommunitiescan be seef3,7,24]. We extendand specify these evertased
cumulative stable contaxas follows Figure7):

Figure 7. Six communiy variation eventsThe red solid/dash line denotes the link &ddi
and link remowal separately, and different colors mean different communitidse
community IDs are denoted as C1, C4, C5.
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Birth: There is a cumulative stable contact between two nodes, and the nodes belong to no
communities before.

Death A community is removed froran existing partition, which results from removal of the last
cumulative stable contact in this community.

Merging Two communities merge into one community because of the appearance of cumulative
stable contact between nodes in different communities.

Splitting A community is divided into two separate communities. Two sets of nodes connected by
only one cumulative stablcontact. Once the cumulative stable contact is removed from the network,
nodes in the community will split into two communities.

Growth A node joins a community, due to the appearance of cumulative stable contact between
this node and nodes a@mmunities.

Contraction A nodemoves out of a community core, which is caused by the removal of cumulative
stable contacts.

4.2.2. Tracking Communities

Community tracking can reveal the evolution procedure of communities. Existing methods usually
use sinlarity measurement to identify communities between continuous timestamps. In order to
express the evolution procedure more clearly, thd labehanism is proposeDifferent from existing
methods which track communities after the community detegsimg similarity measuremerj2l1,24i 28],
our tracking algorithm tracks communities during the detection procedee.goas of tracking
algorithms are (Figur8):

Figure 8. Goals of community trackingNID denotes the node ID, and CID denotes the
community ID. On the one hand, nodes in communities such as node N1 and N7 at each
timestampshould be recognized, as well as their community IDs. On the other hand,
community partition of the network at ea@méstamp should be acquired.

oo Oa

,’“.9&..
",v,»—'—--.._ i . a : tL
P L . 9’
[
: (
*
: U ,
M o I3
& 3 [ |
aaas hd ? b
A Any nodes6 community | D at any timestamps

A Members in any communities at any timestamps can be obtained.
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Differing from existing methods, we track communities by enhancingcoormunity detection
algorithm. When the community detection algorithm runs, the tracking process works simultaneously,
which is trigged by the variation of links.

According to the algorithm, only contact frequency between two core nodes lowgr Hhamre
considered, and there is no other path commgthese two nodes in the original core, the splitting
process will be triggered. Henogandy; have their isola®communities separately. We use node 1D
as the community label when creating a new comityu Initially, each node will be labeled a
community IDby its node ID. The benefits are as follovissstly, the finite namespace of community
label will not cause naming confusiogecondly, communities can be tracked easier when they are
created againThe tracking algorithm uses node ID as initial community ID.

Basicprinciplesof tracking are as followgvhich is depicted in Figuréas wel):

Birth: The new communityI2 qual s one of the memberds node
Death Members in community change theommunity ID to their node ID.

Merging The community with less member changes its ID to the other community ID.

Splittng Two communities change the | Ds to one o
Growth Increasing nodes change their communitytd@nexisting community 1D.

Contraction Reducechodes change their community ID as their node ID

5. Evaluation

In this section, wefirstly discuss the stability of community cores which are detected by our
algorithms(5.1i 5.4). Then a comparison between our algorithms and akmeNvn algorithm named
ACOPRAO[27] is conducted5.5 5.6).

5.1. Contact Variation

In order torevealthe community core evolution briefly, we first show the contact variation of both
SIGCOMMO09 and INFOCOMO®&ver the whole lifetime (Figure 9). It is clear that the contact
variation has a periodic feature. On the one hand, &ésrthve higher frequen@f communicabn
with each otheduring the daytime, this resulis highly increasing and decreasing contacts. On the
other hand, in the evening, the contact will not change as frequedtrreng the daytime. An
interesting observation is that after abodth®urs (the third night), both of datasktvea lowlevel of
increasing and decreasing consaathich means the positief participants are relatively fixed.

5.2. Change ofidl Contact Matrix

According to M', the @l contact matriB = [b;;] can beobtained. M' changessthe time increases,
and the maximum contact duration among nodes may be changed, which results to the vaBation of
The change dB during the whole collection procedure is plottedrigure10:
- ph 13
@ nhd 1 ®)
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Figure 9. Description about two datasets. Left: link variatmSIGCOMMAOQ9, including

(a) link add, (c) link remove ande) total link change. Right: link variatioof INFOCOMOG

including (b) link add,(d) link remove andf) total link change.
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The change oB during the whole collection procedure is plotted-igure 10, wheremost ofthe
changes occur at the beginning of cdilen, then gradually diminislover time. The number of
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5.3. Selected Node Count

One of the biggest differerebetweencommunitiesand community coseis the number of clustered
nodes. In other words, the community core of a mobile social netwalkisset of the whole community
According to previous workf], somenodes can be classified 8amiliar strangerd and fifriends),
andthen the number afodes in théicommunity is even less. Hence, only the node pairs which have
high contact frequency can be selected to the community Moreover, thevariation ofselected nodes
betweerdifferent timestamps depicts te@bility of the community core.

I nt ui ti vel wilresuinip feawer sefegged Gontacts and nodes, which is illustrated in
Figurell L e t dossider $1IGCOMMO9, with time goes by, the selected nodes become more and
more stable. In the first day of data collection, the selected node changes digmesisacially under
the Il ow UuU. Then the stable duration of selecte
change after about210° seconds.

Figure 11. Number of nodes in community cor@) Average about number of nodes in
community core in SIGCOMMO09b) Average about number of nodes in community core
in INFOCOMO06.(c) Average number of nodes in community core about the two datasets
under different U.
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meaningless for community <cores thewtmdanmum Selected 0 . Z
nodes in SIGCOMMO9 is 61 and maximum selected nodes in INFOCOMOG whilBt he hi gher
the fewer nodes are selected to construct the community core. A brief comparison of average selecte
nodes und ewvaluedscehafiossrdepicted inbigure 11c As discussed above, the average of
selected nodes decreassti | ncr eases. Al t hough the selected
the variation of selected nodes in INFOCOMO6 stilbwslittle difference. Unlikein SIGCOMMOQ9,

the selected nodes in INFOCOMO6 change frequently, even at the end of the datemolldis
phenomenon can reflect the aotf emlara telaidaty st&leGC O
and participants usually contact with familiar pegp¥aile in INFOCOMO6, contacts among strangers

are morefrequent tharin SIGCOMMO09, hence # selected nodechange more often. Nevertheless,

the variation of selected naia SIGCOMMO09 and INFOCOMO6 are relatively stable aftéri® seconds

which is important according thefeatures othecommunity core.
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In this part, we focus on the visualization of community core evolutodepict the stability of

community coresFirsly, we extract theommunityl D

of

each

node.

I f a

core, it is labeledvith its node ID. Then we get tttwommunity core at each timestamp. Finally, the 1D
which is labeled bynly one node is removed. The community core set extracted from the two datasets is

presented ifrigurel2
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Figure 12. Tracking community core¢a) Original community core evolution in SIGCOMMO09

wi t i 0.4 (b) Refinedc o mmuni t vy
communi ty
evol ut =006 (6 GomrhuNity @\OIQIMOIB

(o Origin
communi t

al

y core

cor e

cor e

evol

ut i

204 i n

e v 0.6 {d) Refinedi n I

wi t

INFOCOMO6with = 0.6 A few eventsuch as merging, splitting and bidhe indicated
in the picture.Meanwhile, the community core partition including community IDs and

community members can bracked

80 T T
= @) = (b)
60 = —60£ d
40 ?i : 140k i
20—= 200 | :
0 . y : . : . 0 = : . : .
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
x10° x10°
1007 1,.\1007 ‘ T T T —
80" : | gl )
60 — 1 60F | I .
20= = 20—
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
x 10° x 107
d 7% 30]
() (j CID: 87 e _ —~ Community ID | Community Member | Community ID | Community Member
e * ® Y 91 9091 46 3946
57} (AN = 87 7287 45 4564
CID: 85 8 — © \ 78 66 76 78 28 2893
B v @ ) = 69 68 69 31 317192
O CJ F o) CID: 87 (']])\'/-;6 = = TR
O C\ @ . I . ] ‘\J‘ /
CID: S5t / Cm:78 -
! // \ - -
100 { S T \\ T & T T
= 1o (i’ 1 {T i
it A
B0=] i d‘ —
o = 1
g o0~ ﬁ ﬁ |
Z 1
g I |
20 1 | 1 LV [ i
0 05 1 15 2 25 3
Tme

x 10°

S|

no

t
n

C
N F
h



Entropy2013 15 5432

55. Number of Communities

Fi r st | gonsidelthe wadiation of community cores which is the basis of our detected
communities As shown in Figurel3, the variation ofthe core matrixremains aia low level.As U
increags few changes will occufThis isdue tothe more stableelationship among nodes extracted
by the cumulative stable contact.

Figure 13. Number of changes in core matrix between two consecutive timestamps.
Above: number of changes in SIGCOMMO9 under = 0. 2, ffomkfitoryht)6, 0. 8
Below: number of changes in INFOCOMO6 under = 0 0.@, 0.8 {fom kft to right).
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As depicted irFigures 14a,b, after about 2 10° seconds, the community count under each different
casebecome fixed, which is same as the selected nodes. However, the core number in INFOCOMOG is
morecomplicated. Like the variation of selected n§dbe number of communityoces fluctuatesas
time changs(Figure14a).

As mentioned before, this is due to the frequent contact among strangers. In othentiendss
at SIGCOMMO09 have a more fixed social circle th@nNFOCOMO6. The last but most important
feature ofthe community core count is that the core numtbeesnot changemonotonicallywith the
changes. We can see kgure 14c, the maxi mum avé&7laig SIGEROMME c oL

appears when 0 = 0. 2. After a r ed uccapprogimatgt o U
4.87 when U0 = 0.5. Th eINEOLGMO6,pheretimeaaonecountireachgs phe a r
max val ue a%31).0Then it @eclideso @@proximatty 8 . 4 at ua = .5,

approximaty 9. 05 at 4 = 0. 6. The r eas dromtWocsides.tOh thas s i

one hand, the higher will filter out more contacts, whidgments the mobile netwomore and
increases the number of community cores. On the other hand, some network fragments with low
contact frequency will be moved out of the community core set entirely, which reaukdaction of
the number o€ores. Hence, the number of corexfuates under the differentcenarios

Figures 14de depict the comparison of community number using two datasets. The community
number in SIGCOMMO09s dramatically changed. Because the contact information is lessirthan
INFOCOMO6, there are no links afew ofthetimestamps. Hence, there are no communities detected
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by COPRA, which leads to the empty partition. Moreover, the variation of community number using
CoCE is smaller thawith COPRA.

Figure 14. Number of community coee (a) Variation of community corenumber in
SIGCOMMO09 (b) variation about community core number in INFOCOMO6
(c) average number of community ceren the two datasetsvith different U values
(d) number of communities in SIGCOMMO@) number of communities in INFOCOMO6
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5.6. Normalized Mutual Information

In order to quantify the stability of the identified commurstyucture, we adapt the Normalized
Mutual Information (NMI)[28] to denote the similarity between twonasmunity partitions. NMI is a
reliable measurementhich can be used in evaluating community detectigorithms[29]. We use
COPRA for our comparison experiment.

Figure B depicts that the NMI value of communities detectedToCE is higher than COPRA,
which means thatumber ofcommunities detected B§oCEis more stable tharwith COPRA. With
increasingi a few nodes will be clustered as community core nodes, and many nodes beceroeenon
nodes. Hence, althougtoCEdetects communities based on the stable community ¢beegpology
of communities $ sensitive to the temporary links, which causes the variation of NMI value.
Furthermore,an interesting observatiocan be made abouthe NMI values computed from
SIGCOMMO09by COPRA.The NMI values arehangingdramatially between consecutive timestamps
According tothediscuss®sn above thereareno links in a few of timestanspn SIGCOMMO09 Hence,
thereareno communities detected by COPRA, which uses temporary [irtks.phenomenoralso
demonstrates that ti@CEis more suitable for detecting thalsle communities in dynamic networks
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Figure 15. NMI comparison betwee@oCEand COPRA(ai d) the NMI score computed

by CoCEfromu = 0. 2, 0. 4, 0 ; @),the BIMI&coré SomauEed® byMO 9 )
COPRA in SIGCOMMO9(fii) the NMI score computed boCEfromu = 0. 2, 0. 4,
0.8 (INFOCOMO06) (j) the NMI score computed by COPRA in INFOCOMO06
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5.7. Scalability

Besides the datasets which contain ardymorethan 100 nodes, we have validated the availability
of CoCE ina larger datasettNFECTIOUS contains the daily dynamic contact networks collected
during the Infectious SocioPatterns event that took place at the Science Gdlabjiim Ireland[30].
From 28th April to 17th July, all contact informationwas recorded including 10972 nodes and
415912 contacts. fie contact interval is 20 seconds

In this section, contacts fronstiMay to 10th May are adopted. Figure 16 depitiie NMI value of
communities detected by CoCE and COPRAm Figurel6ai d, astime goes onit can be seen that
NMI scores increase as well, which means that the communities detected byafeo@ife and more
stable. Moreover, as it showsatin SIGCOMMO09 and INFOCOMO06, few of nodes will belected to
be community core nodewith increasingu . Thi s wanintreag of theuromcore nodes.
However, different from SIGCOMMO09 and INFOCOMOBodes in INFECTIOUS are uncertan
different days, and have high population mobility.other words, a large proportion of nodes will
change each dayvhile in SIGCOMMO09and INFOCOMO6, people are in the conference region and
their activity range are relatively fixed Hence,the difference ofn o d eomtéct frequencypetween
different days in INFECTIOUS are small, and the selected core nodes are insensitive to theathange
U It can be seethatthere is no big differeseamong Figurel6ai d.
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Figure 16. NMI comparison betweenCoCE and COPRA INFECTIOUS X-axis:
timestamps, 10 Y-axis: NMI score (aid) the NMI score computed bZoCE from
ad = 0. 2, ;(6theNMI sbore@gmpled By COPRA

Comparing the experimeaaltresults between CoCE and COPRA, the NMI value of communities
detected by CoCE is higher thavith COPRA. Furthermore, in the large scale social networks,
communities detected by CoGCke also more sable thanwith COPRA as shown in SIGCOMMO09
and INFOCOMO6.

Running time is an important factor in performance evaluation, especially in large scale social
networks.COPRA is avery fastcommunity detection algorithnirigure 17depictsthe running time of
CoCE andCOPRA. In order tainderstand the performancetbé algorithms, thecollecion duration
of each day is shown in Figure 1&s well as the node count amklcount in each day (Figure 1.

Figure 17. Running time ofCoCEand COPRAN INFECTIOUS (a) Comparisorbetween
CoCE and COPRA(b) the collecting duration of each dqg) thenode count in each day
(d) thelink count in each day.



