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Abstract: In this paper, some theorems of the classical power series are generalized for the 

fractional power series. Some of these theorems are constructed by using Caputo fractional 

derivatives. Under some constraints, we proved that the Caputo fractional derivative can be 

expressed in terms of the ordinary derivative. New construction of the generalized Taylor’s 

power series is obtained. Some applications including approximation of fractional derivatives 

and integrals of functions and solutions of linear and nonlinear fractional differential equations 

are also given. In the nonlinear case, the new and simple technique is used to find out the 

recurrence relation that determines the coefficients of the fractional power series. 
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1. Introduction 

Fractional calculus theory is a mathematical analysis tool applied to the study of integrals and 

derivatives of arbitrary order, which unifies and generalizes the notions of integer-order differentiation 

and  -fold integration [1–4]. Commonly these fractional integrals and derivatives were not known to 

many scientists and up until recent years, they have been only used in a purely mathematical context, 

but during these last few decades these integrals and derivatives have been applied in many science 
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contexts due to their frequent appearance in various applications in the fields of fluid mechanics, 

viscoelasticity, biology, physics, image processing, entropy theory, and engineering [5–14]. 

It is well known that the fractional order differential and integral operators are non-local operators. 

This is one reason why fractional calculus theory provides an excellent instrument for description of 

memory and hereditary properties of various physical processes. For example, half-order derivatives 

and integrals proved to be more useful for the formulation of certain electrochemical problems than the 

classical models [1–4]. Applying fractional calculus theory to entropy theory has also become a 

significant tool and a hotspot research domain [15–24] since the fractional entropy could be used in the 

formulation of algorithms for image segmentation where traditional Shannon entropy has presented 

limitations [18] and in the analysis of anomalous diffusion processes and fractional diffusion  

equations [19–24]. Therefore, the application of fractional calculus theory has become a focus of 

international academic research. Excellent accounts of the study of fractional calculus theory and its 

applications can be found in [25,26]. 

Power series have become a fundamental tool in the study of elementary functions and also other 

not so elementary ones as can be checked in any book of analysis. They have been widely used in 

computational science for easily obtaining an approximation of functions [27]. In physics, chemistry, 

and many other sciences this power expansion has allowed scientist to make an approximate study of 

many systems, neglecting higher order terms around the equilibrium point. This is a fundamental tool 

to linearize a problem, which guarantees easy analysis [28–35]. 

The study of fractional derivatives presents great difficulty due to their complex integro-differential 

definition, which makes a simple manipulation with standard integer operators a complex operation 

that should be done carefully. The solution of fractional differential equations (FDEs), in most 

methods, appears as a series solution of fractional power series (FPS) [36–42]. Consequently, many 

authors suggest a general form of power series, specifically Taylor's series, including fractional ones. 

To mention a few, Riemann [43] has been written a formal version of the generalized Taylor series 

formula as: 

        
    

        
   

        

 

    

  (1) 

where   
    is the Riemann-Liouville fractional integral of order    . Watanabe in [44] has been 

obtained the following relation:  

      
      

   

        

   

    

    
                             (2) 

where            
      

         
 

       
                

            
  

 
 and    

    is the 

Riemann-Liouville fractional derivative of order    . Trujillo et al. [45] have been introduced the 

generalized Taylor's formula as: 

      
          

  

         

 

   

    
       

                          (3) 
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where          
            

           
    

                  . Recently, Odibat and Shawagfeh [46] 

have been represented a new generalized Taylor's formula which as follows: 

      
   

       

       
      

  

 

   

   
                   (4) 

where   
     

   
      

    

           
      

                and    
   is the Caputo fractional derivative 

of order   . For    , the generalized Taylor's formula reduces to the classical Taylor's formula. 

Throughout this paper    the set of natural numbers,   the set of real numbers, and   is the  

Gamma function. 

In this work, we dealt with FPS in general which is a generalization to the classical power series (CPS). 

Important theorems that related to the CPS have been generalized to the FPS. Some of these theorems 

are constructed by using Caputo fractional derivatives. These theorems have been used to approximate 

the fractional derivatives and integrals of functions. FPS solutions have been constructed for linear and 

nonlinear FDEs and a new technique is used to find out the coefficients of the FPS. Under certain 

conditions, we proved that the Caputo fractional derivative can be expressed in terms of the ordinary 

derivative. Also, the generalized Taylor's formula in Equation (4) has been derived using new 

approach for              .  

The organization of this paper is as follows: in the next section, we present some necessary 

definitions and preliminary results that will be used in our work. In Section 3, theorems that represent 

the objective of the paper are mentioned and proved. In Section 4, some applications, including 

approximation of fractional derivatives and integrals of functions are given. In Section 5, series 

solutions of linear and nonlinear FDEs are produced using the FPS technique. The conclusions are 

given in the final part, Section 6. 

2. Notations on Fractional Calculus Theory 

In this section, we present some necessary definitions and essential results from fractional  

calculus theory. There are various definitions of fractional integration and differentiation, such as  

Grunwald-Letnikov's definition and Riemann-Liouville's definition [1–4]. The Riemann-Liouville 

derivative has certain disadvantages when trying to model real-world phenomena with FDEs. 

Therefore, we shall introduce a modified fractional differential operator   
  proposed by Caputo in his 

work on the theory of viscoelasticity [8]. 

Definition 2.1: A real function          is said to be in the space        if there exists a real 

number     such that             , where             , and it is said to be in the space   
  if 

              . 

Definition 2.2: The Riemann-Liouville fractional integral operator of order     of a function 

       ,      is defined as: 

  
       

 

    
         

 

 

                   

         

  (5) 
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Properties of the operator   
  can be found in [1–4], we mention here only the following: for 

         ,      ,    , and     , we have   
   

 
       

   
       

 
  
     ,   

   
 

      
      , and   

        
      

        
        . 

Definition 2.3: The Riemann-Liouville fractional derivative of order     of      
      is 

defined as: 

   
       

  

   
                 

  

   
         

  (6) 

In the next definition we shall introduce a modified fractional differential operator   
 .  

Definition 2.4: The Caputo fractional derivative of order     of      
      is defined as: 

  
       

  
                         

      

   
     

  (7) 

For some certain properties of the operator   
 , it is obvious that when           , and 

   , we have   
        

      

        
         and   

    . 

Lemma 2.1: If        ,     
 ,    , and     , then   

   
           and   

   
      

              
      

  

   
   , where      . 

3. Fractional Power Series Representation 

In this section, we will generalize some important definitions and theorems related with the CPS 

into the fractional case in the sense of the Caputo definition. New results related to the convergent of 

the series        
    are also presented. After that, some results which focus on the radii of 

convergence for the FPS are utilized. 

The following definition is needed throughout this work, especially, in the following two sections 

regarding the approximating of the fractional derivatives, fractional integrals, and solution of FDEs.  

Definition 3.1: A power series representation of the form 

          
  

 

   

            
          

        (8) 

where           and      is called a FPS about   , where   is a variable and   ’s are 

constants called the coefficients of the series. 

As a special case, when      the expansion        
    is called a fractional Maclaurin series. 

Notice that in writing out the term corresponding to     in Equation (8) we have adopted the 

convention that       
    even when     . Also, when      each of the terms of Equation (8) 

vanishes for     and so. On the other hand, the FPS (8) always converges when     . For the sake 

of simplicity of our notation, we shall treat only the case where      in the first four theorems. This 

is not a loss of the generality, since the translation         reduces the FPS about    to the FPS about  . 

Theorem 3.1: We have the following two cases for the FPS        
       : 
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(1) If the FPS        
    converges when      , then it converges whenever      , 

(2) If the FPS        
    diverges when      , then it diverges whenever    . 

Proof: For the first part, suppose that        converges. Then, we have              . 

According to the definition of limit of sequences with    , there is a positive integer   such that 

          whenever    . Thus, for    , we have          
        

             
 

 
 
  

  
 

 
 
  

. 

Again, if      , then  
 

 
 
 

  , so   
 

 
 
  

 is a convergent geometric series. Therefore, by the 

comparison test, the series          
    is convergent. Thus the series        is absolutely 

convergent and therefore convergent. To prove the remaining part, suppose that        diverges. 

Now, if   is any number such that      , then        cannot converge because, by Case 1, the 

convergence of        would imply the convergence of       . Therefore,        diverges 

whenever    . This completes the proof. 

Theorem 3.2: For the FPS        
       , there are only three possibilities: 

(1) The series converges only when    , 

(2) The series converges for each    , 

(3) There is a positive real number   such that the series converges whenever       and 

diverges whenever    . 

Proof: Suppose that neither Case 1 nor Case 2 is true. Then, there are nonzero numbers   and   such 

that        converges for     and diverges for      Therefore, the set              

converges   is not empty. By the preceding theorem, the series diverges if    , so       for 

each    . This says that   is an upper bound for  . Thus, by the completeness axiom,   has a least 

upper bound  . If    , then    , so        diverges. If      , then   is not an upper bound 

for   and so there exists     such that    . Since     and        converges, so by the 

preceding theorem        converges, so the proof of the theorem is complete. 

Remark 3.1: The number   in Case 3 of Theorem 3.2 is called the radius of convergence of the FPS. 

By convention, the radius of convergence is     in Case 1 and     in Case 2. 

Theorem 3.3: The CPS       
           has radius of convergence   if and only if the FPS 

       
        has radius of convergence     . 

Proof: If we make the change of variable           then the CPS       
    becomes 

       
   . This series converges for       , that is for         , and so the FPS 

       
    has radius of convergence      . Conversely, if we make the change of variable   

        , then the FPS        
    becomes       

       . In fact, this series converges for 

            that is for      . Since the two series       
        and       

       

    have the same radius of convergence          
  

    
 , the radius of convergence for the CPS 

      
           is  , so the proof of the theorem is complete. 

Theorem 3.4: Suppose that the FPS        
    has radius of convergence    . If      is a function 

defined by             
    on      , then for           and      , we have: 

  
         

       

           
       

 

   

  (9) 
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(10) 

Proof: Define            
    for       , where    is the radius of convergence. Then: 

           
      

 

      
           

 

 

          

                          
 

      
           

 

 

 
  

   
     

 

   

    

                          
 

      
           

 

 

    

  

   
  

 

   

    

                             

 

   

 
 

      
           

 

 

 
  

   
            

 

 

   

      

(11) 

where         . On the other hand, if we make the change of variable          into 

Equation (11) and use the properties of the operator   
 , we obtain: 

                                   
        

            
 

 

   

               

                                                    

       

           
       

 

   

        

(12) 

For the remaining part, considering the definition of      above one can conclude that: 

  
      

 

    
         

 

 

       
 

    
         

 

 

      

 

   

     

                               

 

   

 
 

    
         

 

 

             
 

 

   

      

(13) 

where          . Similarly, if we make the change of variable          into Equation (13), 

we can conclude that: 

                                   
        

            
 

 

   

                

                                                   

       

           
       

 

   

        

(14) 

So the proof of the theorem is complete. 

Theorem 3.5: Suppose that   has a FPS representation at    of the form: 

              
  

 

   

                      (15) 
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If                 and     

                  for          , then the coefficients    in 

Equation (15) will take the form    
   

       

       
, where    

      

     

       

  ( -times). 

Proof: Assume that   is an arbitrary function that can be represented by a FPS expansion. First of all, 

notice that if we put      into Equation (15), then each term after the first vanishes and thus we get 

        . On the other aspect as well, by using Equation (9), we have: 

   

                 

       

      
      

    

       

       
      

      (16) 

where          . The substitution of      into Equation (16) leads to    
   

      

      
. Again, by 

applying Equation (9) on the series representation in Equation (16), one can obtain that: 

  
                   

       

      
      

    

       

       
      

      (17) 

where          . Here, if we put      into Equation (17), then the obtained result will be 

   
   

       

       
. By now we can see the pattern and discover the general formula for   . However, if we 

continue to operate    

      -times and substitute     , we can get    
   

       

       
          . This 

completes the proof. 

We mention here that the substituting of    
   

       

       
           back into the series 

representation of Equation (15) will leads to the following expansion for   about   : 

      
   

       

       
      

  

 

   

                      (18) 

which is the same of the Generalized Taylor's series that obtained in [46] for      . 

Theorem 3.6: Suppose that   has a Generalized Taylor's series representation at    of the form: 

      
   

       

       
      

  

 

   

                      (19) 

If    

                  for            then    

        
       

  
          where      

        
       ,           . 

Proof: If we make the change of variable         
      ,            into Equation (19), 

then we obtain: 

             
         

   

       

       
      

 

 

   

             (20) 

But since, the CPS representation of      about    takes the form: 

      
        

  
      

 

 

   

             (21) 



Entropy 2013, 15            

 

 

5312 

Then the two power series expansion in Equations (20) and (21) converge to the same function     . 

Therefore, the corresponding coefficients must be equal and thus    

        
       

  
        .  

This completes the proof. 

As with any convergent series, this means that      is the limit of the sequence of partial sums. In 

the case of the Generalized Taylor's series, the partial sums are        
   

  
     

       
      

   
   . In 

general,      is the sum of its Generalized Taylor's series if                 . On the other aspect 

as well, if we let                 , then       is the remainder of the Generalized Taylor's series. 

Theorem 3.7: Suppose that                 and    

  
                for              , 

where      . Then   could be represented by: 

      
    

  
      

       
      

  

 

   

    

      
   

      
                (22) 

Proof: From the certain properties of the operator   
  and Lemma 2.1, one can find that: 

        

         

              

       

    

     

           

       
   

    

        

                                 

      

          

            

     

          

      

         

                                 

           
   

    

             
    

        

       
      

    

                                 

      
    

      
        

      
        

    

        

       
      

    

                                 

           
   

    

             
    

            

           
      

        

                                   
    

        

       
      

     

(23) 

If we keep repeating of this process, then after  -times of computations, we can find that 

   

      
   

      
           

    

  
      

       
      

   
             , so the proof of the theorem 

is complete. 

Theorem 3.8: If     

              on       , where      , then the reminder       of the 

Generalized Taylor's series will satisfies the inequality: 

        
 

           
      

               (24) 

Proof: First of all, assume that    

  
     exist for               and that: 

    

      
                (25) 

From the definition of the reminder             
   

  
     

       
      

   
    one can obtain        

   

           

              

           and    

               

                  It 
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follows from Equation (25) that     

             . Hence,       

                   . On 

the other hand, we have: 

   

              

         

              

           (26) 

But since from Theorem 3.7, we get    

         

                . Thus, by performing the operations 

in Equation (26), we can find the inequality   
            

           
        

            

           
        

which is equivalent to         
 

           
      

             , so the proof of the theorem  

is complete. 

Theorem 3.9: Suppose that   has a FPS representation at    of the form 

              
  

 

   

                      (27) 

where   is the radius of convergence. Then   is analytic in            

Proof: Let            
           and            

                     . 

Then      and      are analytic functions and thus the composition               is analytic in 

         . This completes the proof. 

4. Application I: Approximation Fractional Derivatives and Integrals of Functions 

In order to illustrate the performance of the presented results in approximating the fractional 

derivatives and integrals of functions at a given point we consider two examples. On the other hand, 

we use Theorems 3.4, 3.6, and the generalized Taylor's series (18) in the approximation step. However, 

results obtained are found to be in good agreement with each other. In the computation process all the 

symbolic and numerical computations were performed using the Mathematica   software packages. 

Application 4.1: Consider the following non-elementary function: 

     
 

    
          (28) 

The fractional Maclaurin series representation of      about     is  
  

      

       
    

          

 . According to Theorem 3.6, we can conclude that   
       

       

  
                , where 

             
 

   
 and           . In other words, the fractional Maclaurin series of      can be 

written as      
           . In fact, this is a convergent geometric series with ratio   . Thus, the 

series is convergent for each        and then for each      . Therefore            is the 

sum of its fractional Maclaurin series representation. Note that, this result can be used to approximate 

the functions   
      and   

      on      . However, according to Equation (9), the function 

  
      can be approximated by the    -partial sum of its expansion as follows: 

  
       

       

           
       

 

   

            (29) 

Our next goal is to approximate the function   
      in numerical values. To do so, Table 1 shows 

approximate values of   
      for different values of   and   on       in step of     when   
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  . It is to be noted that in order to improve the results, we can compute more approximation terms for 

different values of   and  . 

Similarly, we can use Equation (10) to approximate the function   
      in numerical values by the 

   -partial sum of its expansion as: 

  
       

       

           
       

 

   

            (30) 

Table 2 shows approximate values of   
      for different values of   and   on       in step of 

    when     . As in the previous table and results, it should to be noted that computing more terms 

of the series representation will increase the accuracy of the approximations and thus a good 

approximation can be obtained. 

Table 1. The approximate values of   
      when      for Application 4.1. 

 

                             

0                                  

0.1                                         

0.2                                         

0.3                                         

0.4                                         

0.5                                         

0.6                                           

0.7                                             

0.8                                              

0.9                                               
 

Table 2. The approximate values of   
      when      for Application 4.1. 

 

                             

              

                                              

                                             

                                             

                                               

                                             

                                             

                                             

                                            

                                            

Application 4.2: Consider the following Mittag-Leffler function: 

       
 

       
  

 

   

             (31) 

The Mittag-Leffler function [47] plays a very important role in the solution of linear FDEs [3,8]. In 

fact, the solutions of such FDEs are obtained in terms of       . Note that   
                  

for     and    . In [46] the authors have approximated the function        for different values 



Entropy 2013, 15            

 

 

5315 

of   when       by   -th partial sum of its expansion. However, using Equations (9) and (10) 

both functions   
          and   

          can be approximated, respectively, by the following  

   -partial sums: 

  
           

 

       
   

 

   

          

  
           

 

           
       

 

   

          

(32) 

Again, to show the validity of our FPS representation in approximating the Mittag-Leffler function, 

Tables 3 and 4 will tabulate the approximate results of   
          and           for different values 

of   and   on       in step of     when     . 

Table 3. The approximate values of   
          when      for Application 4.2. 

                             

              

                                             

                                             

                                            

                                             

                                             

                                              

                                                

                                                

                                                

                                                

Table 4. The approximate values of   
          when      for Application 4.2. 

                             

              

                                            

                                            

                                            

                                            

                                             

                                              

                                               

                                                 

                                                

                                                

5. Application II: Series Solutions of Fractional Differential Equations 

In this section, we use the FPS technique to solve the FDEs subject to given initial conditions. This 

method is not new, but it is a powerful application on the theorems in this work. Moreover, a new 
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technique is applied on the nonlinear FDEs to find out the recurrence relation which gives the value of 

coefficients of the FPS solution as we will see in Applications (5.3) and (5.4). 

Application 5.1: Consider the following linear fractional equation [48]: 

  
                       (33) 

subject to the initial conditions: 

          
          (34) 

where  ,     and    are real finite constants. 

The FPS technique consists in expressing the solution of Equations (33) and (34) as a FPS 

expansion about the initial point    . To achieve our goal, we suppose that this solution takes the 

form of Equation (8) which is: 

            

 

   

  (35) 

From formula (9), we can obtain   
       

         

           
        

   . On the other hand, it easy to  

see that: 

  
          

       

           
       

 

   

      

           

       
   

 

   

  (36) 

In order to approximate the solution of Equations (33) and (34) substitute the expansion formulas of 

Equations (35) and (36) into Equation (33), yields that: 

     

           

       
   

 

   

          

 

   

    (37) 

The equating of the coefficients of     to zero in both sides of Equation (37) leads to the following: 

     
          

           
            . Considering the initial conditions (34) one can obtain       and 

   
  

      
. In fact, based on these results the remaining coefficients of     can be divided into two 

categories. The even index terms and the odd index terms, where the even index terms take the form 

    
  

       
       

  

       
       and so on, and the odd index term which are  

    
  

       
       

  

       
       and so on. Therefore, we can obtain the following series 

expansion solution: 

        
        

        
     

 

   

    
        

            
         

 

   

  (38) 

On the other aspect as well, the exact solution of Equations (33) and (34) in term of the Mittag-Leffler 

function has the general form which are coinciding with the exact solution: 

                      
        

            
         

 

   

  (39) 
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Application 5.2: Consider the following composite linear fractional equation [39]: 

  
        

   
                 (40) 

subject to the initial conditions: 

              (41) 

Using FPS technique and considering formula (8), the solution      of Equations (40) and (41) can 

be written as: 

         
 
 

 

   

  (42) 

In order to complete the formulation of the FPS technique, we must compute the functions 

  
   

    ,   
     , and   

     . However, the forms of these functions are giving, respectively, as 

follows: 

  
   

          

  
   

 
   

  
 
 

   
 
 
 

 

   

  

  
         

 
 
        

 

 
 
   

 

 

   

  

  
      

  

 
   

 
 
  

 

 
   

 
 
     

 

 
 
 

 
    

   
 

 

   

  

(43) 

But since          is the domain of solution, then the values of the coefficients    and    must be 

zeros. On the other aspect as well, the substituting of the initial conditions (41) into Equation (42) and into 

  
      in Equation (43) gives      and     . Therefore, the discretized form of the functions     , 

  
   

    , and   
      is obtained. The resulting new form will be as follows: 

         
 
 

 

   

  

  
   

       

 

  
 
 
 

 
 
       

  
   

 
   

  
 
 

   
 
 
 

 

   

  

  
          

  

 
   

 
       

  

 
   

 
       

   

 
 
   

 
    

 
 

 

   

  

(44) 

Now, substituting Equation (44) back into Equation (40), equating the coefficients of      to zero in the 

resulting equation, and finally identifying the coefficients, we then will obtain recursively the following 

results:                       
   

     
, and       

 

          
        

 
   

 
   

  
 

 
   

        

So, the   th-truncated series approximation of      is: 
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(45) 

The FPS technique has an advantage that it is possible to pick any point in the interval  

of integration and as well the approximate solution and all its derivatives will be applicable. In other 

words a continuous approximate solution will be obtained. Anyway, Tables 5 shows the  

15th-approximate values of     ,   
   

    , and   
      and the residual error function for different  

values of   on       in step of    , where the residual error function is defined as  

          
         

   
             . 

Table 5: The 15th-approximate values of     ,   
   

    , and   
      and        for 

Application 5.2. 

             
   

         
               

                    

                                                     

                                                      

                                                      

                                                     

                                                     
 

From the table above, it can be seen that the FPS technique provides us with the accurate 

approximate solution for Equations (40) and (41). Also, we can note that the approximate solution 

more accurate at the beginning values of the independent interval. 

Application 5.3: Consider the following nonlinear fractional equation [40]: 

  
                           (46) 

subject to the initial conditions: 

                       (47) 

where   is a positive integer number. 

Similar to the previous discussions, the FPS solution takes the form             
   . On the 

other hand, according to the initial conditions (47), the coefficient    must be equal to zero. Therefore: 

           

 

   

  (48) 

It is known that in the nonlinear FDEs case the finding of recurrence relation that corresponding to 

the FPS representation and then discovering the values of the coefficients is not easy in general. 

Therefore, a new technique will be used in this application in order to find out the value of the 

coefficients of the FPS solution. To achieve our goal, we define the so-called   th-order differential 

equation as follows: 

  
      

                            (49) 
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It is obvious that when      Equation (49) is the same as Equation (46). So, the FPS 

representation in Equation (48) is a solution for the   th-order differential Equation (49); that is: 

  
      

       

 

   

    
         

 

   

 

 

   
                   (50) 

According to Equation (9) a new discretized version of Equation (50) will be obtained and is given as: 

    

       

             
         

 

     

      

 

   

     

 

   

 

                              
       

           
            

(51) 

where      if     and      if    . From Theorems 3.2 and 3.4, the   th-derivative of the 

FPS representation, Equation (48), is convergent at least at    , for          . Therefore, the 

substituting     into Equation (51) gives the following recurrence relation which determine the 

values of the coefficients    of    :     ,    
 

      
 , and      

       

           
   

 
        for 

       . If we collect and substitute these value of the coefficients back into Equation (48), then the 

exact solution of Equations (46) and (47) has the general form which is coinciding with the  

general expansion: 

                                     
 

      
   

       

        
 
       

    

                                                
              

        
 
              

       
(52) 

In fact, these coefficients are the same as coefficients of the series solution that obtained by the 

Adomian decomposition method [40]. Moreover, if    , then the series solution for Equations (46) 

and (47) will be: 

         
  

 
 

   

  
 

    

   
 

    

    
 

       

      
         (53) 

which agrees well with the exact solution of Equations (46) and (47) in the ordinary sense. 

Table 6 shows the 15th-approximate values of      and the residual error function for  

different values of   and   on       in step of    , where the residual error function is defined as 

          
              . However, the computational results below provide a numerical 

estimate for the convergence of the FPS technique. It is also clear that the accuracy obtained using the 

present technique is advanced by using only a few approximation terms. In addition, we can conclude 

that higher accuracy can be achieved by evaluating more components of the solution. In fact, the 

results reported in this table confirm the effectiveness and good accuracy of the technique. 

Application 5.4: Consider the following composite nonlinear fractional equation [40]: 

  
          

      
 

   
 

 
          (54) 

subject to the initial conditions: 
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          (55) 

where    and    are real finite constants. 

Table 6: The 15th-approximate values of      and        for Application 5.3. 
 

                                                            

                     

                                                              

                                                               

                                                             

                                                             

                                                              

Again, using FPS expansion, we assume that the solution      of Equations (54) and (55) can be 

expanded in the form of             
   . Thus, the so-called   th-order differential equation of 

Equations (54) and (55) is: 
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According to Equation (9) and the Cauchy product for infinite series, the discretized form of Equation 

(56) is obtained as follows: 

             
      

       

           
       

 

   

  

          

 

   

      

           

       

             

           
    

 

   

       

(57) 

In fact, Equation (57) can be easily reduces depending on Equation (9) once more into the 

equivalent form as: 

   

       

             
         

 

     

        

 

   

      

           

       

             

           
 

 

   

 
       

           
            

(58) 

where      if     and      if    . However, the substituting of     into Equation (58) gives 

the following recurrence relation which determines the values of the coefficients    of    :    and    are 

arbitrary,    
    

         
 

       
  and      

       

           
     

 
         

           

       

             

           
 for 

       . Therefore, by easy calculations we can obtain that the general solution of Equations (54) 

and (55) agree well with the following expansion: 

                     
  (59) 
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For easy calculations and new generalization, one can assigns some specific values for the two 

constant    and    in the set of real or complex numbers. 

6. Conclusions 

The fundamental goal of this work has been to generalize the main theorems of the CPS into the 

FPS. The goal has been achieved successfully, whereby the Caputo fractional derivatives definition 

has been used to construct some of these theorems and relations. A Generalized Taylor's formula 

derived by some authors for       can now be circulated for            . Fractional 

derivatives are written in terms of ordinary derivatives under some constraints and we hope that in the 

future, this result can be achieved without any constraints. The theorems which have been proved in 

this paper are used to approximate the fractional derivatives and integrals of functions that can be 

written as a FPS representation. These theorems may simplify and modify some of the methods used to 

solve FDEs and fractional integro-differential equations such as differential transform method, 

homotopy analysis method, Adomian decomposition method, and others. 
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