
Entropy 2013, 15, 5237-5276; doi:10.3390/e15125237 
 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 

Review 

Statistical Mechanics Ideas and Techniques Applied to Selected 
Problems in Ecology  

Hugo Fort 

Institute of Physics, Faculty of Science, Universidad de la República, Montevideo 11400, Uruguay;  

E-Mail: hugo@fisica.edu.uy; Tel.: +598-25258624; Fax: +598-25258015 

Received: 22 August 2013; in revised form: 15 November 2013 / Accepted: 20 November 2013 /  

Published: 27 November 2013 

 

Abstract: Ecosystem dynamics provides an interesting arena for the application of a 

plethora concepts and techniques from statistical mechanics. Here I review three examples 

corresponding each one to an important problem in ecology. First, I start with an analytical 

derivation of clumpy patterns for species relative abundances (SRA) empirically observed 

in several ecological communities involving a high number n of species, a phenomenon 

which have puzzled ecologists for decades. An interesting point is that this derivation uses 

results obtained from a statistical mechanics model for ferromagnets. Second, going 

beyond the mean field approximation, I study the spatial version of a popular ecological 

model involving just one species representing vegetation. The goal is to address the 

phenomena of catastrophic shifts—gradual cumulative variations in some control 

parameter that suddenly lead to an abrupt change in the system—illustrating it by means of 

the process of desertification of arid lands. The focus is on the aggregation processes and 

the effects of diffusion that combined lead to the formation of non trivial spatial vegetation 

patterns. It is shown that different quantities—like the variance, the two-point correlation 

function and the patchiness—may serve as early warnings for the desertification of arid 

lands. Remarkably, in the onset of a desertification transition the distribution of vegetation 

patches exhibits scale invariance typical of many physical systems in the vicinity a phase 

transition. I comment on similarities of and differences between these catastrophic shifts 

and paradigmatic thermodynamic phase transitions like the liquid-vapor change of state for 

a fluid. Third, I analyze the case of many species interacting in space. I choose tropical 

forests, which are mega-diverse ecosystems that exhibit remarkable dynamics. Therefore 

these ecosystems represent a research paradigm both for studies of complex systems 

dynamics as well as to unveil the mechanisms responsible for the assembly of species-rich 

communities. The more classical equilibrium approaches are compared versus non-equilibrium 
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ones and in particular I discuss a recently introduced cellular automaton model in which 

species compete both locally in physical space and along a niche axis. 

Keywords: nonlinear dynamics; cellular automata; Lotka-Volterra competition model; 

bifurcations in ecosystems 

 

1. Introduction 

Population dynamics provides an interesting field for the application of a plethora of ideas from 

statistical mechanics. Here I present applications of statistical mechanics concepts and techniques to 

three main problems in ecology in which I have been working in collaboration with different groups of 

ecologists: emergent neutrality or clumpiness vs. limiting similarity [1], regime shifts in ecosystems [2] 

and modeling of ecosystem assembly [3]. I chose these topics because I think they are examples of 

fruitful interdisciplinary cooperation between ecologists and physicists to report and serve as a basis to 

review recent developments on those fields. This special issue of Entropy on Advances in Applied 

Statistical Mechanics seems to be a very good place to disseminate this kind of material, contributing 

then to forge new connections between physics and biology by analyzing how some fascinating 

problems posed by biologists can be approached with tools borrowed from statistical mechanics. 

Before start let us mention a non exhaustive list of important recent developments that use statistical 

mechanics in different problems of ecology like demographic stochasticity in predator-prey systems [4,5], 

evolutionary ecology [6,7], population genetics [8], community assembly and species distributions [9–15] 

and complex ecological aggregates and networks [16–20]. 

Organisms in nature are discrete entities that interact only within its immediate neighborhood and 

therefore are neither distributed uniformly nor at random. Instead, in general, they are prone to form 

characteristic spatial patterns like patchy structures or gradients. This spatial variance in the 

environment creates diversity in communities of organisms, as well as it affects their stability, 

dynamics and pattern generation [21] (pp. 7–8) and [22]. However these spatial effects have been long 

ignored by most ecologists because of the difficulties they pose for modeling. Rather a common 

assumption in ecological modeling is the well mixing hypothesis or, in physics parlance, the  

mean-field (MF) approximation. The MF assumption is a good approximation when the physical 

environment is homogeneous and physical forces exist that cause strong mixing of organisms, or when 

organisms themselves are highly mobile, etc. As conditions depart from those above, the MF 

assumption becomes less and less appropriate. A lack of mixing generates neighborhoods around 

individuals that deviate from the spatial averages. Heterogeneity in local environmental conditions 

becomes especially important if organisms only interact over short distances. 

Another important dimension in ecology, besides the physical space, is the abstract niche-space. 

Each species is thought to have a separate, unique ecological niche that describes how a population 

responds to the distribution of resources and competitors (e.g., by growing when resources are 

abundant, and when predators, parasites and pathogens are scarce) and how it in turn alters those same 

factors (e.g., limiting access to resources by other organisms, acting as a food source for predators and 
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a consumer of prey) [23]. That is, the coordinates of the niche space quantify the phenotypic traits of a 

species which are relevant for the consumption of resources. 

Figure 1 offers a schematic representation of the two dimensions mentioned above, each represented by 

as a coordinate axis. The ecological topics we will discuss, as well as the corresponding models to 

address them are represented by big dots. This diagram is intended to serve as a “road map” for the 

reader. Therefore, in Section 2, I start by providing an analytical derivation of an empirical observation 

which has puzzled ecologists for decades: the clumpy patterns over niche space for species relative 

abundances (SRA) in several ecological communities involving a large number n of species (along this 

review the acronym SRA is used to denote the set of fractions of the total population represented by 

each species, and this should not be confused with RSA which is commonly used in ecology to denote 

histograms of the number of species vs. the number of individuals for each species). An interesting fact 

of this derivation is that, although it is based on the MF Lotka-Volterra Competition Niche Theory 

(LVCNT), it uses analytical results obtained for a lattice models of magnetic materials . Since physical 

space is not taking into account in classical LVCNT it is marked by a red dot on the vertical axis of Figure 1. 

Figure 1. A schematic representation of the models considered in terms of two coordinate 

axis corresponding to physics an niche space. 

 

As it was mentioned, in many circumstances the physical space cannot be neglected. This is the 

case for instance when analyzing the problems of overgrazing. Hence in Section 3, going beyond the 

MF approximation, I study the spatial version of a popular ecological model involving just one species 

representing vegetation. Actually, since what is relevant is the aggregated biomass of all coexisting 

grass species, this model doesn’t distinguish between grass species and treat them as a unique species. 

This is represented by a blue dot on the horizontal axis of Figure 1. 

The main goal of Section 3 is to address the phenomena of catastrophic shifts—gradual cumulative 

variations in some control parameter that suddenly lead to an abrupt change in the system—and the 

early warnings of them provided by statistical mechanics tools. This is illustrated by means of the 

process of desertification of arid lands. I focus on the aggregation processes and the effects of diffusion 

that combined lead to the formation of non trivial spatial vegetation patterns. It is shown that different 

quantities from statistical mechanics—like the two-point correlation function and the patchiness—may 
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serve as early warnings for the desertification of arid lands. Remarkably, it is found that in the onset of 

a desertification transition the distribution of vegetation patches exhibits scale invariance i.e., the 

system looks the same way at all scales and so we can zoom in or out and the picture still has the same 

properties. I comment on similarities of and differences between these catastrophic shifts and paradigmatic 

thermodynamic phase transitions like the boiling of water. 

In Section 4, I analyze a community involving many species interacting in space, represented by a 

green dot with “coordinates” both on physical and niche axis. I choose tropical forests, which are  

mega-diverse ecosystems that exhibit remarkable dynamics. Therefore these ecosystems represent a 

research paradigm both for studies of complex systems dynamics as well as to unveil the mechanisms 

responsible for the assembly of species-rich communities. I compare equilibrium approaches with a 

recently introduced non-equilibrium approach involving cellular automata in which species compete 

both locally in physical space and along a niche axis. 

Section 5 is devoted to draw some general conclusions and to make connections between the 

different topics analyzed throughout this review. 

In order to make this review accessible to ecologists unfamiliar with statistical mechanics, I include 

at the end of each section a glossary of common terms and concepts from statistical mechanics used in 

that section. 

2. Mean Field Competition between Many Species along a Niche Axis: Emergent Neutrality 

2.1. The Lotka-Volterra Competition Model and the MacArthur-Levins Niche Overlap Formula 

An important problem in ecology is that of how closely species can be packed in a natural 

environment or the limiting similarity problem [21] (pp. 139–171). Limiting similarity means that 

there is some maximum level of similarity between competing species (i.e., similar use of resources 

that are in short supply) beyond which no stable coexistence of them is possible. A usual way to 

approach this issue is by considering the species distributed along a continuum resource spectrum 

which can be represented by an hypothetical one-dimensional niche axis [21] (pp. 139–171). To fix 

ideas we can think on bird species that feed on seeds. The beak size of a bird species determines the 

utilization ability of resources (seeds): for a given beak size, a bird species can optimally feed on a 

particular size of seed, and its feeding ability drops off for seeds that depart from this size. Therefore, 

one may consider the niche axis as a gradient that is related to the size of organisms. Each species is 

numbered by an index i and is represented by a normal distribution Pi(ξ) = exp[−(ξ − μi)
2/(2σi

2)] 

centered at μi, corresponding to its mean size (i.e., its position on this niche axis ξ), and with a standard 

deviation σi, which measures the width of its niche. The competition for finite resources among the n 

species can be described by the Lotka-Volterra competition (LVC) equations: 
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where Ni is the population size of species i, ri is its maximum per capita growth rate, Ki is the carrying 

capacity of species i (the asymptotic population size it reaches when isolated from the other competing 
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species) and the coefficient αij is the coefficient of competition between species i and j. A measure of 

the intensity of this competition is provided by their niche overlap, i.e., the overlapping between Pi(ξ) 

and Pj(ξ). The rationale is that species that are far apart in the niche axis will interact less strongly than 

those that are closer, and that species with narrower niches will compete with less species than those 

with wider niches. Therefore the competition coefficients αij can be computed by the MacArthur-Levins 

niche overlap (MLNO) formula [24]: 
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and this combination of LVC in Equation (1) with MLNO in Equation (2) results in the Lotka-Volterra 

Competition Niche Theory (LVCNT). Simulations of LVCNT equations yielded long transients of 

clumpy distributions of species along the niche axis [25] (see Figures 3 and 4). This phenomenon of 

spontaneous emergence of self-organized clusters of look-alikes separated by gaps with no survivors was 

dubbed emergent neutrality (EN). It was recognized as an important new finding in an established 

model in ecology [26,27] since there is empirical evidence for self-organized coexistence of similar 

species in communities ranging from mammal [28] and bird communities [29] to plankton [30,31]. 

However, it wasn’t clear whether this lumpy distribution of species was an artifact of the 

simulations or either if it was a robust result or it depends strongly on details of the model. In this 

section I show that the lumpy pattern is a robust phenomenon provided one takes into account the 

finiteness of the niche axis. Thus, truncation, besides being a realistic assumption which warrants 

clustering, allows the analytical computation of the eigenvalues and eigenvectors of the competition 

matrix α with elements αij given by Equation (2). Furthermore, I show that ultimately solving the linear 

problem is enough to get both the transient pattern for SRA—clumps and gaps between them—as well as 

the asymptotic equilibrium. 

Since an analytic solution for realistic conditions—species randomly distributed along a finite and 

non-periodic niche axis, each with a different ri, Ki and σi—is not possible, I consider in Section 2.2 a 

series of simplifications. This simplifying assumptions allow to obtain an analytic expression for SRA, in 

terms of the dominant eigenvector of α, which provides a qualitatively good description of the system for 

not too short times and becomes quite good for asymptotic times [32]. Using simulations it can be shown 

that all these simplifications do not destroy EN: clumps and gaps for SRA remain in the case of a finite 

linear niche axis no matter whether the niche is non-periodic (i.e., it has borders), or the species are 

randomly distributed, or when r, K and σ change from species to species [33]. Indeed LVCNT with 

heterogeneous species-dependent parameters is able to predict quite well the number of lumps for several 

different ecosystems [30,31,33,34]. 

A main connection of all this with statistical mechanics relies on the formal equivalence of the 

simplified ecological model of Section 2.2 with a lattice model for magnetic materials [35,36] (see Box 1). 

A goal of this review is to remark these formal analogies between problems in ecology and statistical 

mechanics. Firstly for a methodological reason, since reformulating ecological problems as statistical 

mechanics ones opens the possibility of using powerful computational techniques developed in 

statistical mechanics. Secondly, because recognizing that problems that emerged in completely 
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different fields can be formulated as the same mathematical problem would serve to attract scientists from 

these fields to work together into multidisciplinary collaborations bringing complementary expertise.  

2.2. An Analytical Proof of Self-Organized Similarity in a Simplified Case 

We start by considering the following simplifications: 

 S1. The n species are evenly distributed along a finite niche axis of length L = 1, i.e., their mean 

sizes are given by μi = (i − 1)/n (i = 1, ..., n). 

 S2. To avoid border effects, the niche is defined as circular, i.e., periodic boundary conditions 

(PBC) are imposed. This is done by just taking the smallest of |μi − μj| and 1 − |μi − μj| as the 

distance between the niche centers. 

 S3. All species have the same niche width: σi = σ i. 

 S4. All species have the same per capita growth rate which we take equal to 1: ri = 1 i. 

 S5. All species have the same carrying capacity: Ki = K i. 

Under the above simplifying conditions the system of Equations (1) reduces to: 
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where xi = Ni/K. Conditions S1 to S3 allow to write the competition coefficients αij as: 
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where the upper “circle” denotes that the niche axis is circular i.e., 
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An equilibrium of the system in Equation (3) is specified by a set of densities xi* verifying 
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  = 0. Linear stability analysis for this equilibrium starts by considering initially small 

disturbances yi(0) from the equilibrium values xi* and to study their fate as the time grows. Let us take 

xi* = x*  i which, by virtue of conditions S1 and S2, is an exact equilibrium. The evolution equation 

for yi(t) can then be written as:  
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Since the coefficients αij are symmetric, in the eigenvector basis {vi} it becomes diagonal with all 

its eigenvalues λi real. Hence integrating Equation (6), and using that yi(0) is small, yi(t) can be 

approximated by: 

)0()( ii yty  e
tx i*
 (7)

Thus, for asymptotic times, y becomes proportional to the dominant eigenvector vm, the one 

associated with the minimum eigenvalue of α, λm, i.e.,  

y(t)  e
tx m*

 vm (for large times) (8)

I will show that, for most of the range of parameters n and σ, λm(n,σ) is negative (see below). Hence, 

from Equation (8), y is amplified over time instead of decaying to zero (as it would happen in the case 

of a positive λm). Therefore, for large times, Equation (8) implies that we can express the time 

derivative of x as: 

dx/dt = −x(t)λmvm (9) 

and by integration we get the approximated solution given by: 

x(t) ≈ exp (−λmvm t) (for large times) (10)

It turns out that analytic expressions for the eigenvalues and eigenvectors of α are not known in 

general. However, for the simpler case of circulant matrices we have [35,37]:  

1

1

( , ) cos[2 ( 1)( 1) / ]

cos[2 ( 1)( 1) / ],       for 1 ,

n

jk
j

n

ij
j

c n k j n

k j n j n

  

 





  

    




 (11)

1 1

2 22 2 ( 1)( 1) 2
sin sin[2 ( 1) ]              if  +1 

2

                                                                                                               1,...,

j

k
j

k j n
k k

n n n

v j

           
   

 
1 1

2 22 2 ( 1)( 1) 2
cos cos[2 ( 1) ]     if  +1 

2j

n

n k j n
n k k

n n n

  







             
   

 

(12)

From Equations (11) and (12) one can see that, except for k = 1 and k = n/2 + 1, the eigenvalues 

come in pairs: λn − k + 2 = λk, one corresponding to the sine and the other to the cosine eigenvector. 

Equation (11) can be used to find numerically the index k = m with the minimal eigenvalue λm(n,σ) (as 

we have just seen, k = n − m + 2 has the same value). The specific value of this index m is important 

since, as turns out from Equation (12), the corresponding dominant eigenvector vm has m − 1 peaks and  

m − 1 valleys. 

The minimal eigenvalue λm was determined from Equation (11) from a grid of values of n and  

σ: 2  N  200, and 0.05  σ  0.5. The surface depicted in Figure 2 corresponds to λm(n,σ), showing 

that λm is negative except for small values of n (n < 8) or when σ is below a critical value σc which is 
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approximately 0.075. This means that for higher values of n the equilibrium in which all species have 

the same biomass is not stable, implying that a pattern can be formed. 

Figure 2. The minimal eigenvalue λm, determined from Equation (11), as a function of n 

and σ. The arrow denotes the point n = 200 and σ = 0.15. 

 

The dominant eigenvector vm can also be used to predict the species distribution in time, using 

Equation (10). In Figure 3 we can see that the clumps and gaps in SRA coincide, respectively, with the 

m − 1 peaks and valleys of vm. 

Figure 3. The coincidence of lumps and gaps of species relative abundances (SRA) with, 

respectively, the peaks and valleys of the dominant eigenvector for n = 200 and σ = 0.15.  

(A) Results from numerical integration of Equations (3), with competition coefficients 

given by Equation (4), after t = 1000 generations. (B) the components of the dominant 

eigenvector vm. 
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Figure 4 compares this linearized model in Equation (10) with simulations. For instance, if n = 200 

and σ = 0.15, we get m = 5 (and m = 200 − 5 + 2 = 197), and then λm = −0.3938 and vm 
j  is either 

sin(8πμj)/10 or cos(8πμj)/10. Panel (A) of Figure 4 is a plot of a typical population distribution, 

produced by simulation, for t = 1000 generations and the expected biomass based on the dominant 

eigenvector vm 
j  = cos(8πμj)/10 substituted in the linearized model Equation (10). Notice that the 

agreement is quite good and that the quality of the agreement improves with time (Figure 4B), until it 

becomes very good when the lumps are thinned to single lines. 

Figure 4. Distribution of species for n = 200 and σ = 0.15. In black results from a 

simulation after t generations and in gray exp[λmvmt]. (A,B): Species evenly spaced along 

the niche axis for t = 1000 and t = 10,000 generations, respectively. (C,D): Species 

randomly distributed along the niche axis for t = 1000 and t = 10,000. (vm is obtained now 

numerically from the matrix α). 

 

For other values of σ the number of clumps (or gaps) may change: the smaller σ the greater the 

number of lumps. 

Notice that for a given n even the maximum possible number of peaks is n/2 (one half of the 

components of the eigenvector pointing up and the other half down). 

The integer m that gives the minimal eigenvalue is only a function of the width σ of the niche,  

m = m(σ), and is independent from n, provided n is large (n/2 ≥ m − 1). It turns out that m is always an 

odd number (and then the number of clumps is even). The reason for this can be traced from the 

cosines appearing in Equation (11) making contributions to the eigenvalues of opposite signs: positive 

for odd k and negative for even k. As a consequence the number of peaks, equal to m − 1, is always 

even. For σ = 0.15, m − 1 = 4 for all even n ≥ 8. The number of species that survive for asymptotically 

long times is then given simply by: 
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n∞(σ) = m(σ) − 1 (13)

I conclude this section by remarking that the Hamiltonian of the lattice spherical model of 

ferromagnetism [35,36] is written in terms of the matrix in Equation (5) and in fact the  

Equations (11) and (12) for the eigenvalues and eigenvectors for circulant matrices were first derived 

by Berlin and Kac [35] for this statistical physics system. In the ecological realm the niche plays the 

role of the physical space in the model for ferromagnetism. This correspondence is pictorially 

represented in Box 1. 

Box 1. Correspondence between niche axis and spherical ferromagnet. 

 
Above: Schematic representation of a niche axis for bird species. 

The beak size of a bird species determines the utilization ability of resources (seeds). For a given 

beak size, a bird species can optimally feed on a particular size of seed, and its feeding ability 

drops off for seeds that depart from this size. So the intensity of the interaction between two 

species of birds A and B, αAB, is proportional to their niche overlap: the closer they are in size the 

stronger their interaction.  

Below: Schematic representation of a ferromagnetic material. 

A ferromagnetic material (like iron or nickel) can be regarded as a collection of spins, representing 

tiny magnets, located at the sites of a lattice. The intensity of the interaction between two spins Si 

and Sj, i.e., their interaction energy εij, is also proportional to their “overlap” or scalar product Si. 

Sj. 

Therefore, we have the correspondence: 

species i ↔ spin Si 

niche position ↔ lattice position 
αij ↔ εij 
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Glossary of statistical mechanics terms of Section 2 

Ferromagnetism: The basic mechanism by which certain materials, such as iron and nickel, form 

permanent magnets. Microscopically the ferromagnetism is explained in terms of the electrons 

contained in the material. Specifically, one of the fundamental properties of an electron is that it 

has a magnetic dipole moment, i.e., it behaves itself as a tiny magnet. When these tiny magnetic 

dipoles are aligned in the same direction, their individual magnetic fields add together to create a 

measurable macroscopic magnetic field. 

Hamiltonian: The mathematical descriptor for the energy of a given interaction. The total 

hamiltonian describes all energies of all the interactions that affect the system. 

3. The Parallelism between a Spatial Grazing Model and Liquid-Gas Phase Transition: 

Metastability, Catastrophic Shifts in Ecosystems and Early Warnings [38] 

3.1. Catastrophic Shifts beyond Mean Field Theory 

It is generally assumed that gradual changes in external conditions such as climate, inputs of 

nutrients, toxic chemicals, etc. yield also gradual changes in ecosystems. However, quite often sudden 

catastrophic regime shifts may occur. Examples illustrating such changes are the desertification of arid 

lands by overgrazing [39] and lakes that shift from clear to turbid [40,41]. A simple explanation for 

such drastic shifts is that the ecosystem has alternative stable states (ASS) [42,43]. In other words, 

under the same external conditions the system can be in two or more stable states. Hence, when 

subjected to a slowly changing external factor (such as climate or human activities), an ecosystem may 

show little change until it reaches a critical point where a sudden shift to an alternative contrasting 

state occurs. The presence of ASS implies that if a system has gone through such a state shift, it tends 

to remain in the new state until the control parameter is changed back to a much lower level. This 

hysteresis phenomenon of “history dependent” alternative equilibrium states, which is well known in 

physics, make it very difficult to restore ecosystems to their original “good” equilibrium states.  

The identification of early warning signals that allow to predict such catastrophic events before they 

happen is therefore invaluable for making management decisions to avoid or mitigate them. 

The simplest approach to address alternative states in ecosystems is by MF models. Neglecting all 

spatial heterogeneities, these models describe the change over time of some variable that characterizes 

the state of the ecosystem. MF models are easy to analyze and in cases without significant 

heterogeneity their predictions are not very different from those of spatial models. However, often 

spatial dimensions profoundly alter the dynamics and outcomes in the real world [44]. In fact, the 

oversimplification of MF models casts doubt on whether the occurrence of an alternative stable state 

could be an artifact. Analyzing spatially explicit models is relevant for other reasons—for example, for 

understanding phenomena like aggregation and spatial segregation in plant communities [45]. It was 

shown that vegetation patches, which have been extensively studied for arid lands [46], can be 

approached as a pattern formation phenomenon [47–50]. Moreover, it has been hypothesized that 

vegetation patchiness could be used as a signature of imminent catastrophic shifts between alternative 

states [51]. Evidences that the patch-size distribution of vegetation follows a power law were later found 

in arid Mediterranean ecosystems [52]. This implies that vegetation patches were present over a wide 
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range of size scales, thus displaying scale invariance. It was also found that with increasing grazing 

pressure, the field data revealed deviations from power laws. Hence, the authors proposed that this 

power law behavior may be a warning signal for the onset of desertification. These spatial early 

warnings complement temporal ones like the variance of time series introduced to detect trophic shifts 

in lakes [53] or the impact of pollutants [54]. 

This section addresses the development of spatial early warnings of catastrophic shifts using  

tools and ideas borrowed from statistical mechanics. I focus on overgrazing which is one of the  

greatest causes of a common catastrophic shift: desertification. Worldwide, desertification is making 

approximately 12 million hectares useless for cultivation every year [55]. The Sahara desert appear to be 

advancing downward into some places of the Sahel, the semiarid region of 5000 km extending across 

Africa south of the Sahara desert, at the rate of 18 feet per hour due to overgrazing [56]. I start by 

introducing the spatial version of a general ecological model in terms of a logistically growing species 

whose consumption, loss or removal (either by grazing, predation or harvesting) is represented by a 

saturation curve [57,58]. The MF version of this model, in terms of two parameters, is known to have 

ASS. In order to take into account the spatial heterogeneity of the landscape, one of the two parameters, 

the local parameter, is taken as dependent on the position and constant in time. The other parameter, the 

global or control parameter, is taken as uniform throughout the system and changing slowly with time.  

Our goal is to use this framework to address in this section the following questions: 

(i) How spatial heterogeneity of the environment and diffusion of matter and organisms affects the 

existence of alternative stable states. 

(ii) Whether emergent characteristic spatial patterns are really useful as early warnings and how 

they are connected with temporal signs of catastrophic shifts. 

(iii) The search for scaling laws underlying spatial patterns and self-organization. 

Another goal is to show how the desertification transition can be connected with one of the most 

widely analyzed phase transition in physics: the boiling of a liquid. I do this by mapping this model 

into the simplest state equation able to account for the liquid-vapor phase transition, the van der Waals 

equation of state. This in turn allow us to analyze the above questions by measuring typical observables of 

statistical mechanics, like the spatial variance, the two-point correlation function and the patchiness. 

3.2. The Mean Field Ecological Model 

Our starting point is the population model introduced to describe grazing systems [57] and later 

used in general for several ecosystems [58] and in particular for the case of the spruce  

budworm [59,60]. It involves the total grass biomass density X which evolves in time according to: 

2

2 2
1

dX X X
rX c

dt K X h
      

 (14)

where r is the intrinsic per capita growth rate, K is the carrying capacity or the number of individuals 

which can be supported in a given area within natural resource limits, c is the maximum consumption 

rate or grazing pressure (the stress on plant populations due to the grazing of animals) and h is a  

half-saturation constant, i.e., it corresponds to the value of X such that the effective consumption is half 
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of the maximum consumption rate. We can rewrite Equation (14) in terms of non-dimensional 

quantities: t’ = rt, X’ = X/h, K’ = K/h and c’ = c/(hr), as: 
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In what follows, for simplicity, we will omit the primes for the non-dimensional variables. The right 

hand side (rhs) of Equation (15) may be thought of as the gradient of a potential V associated with  

the problem: 
2 3

( arctan )
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such that the equilibria correspond to the roots of the first derivative of V: 
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This equation has one or three real roots (besides the trivial unstable solution X = 0), corresponding 

to one stable equilibrium state or two alternative stable states (separated by an unstable one). I want to 

remark that the presence of ASS is linked to the functional form assumed for the density dependent 

consumption. This can be modeled by different consumption functions, being the most popular: linear 

(or Holling type I), hyperbolic (or Holling type II) and sigmoidal (or Holling type III) [61]. Only for 

the sigmoidal consumption of Equation (14) there occur two stable equilibria separated by an unstable 

one and therefore do we have ASS. 

In Figure 5 the response curves obtained from Equation (17) for different values of K are depicted. 

For K ≤ Kc = 33/2  5.196 only one stable solution exists for each c. As long as we consider  

quasi-stationary evolution for increasing c, the system will exhibit a smooth response. On the other hand, 

for K > Kc, the response curve is folded backwards at two saddle-node bifurcation points. For certain 

values of c the system can be found either in the upper or the lower stable branch. If the system starts on 

the upper branch and c increases slowly, X will vary smoothly until a threshold value is found, where a 

catastrophic transition to the lower branch occurs. If at this point we want to reverse this transition by 

decreasing c, the system would not be able to recover its original state. Instead, the system would remain 

on the lower branch, until we decrease c enough to reach another threshold value and “jump” to the upper 

branch. From an ecological management viewpoint, it would be desirable to anticipate these transitions. 

Figure 5. Folding diagrams for different values of K. 
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A general formalism for treating these catastrophic regime shifts is the elementary catastrophe 

theory (ECT) developed by Thom [62]. However, ECT works for static and homogeneous (MF) 

systems, where there is no time or spatial dependence of the potential. To discuss dynamics or local 

properties, ECT must be extended by incorporating some external assumptions. A change of the 

control parameter, reflecting changes of the external conditions, modifies the form of the potential. 

Therefore, as the shape of the potential changes, an original global minimum in which the system sits 

may become a metastable local minimum because another minimum assumes a lower value, or it may 

even disappear. In this case the system must jump from the original global minimum to the new one. 

ECT does not tell us when, and to which minimum, the jump occurs. The criterion which determines 

this is called a convention. Before discussing conventions we need to introduce two important sets of 

points in parameter space which control structural changes of the potential. 

The first such set of points is the bifurcation set SB [63], the locus of the points (c,K) such that  

the second derivative of the potential V vanishes and then an attractor pops out or in. It divides the phase 

space into two regions corresponding either to single stability or bistability of the system (see Figure 6).  

The second set of points is called the Maxwell set SM [63]. On the Maxwell set the values of V at 

two or more stable equilibria are equal (see the inset of V for K = 7.5, c = 1.91 in Figure 6). 

Figure 6. Bifurcation set (solid line) with a cusp point at c = 8/33/2, K = Kc and the 

Maxwell set (dashed). The potential V is shown for selected values of c and K.   

 

SB and SM are connected to two commonly applied criteria or conventions. Systems which remain in 

the equilibrium that they are in until it disappears are said to obey the delay convention. On the other 

hand, systems which always seek a global minimum of V are said to obey the Maxwell convention. 

Indeed these two conventions correspond to two extremes in a continuum of possibilities. Furthermore, 

real systems may obey either of these two conventions depending on the rate of change of the control 

parameters or on other external conditions. When the control parameters, and so also the shape of V, 
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change very slowly the system tends to follow the delay convention. In contrast, when the control 

parameters change more quickly or when perturbations on the system are big enough, the Maxwell 

convention describes the dynamics better (more on this below). 

3.3. Spatial Model 

A two-dimensional continuum spatial version of the previous mean-field model is given by 
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where the carrying capacity K(x, y) is a spatial heterogeneous parameter that varies from point to point 

(while the parameter c is taken as uniform) and D is the diffusion coefficient measuring dispersion of X 

in space (given in units of the intrinsic growth rate 1/r from Equation (14)). To simulate this model we 

discretize the system in a L × L regular square lattice of spacing a, so each cell, centered at integer 

coordinates (i, j), can be associated with a patch of the ecosystem. This resulting cellular automaton (CA) 

is defined in terms of a von Neumann neighborhood, i.e., each cell is connected to its four nearest 

neighbors, and periodic boundary conditions (PBC) with L ranging from 100 to 800 (in fact, for 

different values of L in this range, no important differences were found). The number of time steps is 

typically 1000. 

The ranges of values for the parameters that we use are chosen to contain the region of alternative 

stable states determined by the MF equations: the carrying capacity K(i, j) varies randomly from cell to 

cell around a fixed spatial mean <K> = 7.5 in the interval [−δK, δK] where δK = 1.0–2.5. Typical 

values for the consumption rate c are between 1 and 3 and for d, a reduced diffusion coefficient related 

to D and the lattice spacing a by d = 4D/a2 are between 0.1 and 0.5. 

Several quantities can be measured from the time series produced by the model: 

• The spatial mean <X(t)>: 
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• The spatial variance σ2
X: 
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• The temporal variance σ2
t , computed from mean values of X at different times, which is  

defined as: 
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for temporal bins of size τ (typical values for τ are from 50 to 150). 

• The patchiness or cluster structure. Clusters of high (low) X are defined as connected regions of 

cells with X(i, j, t) > Xm (X(i, j, t) < Xm) where Xm is a threshold value. There are different 

criteria for defining Xm (see below). 

• The two-point correlation function for pairs of cells at (i1, j1) and (i2, j2), separated by a given 

distance R, which is given by: 
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G2(R) = <X(i1, j1)X(i2, j2)> − <X(i1, j1)><X(i2, j2)> (22)

3.4. Alternative Stable States and Early Warnings 

Let us now study the effect of gradually increasing stress on the system, varying c from 1 to 3 in 

steps of 2/1000. It is important to emphasize that we do not let the system “thermalize”, i.e., each 

measure is performed for a different value of the control parameter c. 

We will see that some characteristics of the spatial structure may serve as early warnings of 

catastrophic shifts of the system. 

 Mean and Variances 

Figure 7 presents <X>, σ2
X and σ2

t in terms of increasing c with <K> = 7.5, d = 0.1 and the initial 

condition for each X(i, j) in the interval [0, <K>]. The position of the peak for the spatial variance,  

cm  2.08, is earlier than the position of the peak for the temporal variance in nearly 110 time steps. So 

σ2
X works better than σ2

t as a warning signal for the upcoming transition. The reason for this is clear. 

When estimating the temporal variance one must consider past values in the time series, which 

correspond to situations where the ecosystem is far from undergoing a transition. The spatial variance 

considers only the present values, hence a signal announcing the shift is not blurred by averages 

including situations where these indications are absent. However, notice that when the peak in σ2
X 

occurs, <X> has already experienced a decrement of almost 50% over its initial value. 

Figure 7. <X>, σ2
X and σ2

t for d = 0.1, <K> = 7.5. The peak of σ2
X occurs at cm  2.08 and 

the peak of σ2
t at c  2.30. 

 

So far we have studied the shift for increasing c. Let us see what happens when c is decreased. In 

Figure 8 the hysteresis cycles, yielded by these backward shifts, are shown for different values of d. 

We observe two remarkable things. First, the peak in σ2
X is always narrower for the backward 

transition than for the forward transition. Second, the width of the hysteresis loop decreases with d, so 

diffusion tends to make the transition more abrupt.  
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Figure 8. <X> (black curves) and σ2
X (blue curves) for <K> = 7.5 and δK = 2.5, computed 

for forward and backward changes of the control parameter c. Results for d = 0 (above),  

d = 0.1 (middle) and d = 0.5 (below). 

 

 Correlation Function  

The spatial variance is a particular case (R = 0) of the two-point correlation function in Equation (22). 

In Figure 9 the two-point correlation is depicted for R = 0, 1, 2, 3 (R is measured along rows or 

columns of the matrix array of system’s cells). Notice that the peak of the correlation for any R occurs 

at nearly the same value of the control parameter c ≈ cm = 2.08. 

Figure 9. Two-point correlation function for different lengths R, d = 0.1, <K> = 7.5.  
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 Patchiness: Cluster Structure 

In order to study the cluster structure we must define a threshold Xm as a reference for the grid 

values X(i, j). For <K> = 7.5 and d = 0.1 the maximum in σ2
X is given at cm  2.08 (Figure 7). The 

value of <X> corresponding to cm is <K> cm  2.89 and we will take it as the threshold. In the first 

column of Figure 10 we include snapshots of typical patch configurations for c = cm − 0.1, c = cm and  

c = cm + 0.1 and in the second column a binary representation, i.e., dark red (blue) cells correspond to 

cells for which X > <X> cm (X << X> cm). The plots in the third column are the corresponding cluster 

distributions. At c = cm the patch-size distribution follows a power law over two decades—with 

exponent γ ≈ −1.1 for d = 0.1 and γ ≈ −0.9 for d = 0.5—which disappears for smaller or greater value 

of c. Therefore this particular distribution may be considered as a signature of an upcoming 

catastrophic shift in the system. 

Figure 10. First column: a portion of 50 × 50 cells from the original 800 × 800 lattice is 

shown, grids representing the value taken by X(i, j) at each cell for <K> = 7.5, d = 0.1. The 

rows correspond to c = 1.98, c = 2.08 and c = 2.18. Second column: same as the first, for 

binarized data (blue: cells with low vegetation density, red: cells with high vegetation density). 

Third column: number of clusters versus area on a logarithmic scale. 
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Catastrophes have characteristic fingerprints or “wave flags”. Some of the standard catastrophe 

flags are: modality, sudden jumps, hysteresis and a large or anomalous variance [63]. These are 

precisely the signals that we found for the ecological model considered, representing a species subject 

to exploitation (grazing, harvesting or predation). The development of methods to identify which 

behavior might be an appropriate signal when encountering a novel system as well as statistical 

methods that can distinguish between signatures of early warning behaviors and noise was recently 

discussed in [64]. 

3.5. Usefulness of the Spatial Early Warnings 

To determine the usefulness of the warning indicators presented in the previous section it is necessary 

to assess (1) their practicality and (2) whether they really allow the implementation of corrective 

actions to avoid the catastrophic shift. 

Calculating variances over grids consisting of a large number of sites (e.g., 400 × 400 or 800 × 800) 

is easy on a computer but involves a formidable task from a measuring point of view. So, in order to 

assess the practical difficulty of estimating σ2
X, I have performed calculations over sample grids of 

different sizes Ls < L. In Figure 11 we observe that the signal does not depend qualitatively on the 

number of points on the grid that are considered for estimating σ2
X. 

In fact, even for a very small sample of nine points, σ2
X still exhibits a noticeable peak. Of course, 

the quality of the signal improves with the size of the sample. 

Figure 11. σ2
X for <K> = 7.5, d = 0.1 and δK = 2.5, calculated for lattices of size Ls = 3 

(dotted line), 10 (dashed line) and 400 (full line). 

 

Concerning possible remedial actions, we will study the consequences of a simple remedial action 

consisting in immediately stopping the increase of the control parameter after it reaches some 

threshold value c*. In Figure 12, I show the effect of keeping c constant at c* for different values of c* 

and d. For instance, if the measure is applied at the very position of the peak of σ2
X, c* = cm  2.08 (for  

<K> = 7.5), its usefulness depends on the value of d. For d small (d = 0.1) the decay in <X(t)> 

stabilizes soon to a value above 2, i.e., the system remains in a mixed state. 
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Figure 12. <X> (black) and σ2
X (blue) for <K> = 7.5 in the case of a remedial action 

consisting in keeping constant the control parameter after it reaches some threshold value c*. 

The red line indicates a threshold c* coinciding with the peak of σ2
X, c* = cm  2.08. Full 

(dashed, dash–dotted) curves correspond to d = 0.1 (d = 0.5). The green line corresponds to 

a value of c* before cm, c* = 1.9. 

 

On the other hand, for larger values of d (d = 0.5) the decay in <X(t)> continues and the ecosystem 

passes to the alternative state with low biomass, <X(t)> < 1. This figure also shows that, for d = 0.5, 

the remedial measure is effective when applied before σ2
X reaches its maximum at cm, for c* = 1.9.  

It was checked that, for moderate or high diffusion (up to d = 0.5), this recipe of management works if 

c* is taken between the line corresponding to SM and the right fold line of SB (closer to the first than to 

the second one). So a possible criterion for choosing c* is as a point belonging to SM. 

3.6. Comparison with the Boiling Phase Transition: From the Delay to the Maxwell Convention 

To conclude this section it is enlightening to analyze similarities and differences for these 

catastrophe flags with those occurring in a liquid-vapor transition in a fluid, like water. In fact, this 

grazing model can be mapped into the van der Waals model since the right hand of Equation (15) is 

formally equivalent to the van der Waals equation of state. Indeed the non-dimensional Equation (17) 

for equilibrium can be mapped into a non-dimensional van der Waals equation assuming constant 

pressure (see Box 2). Therefore, the biomass density X would correspond to the fluid density, the 

liquid to the high biomass density attractor and the vapor to the low biomass density attractor. The two 

spinodal lines, denoting the boundary of instability of pure phases (liquid or gas) to decomposition into 

a liquid-gas mixture, for the van der Waals gas can then be identified with SB. Within this spinodal 

curve, infinitesimally small fluctuations in composition and density will lead to rapid phase separation 

via the mechanism known as spinodal decomposition [65]. Outside of the curve, the solution will be at 

least metastable with respect to fluctuations. An important remark is that this power law behavior for 

domains or patches exhibited as early-warning indicators in regime shifts is nothing to do with critical 

point phenomena. A critical point in statistical mechanics or thermodynamics occurs under conditions, 
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such as specific values of temperature and pressure, at which no phase boundaries exist (e.g., at the 

critical point of water the properties of liquid and vapor become indistinguishable) and is associated 

with second order phase transitions. Instead, the transition here is first-order, the two distinguishable 

phases coexist during the transition, and this behavior arises because the ecosystem is approaching the 

spinodal line. That is, the transformation from one phase to another at a first-order phase transition 

usually occurs by a nucleation process. Nucleation near a spinodal appears to be very different from 

classical nucleation. Droplets appear to be fractal objects and the process of nucleation is due to the 

coalescence of these droplets, rather than the growth of a single one [66]. As a consequence the 

domain size grows with a power law for spinodal decomposition [65].  

Box 2. Mapping from the grazing model to the van der Waals equation of state. 

 

Below I compare the above mentioned signals of catastrophic shifts for both systems. 

• Modality: the fluid is bimodal within the coexistence region, having well defined liquid and gas 

states. Hence in this aspect both systems are similar. 

• Sudden jumps: in the case of the fluid it is certainly true that sudden jumps occur, since there is 

an abrupt increase in volume when a liquid transforms into vapor. However, this large change in 

volume occurs when a slight change in the temperature and pressure moves the fluid from one 

side of the coexistence curve to the other. Hence, the liquid-vapor coexistence curve can be 

identified with SM and the water changes of state obey in general the Maxwell convention.  

On the other hand, the shift in the ecological model considered always obeys the delay 

convention: the ecosystem remains in the higher attractor (higher values of X) until the 

bifurcation set is completely traversed. However as mentioned before that, when perturbations 

are big enough to allow the switching between equilibriums on different stability branches, the 

system may follow the Maxwell convention. Hence we will consider the effect of a sudden 

perturbation of the environment, represented here by a sharp decrease of the average carrying 
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capacity <K> followed by a slow recovery. Figure 13 shows the evolution of the system for such 

a perturbation in <K>. Instead of remaining close to the initial attractor (upper branch of K = 7.5), 

the system rapidly falls to the lower branch of K = 6.0 (which corresponds to the minimum value 

of the potential V). Next it approaches slowly to the lower branch of K = 7.5 until it arrives at it 

for c  1.915. So one can conclude that this type of perturbation on the system produces a change 

of convention: from delay to Maxwell. 

Figure 13. The effect on <X> of a global perturbation on <K> which suddenly decreases 

from <K> = 7.5 to 6 and slowly recovers later. Thin lines represent “iso-K” curves for  

K = 7.5 and K = 6.0.  

 

• Hysteresis: in everyday situations one does not observe hysteresis in the liquid-gas phase 

transition of water—the liquid usually boils at the same temperature as the vapor condenses at. 

In other words, water changes of state obey in general the Maxwell convention. Nevertheless, a 

careful experimentalist can obtain a hysteresis cycle by first raising the temperature and 

superheating the liquid, and after evaporation, cooling the gas below the condensation point. 

Indeed the coexistence curve is surrounded by two spinodal lines which determine the limits to 

superheating and supersaturation. These spinodal or fold lines can then be identified with SB. 

• Anomalous variance: when a fluid condenses (boils) from its gas (liquid) to its liquid (gas) state, 

small droplets (bubbles) are formed. As a consequence, the variance of the volume may become 

large, which is similar to what happens for the ecosystem. This study illustrates well that the 

ultimate cause of the wide variations in patch size, giving rise to scale invariance, is spatial 

heterogeneity both in the initial conditions and the physical environment (i.e., in K). 
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Glossary of Statistical Mechanics terms of Section 3 

Anomalous variance: a particularly large variance at the onset of a catastrophic shift. A waving 

flags for such shifts is a sudden increase in the variance of certain relevant variable 

characterizing the state of the system (like the vegetation density). 

Control parameter: a parameter whose variation controls the qualitative properties of the 

solutions of a differential equation. 

Droplets: tiny drops formed by the condensation of a vapor or by atomization of a larger mass 

of liquid. 

Hysteresis: is the dependence of a system not only on its current state but also on its history. 

This dependence arises because the system can be in more than one equilibrium state i.e., it has 

alternative stable states. To predict its future development, in addition to its present state, its 

history must be known.  

The canonical example of hysteresis in physics is ferromagnetism. When an external magnetic 

field is applied to a ferromagnet (see Section 2) such as iron, the atomic dipoles align themselves 

with it. Even when the field is removed, part of the alignment will be retained: the material has 

become magnetized. Once magnetized, the magnet will stay magnetized indefinitely. To 

demagnetize it requires heat or a magnetic field in the opposite direction. In biology there are 

several examples of hysteresis e.g., mitosis in cell biology, the activation of T cells that have 

been previously activated in immunology, the desertification of semi-arid lands in ecology, etc. 

Hysteresis implies that the forward “path” described by the succession of states of a system when 

a control parameter (the external magnetic field in the case of ferromagnetism or the grazing 

pressure in desertification) increases is different from the backward path when this parameter is 

decreased, giving rise to an hysteresis loop. 

 

Long Range order: characterizes physical systems in which remote portions of the same sample 

exhibit correlated behavior. LRO occurs for example in second order phase transitions (see 

below) and implies power law behavior (however the reciprocal is not true). LRO can be 

expressed as a correlation function or two point correlation. 
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Nucleation process: is the extremely localized budding of a distinct thermodynamic phase. Some 

examples of phases that may form by way of nucleation in liquids are gaseous bubbles (boiling) 

or liquid droplets (condensation) in saturated vapor. 

Phase transitions: are changes of phase of some substance when the thermodynamic variables 

reach some critical values, e.g., the transition from liquid to gas in the boiling of water occurs at 

atmospheric pressure at sea level when the temperature reaches 100 °C. 

Order of a phase transition: Phase transitions can be divided in two large groups. First order 

transitions, in which the phases are distinguishable (for instance liquid and gas have very 

different densities) and coexist (like boiling in ordinary conditions in which the liquid and vapor 

coexist) and the transition absorbs or releases energy known as latent heat (e.g., to boil water in a 

pan the stove provides this latent heat). In second order transitions, on the other hand, the phases 

are no longer distinguishable and they involve no latent heat. Long range order is an important 

phenomenon of second order PT. 

Spinodal lines: are lines denoting, in a P-V diagram, the boundary of instability of pure phases, 

liquid or gas, to decomposition into a liquid-gas mixture. That is, the isotherms or lines of 

constant temperature in the P-V plane (blue curves) produced by the van der Waals equation 

have a non-physical piece, called “kink”, in which the volume V grows when the pressure is 

simultaneously P growing. The spinodal lines (red dotted lines) are the locus of the end points 

(big red dots) delimiting kinks in the van der Waals isotherms. From a mathematical point of 

view spinodals are the locus of bifurcations. 

Turing instability: Reaction-diffusion systems are mathematical models which explain how the 

concentration of one or more substances distributed in space changes under the influence of two 

processes: local chemical reactions in which the substances are transformed into each other, and 

diffusion which causes the substances to spread out over a surface in space. An important idea 

that was first proposed by Alan Turing is that a state that is stable in the local system should 

become unstable in the presence of diffusion. 

van der Waals equation: The simplest equation of state for a gas is the ideal gas state equation 

relating the pressure P, the temperature T and the density of the gas n (number of moles per 

volume V) by P = nRT, where R is the gas constant. The ideal gas denies the interaction between 

molecules, which is crucial to yield a phase transition from gas to a liquid state. The van der 

Waals equation represents a step further since it takes into account molecular interactions and 

then it is able to model the liquid-gas phase transition (for example water boiling in a pan). 

4. Nonequilibrium Dynamics in Cellular Automata Model for the Dynamics of Tropical Forests 

A central challenge in ecology is to understand and predict the organization and spatial distribution 

of biodiversity using mechanistic models. Ecologists have pursued to understand the spatial 

distribution of species at multiple spatial scales [67–69], ranging from species-area relationships SAR, 

i.e., the number of species in a given area at a coarse scale, to the patchiness or degree of spatial 

aggregation of individuals of a species at a local scale. This long-lasting interest can be explained 

because biodiversity patterns provide critical information to grasp the forces that structure and 

maintain ecological diversity [70,71]. The coexistence of many species of the same trophic level with 
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similar resource needs (and hence substantial niche overlaps) in spatially and temporally homogenous 

habitats has remained a puzzle in ecology [21,26,72,73]. In this section, first I review the uses of 

statistical mechanics in the main ecological theories for biodiversity. Next I focus on tropical forests, 

an example of mega-diverse and out-of-equilibrium community, from a LVCNT point of view. Since 

they are communities of sessile individuals, it is natural to consider that interspecific competition 

occurs simultaneously both in niche and physical space. This leads to the formulation of a spatially 

explicit or cellular automaton (CA) model. I show that this CA, based on Lotka-Volterra competition 

equations and using a stochastic update rule, describes quite well the biodiversity dynamics found for 

tropical forests. 

4.1. Three Main Theories for Biodiversity—Classical, Neutral and Maxent—and the Use of Statistical 

Mechanics Methods 

Three main alternative theories addressed the challenge posed by biodiversity. Firstly, the classical 

theoretical framework of ecology, in which interspecific competition is the main processes proposed to 

explain the main patterns of biodiversity, particularly for species that have overlapping niches because 

of their sharing of similar resource needs [72]. This is LVCNT introduced and discussed in Section 1. 

Secondly, the neutral theory of biodiversity (NTB) [74] predicts a set of biodiversity patterns from the 

ecological drift of functionally equivalent species with identical niches whose individuals have similar 

prospects of birth, death and dispersal. NTB is able to reproduce the relative species abundances (SRA), 

the species-area relationship (SAR) and main biodiversity indices in tropical forests with only four 

parameters with an accuracy and consistency that have elluded the classical niche-based  

theory [74]. However, NTB has been criticized for ignoring the strong evidence of functional [75] and 

fitness differences [76] among species. Thirdly, the maximum entropy theory of ecology (METE) [77] 

based upon an extremum principle. The optimized quantity is the entropy subject to constraints on 

macroecological “state variables” (the number of species, the total number of individuals in all those 

species and the total rate of metabolic energy consumed by all those individuals).  

There have been important developments based on statistical mechanics for the three main 

biodiversity theories mentioned above. Indeed METE is an equilibrium statistical mechanics 

formulation for making inferences in ecology. It is based on the mathematical procedure of Maximum 

Information Entropy (MaxEnt), developed by Edwin T. Jaynes [78] to make predictions from 

incomplete information [9]. Numerous tests of METE predictions for spatial abundance distributions, 

and species-area relationships were presented [79,80]. In the case of NTB, a non exhaustive list of 

selected examples includes, the mapping of NTB into an urn model or Markovian description by 

means of an expansion of the master equation [81]; an analytically tractable variant of the voter model 

that provides quantitatively accurate two-point correlation functions, SRA and SAR in two tropical  

forests [82]; analytical results for the similarity function, i.e., the probability F(r) that two trees 

separated by a distance r belong to the same species [83]; the development of technical methods to 

study SAR from a spatially explicit extension of Hubbell’s neutral model [84]; an explanation of the 

species coexistence in terms of stochasticity and dispersal-limitation [85]; the study of spatial effects 

on species persistence and their implications for biodiversity [86]. 
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Statistical mechanics methods have been used to address Lotka-Volterra general competition 

equations for more than forty years [87–89]; competition along a niche axis (see review [90] and 

references therein); and also there have been many different lattice Lotka-Volterra studies [91–94]. 

However the combination of competition simultaneously in niche and physical space, i.e., spatially 

explicit LVCNT models, is very recent [95,96] and will be the focus of the next subsections. 

4.2. Describing Tropical Forests by the Transient Regime of Spatial LVCNT 

Tropical forests are mega-diverse communities containing typically several hundreds of species of 

trees in 50 ha plots, i.e., as many tree species as there are in all of US and Canada combined. These 

permanent plots of tropical forests which have been exhaustively censused over time show three 

relevant facts [97]. First, the data clearly reveal that these systems are far from stationary: the Barro 

Colorado Island (BCI) plot (Panama) has lost 37 species in 23 years, while the Bukit Timah plot 

(Singapore) had an average rate of species loss of 8% between consecutive censuses [97], etc. Second, 

besides their non-equilibrium dynamics, the SRA for all tropical plots are very uneven: few common 

species and many rare species [97]. For example the 1982 census for BCI reveals that ten tree species, 

of a total of 320 registered species, comprise more than half of the total population of trees. Third, for 

all the plots for which there is more than one census, the number of coexisting species or species 

richness, S, always decreases from one census to the next [97]. 

NTB and METE, at least in their standard original form, both are static theories, focused on steady 

state and their theoretical predictions are typically compared with census data of large tropical forest 

plots viewed as snapshots [74,77]. Being systems far from equilibrium, fitting detailed snapshots of 

tropical forest plots can only describe transitory configurations but cannot help understand the 

mechanisms underlying the observed dynamics. However, it is worth mentioning that there have been 

developments to include dynamics for both NTB [98–101] and METE [102]. By contrast LVCNT 

intrinsically a dynamic theory. In section 1 we have seen that for a large initial number of species n, 

LVCNT is able to produce this sort of uneven SRA provided the niche width σ >> 1/n and only for the 

transient regime (well before equilibrium is reached). In fact the equilibrium state consists in a very 

small number n∞ of surviving species (e.g., n = 200, σ = 0.1 >> 0.005 = 1/n, then n∞ = 4). Therefore it 

seems natural to analyze non-equilibrium communities of trees through the transient regime of 

LVCNT. We will focus on LVCNT and its predictions for tropical forests when analyzed in the 

transient regime. 

Another common assumption of the above three biodiversity theories (at least in their classical 

formulation) is the well mixing hypothesis or the mean field approximation. This assumption clearly 

fails for sessile individuals like trees for which there is local recruitment [103] and local competition 

for resources [104,105]. Therefore, incorporating the spatial setting seems crucial to describe the 

dynamics of tropical forest plots. 

Our aim is thus to formulate a parsimonious model depicting tree competition as a local interaction 

whose strength depends on the degree of niche overlap between neighboring individuals. This model 

has to include only the minimal set of realistic biological features sufficient to accurately predict a set 

of commonly used biodiversity metrics. Hence we will consider a cellular automaton (CA) model with 
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a variable, that take values on a one-dimensional axis, and who lives in a two dimensional regular 

lattice, representing physical space. 

4.3. A Cellular Automaton Model Based on Lotka-Volterra Competition Niche Theory 

All the L×L cells of the CA are occupied by one individual, representing a tree belonging to a given 

species s = 1, 2,...,n. The number of individuals, N = L×L, remains constant (as in the NTB [74]).  

The entire community is closed to migration from the outside and we consider periodic boundary 

conditions to avoid border effects. As in section 1, we assume the simplest one-dimensional, finite 

niche scaled in [0, 1] wherein the resource utilization function of each species s is defined by a normal 

distribution P(s) whose mean μ(s) and standard deviation σ(s) indicate the position and width of the 

niche of species s. The positions of the species niches were chosen by randomly drawing the values of 

μ from a uniform distribution at the beginning of each simulation and were not changed during the 

simulation. Each focal individual, located at site i, belonging to a species si only interacts with the eight 

neighbors of its Moore neighborhood Mi. The strength of its competition with a neighbor of species sj, 

αij, is proportional to the niche overlap between species si and sj. This overlap is determined by a 

symmetric version of MLNO Equation (2) (the symmetry of the competition coefficients is a neutral 

assumption in the absence of precise details of the interaction between pairs of species) for a linear 

niche [34]:  

2)(( )/2 erf ((2 ) / 2 ) erf (( ) / 2 )
2

erf ((1 ) / ) erf ( / ) erf ((1 ) / ) erf ( / )
i j i ji j

ij
i i j j

e
        


       

     


    
, (23)

where μk  μ(sk) and σk  σ(sk). We further assume that all species were functionally and 

demographically equivalent by having the same niche width: σi = σ (which could be regarded as an 

average niche width). Hence, the fitness f(si) of a focal individual of species si located at site i is given 
by ( ) 8

i
i ijj i M

f s 
 

  , where the “8” corresponds to the numbers of neighbors of i and it ensures 

that fi is always non-negative. Thus, f(si) has its maximum value when the focal species si has minimal 

overlap with its eight neighbors, and minimal when their niche overlaps are maximal. The functional 

equivalence between species is consistent with the chosen normalization for the αij (Equation (23)) to 

assure that the matrix α is symmetric.  

The model contains three free parameters: the already mentioned niche width for each species, σ, 

plus the dispersal rate from outside of each neigborhood, m and a “temperature”, T. Both m and T 

introduce stochasticity in the local replacement of focal individuals in the model. The dynamics of this 

stochastic cellular automaton is governed by the popular Glauber update rule [106,107] for lattice 

models in which the following steps are repeated: (I) A focal individual of species si, located at site i, 

is randomly chosen (with probability 1/N); (II) This focal individual is replaced with probability m, 

representing the non-local dispersal of seeds by wind or animals, by another randomly chosen 

individual of species sk from outside its neighborhood Ωi. And with probability (1 − m)*Pr(s; si → sj) 

by a randomly chosen neighbor of species sj where    1

Pr( ) 1 exp ( ) ( ) /i j i js s f s f s T


       . 

The probability that the focal individual si is replaced by its neighbor sj is greater as the difference 

between individual fitnesses f(sj) and f(si) increases. If the stochasticity parameter T = 0, then the 
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change from si to sj is accepted if and only if f(si) < f(sj) (I analyzed this update rule for a CA 

simulating a more general ecological context in which in addition to mutual competition there can be 

mutual cooperation and competition-cooperation relationships [108]). On the other hand, for very large 

values of T, Pr(si → sj) approaches to ½, i.e., a totally random process. 

4.3.1. Estimation of Parameters  

The CA was designed to simulate the spatio-temporal dynamics of all trees of diameter at breast 

height (dbh) ≥ 1 cm in two large (50 ha), permanent plots of tropical forests; one at Barro Colorado 

Island (BCI) in Panama and the other at Passoh in Malaysia. For each analyzed plot, L was chosen in 

such a way that L×L is the closest multiple of ten to the maximum number of trees (with dbh ≥ 1 cm) 

measured along the different censuses, Nmax 
e , while the initial number of species, n, was set equal to the 

species richness found for the first census, S1 
e  (the subscript e stands for “empirical”). For example, for 

BCI (Nmax 
e  = 244,062 for 1990 and S1 

e  = 320 for 1982 [97]): L = 500 and n = 320. 

A sequential procedure was used to estimate the adjustable parameters σ, m, and T whose values 

provide the best fit to the observed dynamics of the set of censuses of each forest. In contrast to 

equilibrium systems, for non-equilibrium systems time is an essential degree of freedom. So the 

question of when to stop simulations and compare with empirical data to estimate the model 

parameters is not trivial. There is no clear-cut or universally accepted criterion to set the number of 

evolution steps t. It turns out that while σ and m were enough to reproduce with accuracy the values of 

all biodiversity metrics found at the first census of each forest plot, T was a “fine tuning parameter” 

required to improve the agreement between observed and theoretical values of biodiversity metrics 

calculated for subsequent censuses. Therefore, for each plot, the procedure as follows. 

In a first stage, using only data of the first census, σ and m were estimated. To do this an array of 

values in the plane σ-m, generated by varying σ in [0.05, 0.1] in steps of ∆σ = 0.001 and m  

in [0.02, 0.12] in steps of ∆m = 0.01, was systematically searched. As mentioned, it is unknowable  

a priori how many simulation steps are required to yield a configuration comparable to the one 

observed in the first census starting from random initial conditions. The Shannon equitability index,  

H = 
1

log / log( )
n

s s

s

N N
n

N N

   
 

  (where Ns is the abundance of species s), was used to decide when to 

stop simulations. That is, for each given pair (σ, m), 100 simulations (100 different initial conditions) 

were run until H was equal to the empirical value H(1) 
e  for the first census with an accuracy of 1%. 

Replacements of species having only one individual were prevented in order to constrain the CA 

configuration corresponding to the first census to the observed S(1) 
e  species. Among all the pairs σ-m it 

was chosen the one such that the coefficient of determination R2 
et of the linear regression between the 

observed and predicted (average over the 100 simulations) RSA distributions, was the highest (in all 

the cases R2 
et ≥ 0.95). 

In a second stage, the pair of fitted values of σ and m was then used to estimate the other parameter, T. 

I restarted the simulation at each CA configuration corresponding to the first census now allowing 

species to become extinct so that the predicted forest dynamics could describe the observed changes in 

S for the remaining censuses of each forest. Proceeding in a similar way as before, it was 

systematically searched for the best fitting value of T in [0.5, 5.0] in steps of ∆T = 0.5. For each 
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candidate value of T, the number of simulation steps between consecutive censuses for a given 

simulation was set whenever the absolute values of (H − H(2) 
e )/H(2) 

e  or (S − SH(2) 
e )/S(2) 

e  became ≤ 0.01 (the 

first that was satisfied). As before, the best estimate of T was the one that predicted the highest R2 
et for 

all censuses. We obtained the parameters summarized in Table 1. 

Table 1. CA parameters for BCI and Pasoh, values of empirical quantities (in bold) and 

predicted species richness. 

Forest L n σ, m, T H1 
e  Species richness, S 

Pasoh 
(Malaysia) 

580 823 0.085, 0.11, 0.5 0.842 
823, 819, 811, 808  

823, 821 ± 2, 815 ± 4, 808 ± 5 

Barro Colorado 
(Panamá) 

500 320 0.077, 0.10, 3.0 0.694 
320, 318, 303, 299, 292, 283 

320, 314 ± 4, 300 ± 5, 293 ± 6, 287 ± 7, 281 ± 7 

In each simulation, the sequence of replacement events led to a different set of values of the 

biodiversity metrics. Consequently, the matching between theoretical and observed biodiversity 

metrics occurred after different numbers of individual replacement events in each of the 100 

simulations. The average number of steps for BCI and Pasoh corresponding to consecutive censuses 

were, respectively, <∆tBCI> = 950,000 and <∆tPasoh> = 435,000, i.e., an approximately 2:1 relationship. 

A higher <∆t> for BCI than for Pasoh reflects the fact that BCI is more dynamic than Pasoh [109]. The 

value of <∆t> for a forest plot should be proportional to the total number of trees N (the larger the 

number of trees, the larger the replacement attempts needed) as well as to the fraction of species that 

went extinct on average between consecutive censuses ∆S (idem), and inversely proportional to the 

average (over censuses) number of species with one individual Σ1 (which represents the species most 

likely to become extinct). It turns out that NBCI ∆SBCI/Σ
1

BCI = 250,000  9.8/20.3 = 120,690 [97] while  

NPasoh ∆SPasoh/Σ
1
pasoh = 336,400  5.0/24.5 = 68,653 [97], which are absolutely consistent with the 

above 2:1 relationship. 

4.4. Results and Discussion 

Let’s compare model predictions with data from censuses of plots at BCI (six censuses: 1982, 1985, 

1990, 1995, 2000 and 2005) and Pasoh (four censuses: 1987, 1990, 1995 and 2000) [97]. 

The model is able to fit the main biodiversity metrics used to characterize community structure such 

as SRA (Figures 14 and 15) and SAR (Figure 16) with similar accuracy as NTB or METE. However, a 

distinctive feature of this CA competition model is its capacity to accurately predict the observed 

dynamics of the species richness and of the SRA for subsequent censuses to the first for these two 

considered plots. Most analyses of tropical forests to date have considered and predicted biodiversity 

metrics of consecutive censuses as independent, isolated snapshots. 

The CA model can also fit and explain other biodiversity metrics related to spatial aggregation that 

NTB cannot. For example, it reproduces the observed tendency of rarer species to be more strongly 

aggregated in tropical forests, a feature that neither NTB nor METE can explain. This pattern can be 

easily understood in terms of local competition and is related to the result for LVCNT analyzed in 

Section 1: the SRA represented on the niche axis displays a pattern with clumps and gaps (Figure 17). 

That is, rarer species’ niches are located in the gaps between clumps in the niche space and that these 
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species turn out to be poorer competitiors. The association between rarity and spatial aggregation arose 

because rare species could only avoid competitive displacement by being surrounded by either 

conspecifics or by species with which they had a minimal niche overlap. 

Figure 14. Observed (black) and predicted (gray) distributions of relative species 

abundances (RSA): % in log scale vs. species ranked abundance for all trees with  

dbh ≥ 1 cm in BCI for censuses corresponding to 1982 (a), 1985 (b), 1990 (c), 1995 (d), 

2000 (e) and 2005 (f). S denotes the species richness (i.e., the number of coexisting 

species). The predicted values correspond to averages ± std of 100 model simulations for 

the best estimates of model parameters. 

 

Figure 15. Observed (black) and predicted (gray) distributions of relative species 

abundances (RSA): % in log scale vs. species ranked abundance for all trees with  

dbh ≥ 1 cm in Pasoh for censuses corresponding to 1987 (a), 1990 (b), 1995 (c) and  

2000 (d). S denotes the species richness. The predicted values correspond to averages ± std 

of 100 model simulations for the best estimates of model parameters. 
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Figure 16. Species-area relationships (SAR) and for selected censuses of tropical forests. 

Predicted curves correspond to averages over 100 simulations, and the error bars correspond 

to one std. Observed and predicted (grey line) number of tree species with  

dbh ≥ 1 cm for sampling areas of different sizes at BCI 1990 (∆) and Pasoh 1987 (×). 

 

In fact we can’t know a priori the correspondence between each species and its position on the 

niche axis. Only after leaving the CA evolve we can attempt to map the niche axis by comparing the 

empirical SRA against the theoretical SRA and matching species in such a way that the theoretical 

most abundant species corresponds to the most abundant empirically observed, the theoretical second 

most abundant species corresponds to the second most abundant observed, and so on. Since the SRA 

are very uneven, this procedure makes sense only for the most abundant species i.e., for the great 

majority of species the differences in abundances are within the error bars (Figures 14 and 15).  

In Table 2, I present the list of the ten most abundant species for BCI in the 2005 census together with 

the ten most abundant theoretical species and their corresponding niche position. I also include the 

mean and maximal dbh for these tree species [110–112] (rows marked in gray correspond to species 

with relatively low dbh). Figure 17 depicts a tentative identification of the most abundant species at the 

BCI plot, those belonging to the main clumps at the ends of the niche axis, using the information of 

Table 2. It turns out that species at the left (right) hand of the niche axis correlate quite well with trees 

having large (small) dbh [97,110–113]. This would suggest that the one dimensional niche axis 

corresponds to a growing function of the dbh of trees. 

A remarkable result is that a niche width for both analyzed forest plots of σ ≈ 0.08 implies by 

Equation (23) that the strength of interspecific interactions is on average <αij> ≈ 0.25. Since, by 

construction, <αii> = 1 it means that the average interspecific competition strength is one-quarter of the 

intraspecific competition strength. This factor of 0.25 corresponds to an intermediate value between 

the extreme claims of the neutral model, where species are functionally identical and have independent 

dynamics i.e., <αij> = 0, and the classical niche-based model of community assembly, where 

interspecific competition is dominant i.e., <αij> > 1. 
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Table 2. The ten most abundant species of BCI, dbh properties and the niche position 

according to our CA.  

Genus Species <dbh> (cm) * max dbh (cm) *
Empirical 

Abundance **  

Theor. 

Abundance 

Niche 

position 

Hybanthus Prunifolius 2.24 8.8 29,846 31,115 0.008 

Faramea Occidentalis 4.54 23.2 26,038 29,560 0.998 

Trichilia Tuberculata 5.49 65.3 11,344 13,711 0.995 

Desmopsis Panamensis 2.59 13.1 11,327 13,152 0.012 

Alseis Blackiana 5.64 91.1 7,754 8,013 0.993 

Mouriri Myrtilloides 2.17 5.0 6,540 7,758 0.013 

Garcinia Intermedia 5.68 41.5 4,602 4,707 0.988 

Hirtella Triandra 4.71 48.3 4,566 4,193 0.984 

Tetragastris Panamensis 4.64 75.9 4,493 3,744 0.981 

Psychotria Horizontalis 1.77 6.3 3,119 3,443 0.021 

Gray rows correspond to tree species with small dbh and their theoretical correlates with low niche position. 

*: [109–111], **: [96]. 

Figure 17. An attempt to identify the most abundant species found at BCI in 2005 with it 

corresponding theoretical species (same ranking order) and then to locate them along the 

niche axis (see Table 2 ). 

 

In the same spirit of statistical mechanics, this CA description shows that it is unnecessary to model 

the detailed “microscopic” dynamics in a landscape to accurately predict the aggregate, macroscopic 

variables characterizing the composition and dynamics of large and complex ecosystems such as 

tropical forests. In fact, it seems that local competitive interactions coupled with limited, stochastic 

dispersal can give rise to the non-equilibrium dynamics for a niche width identical to all tree species 

and that takes similar values for the two forests analyzed. This functional similarity among species that 

can be interpreted as neutrality is not a fundamental building assumption of this CA model but rather 

an emergent outcome [34]. This emergent neutrality may explain why many results reported here could 

be indistinguishable from those predicted by the NTB [114] and its CA implementations [115]. 
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Glossary of statistical mechanics terms of Section 4 

MaxEnt (maximum entropy principle): A principle that states that the probability distribution 

which best represents the current state of knowledge on a system is the one with maximizes its 

entropy subject to the constraints imposed by prior knowledge. It is based on a correspondence 

between statistical mechanics and information theory. The basic idea is that entropy of statistical 

mechanics and the information entropy of information theory are the same thing. Consequently, 

statistical mechanics should be seen just as a particular application of a general tool of logical 

inference and information theory. 

Stochastic Cellular Automata: Stochastic Cellular Automata are CA whose updating rule is a 

stochastic one, which means the new entities’ states are chosen according to some probability 

distributions. They are models of “noisy” systems in which processes do not function exactly as 

expected, like most processes found in natural systems. Stochastic CA are discrete-time random 

dynamical systems. 

5. Concluding Remarks 

In Sections 2 and 4 we addressed community assembling, a central issue of ecology, from a niche 

theory perspective. In Section 2 the analysis was general, with no reference to any specific ecological 

community, using the simpler MF approximation. We focused on the so-called emergent  

neutrality—the appearance of a clumpy pattern in niche space. In Section 4, I chose a specific kind of 

community, trees in tropical forests, for which interactions are mostly local and thus requires a 

spatially explicit model, and it was shown how parameters can be estimated from large datasets. 

The phenomenon of clumping discussed in Section 2 is related with many interesting issues in 

Biology. One of them is the possibility of sympatric speciation (the process through which new species 

evolve from a single ancestral species while inhabiting the same geographic region) driven by 

competition for resources. For example it was recently shown that an individual-based evolutionary 

model, involving a population of genetically diverse organisms competing with each other for limited 

resources, exhibits a pattern-forming instability which is highly amplified by the effects of demographic 

noise [116]. This mechanism, which leads to the spontaneous formation of genotypic clusters, is a nice 

example of the application of statistical mechanics beyond mean field theory in ecology supporting the 

thesis that stochasticity has a central role in the formation and coherence of species. In addition, 

demographic noise greatly enlarges the region of parameter space where pattern formation very similar 

to those produced by Turing instability occurs [5]. This result may account for the prevalence of large-

scale ecological patterns, beyond that expected from traditional nonstochastic approaches. 

It is worth to mention that the clumpiness can also be related to the SAR analyzed in Section 4.  

It was argued that SARs are a robust consequence of a skewed species abundance distribution 

resembling a lognormal with higher rarity, together with the fact that individuals of a given species 

tend to cluster [117]. In Section 4 it was also mentioned that most biodiversity metrics predicted by 

niche and neutral theories are difficult to distinguish empirically, making it problematic to deduce 

ecological dynamics from these measures of diversity and community structure. Concerning the niche 

vs. neutrality issue I would like to point out two interesting recent findings. One is that neutral models 
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are just a subset of the majority of plausible models that lead to the same patterns [118]. The authors 

arrived to this result by applying MaxEnt, and in turn also providing a link between NTB and MAxEnt. 

The other finding is related to quantifying the relative roles played by niche and neutral forces. A 

proposed methodology for addressing this problem in the case of microbial communities, by fusing 

measures of abundance with phylogenetic information, suggests that apparently neutral patterns of 

diversity and abundance can arise from niche-dominated dynamics [119]. These results seem consistent 

with the idea of emergent neutrality as a synthesis of both opposing viewpoints [34]. 

Another remarkable point is that the success of statistical mechanics in predicting ecological  

spatio-temporal observables for ecosystems out of equilibrium (Sections 3 and 4) implies that communities 

are in dynamic equilibrium and hence that temporal fluctuations on all sorts of scales are likely to be 

important in community structure [120]. The catastrophe theory approach of Section 3 allows to 

identify early warning indicators of catastrophic shifts in ecosystems as well as to establish parallels 

with the well known physics of phase transitions. This relationship in turn opens the use of statistical 

mechanics techniques to anticipate undesired and often difficult to revert changes in ecosystems. 
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