
Entropy 2013, 15, 4889-4908; doi:10.3390/e15114889
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Fluctuations of Intensive Quantities in
Statistical Thermodynamics
Artur E. Ruuge

Department of Mathematics and Computer Science, University of Antwerp,
Middelheim Campus Building G, Middelheimlaan 1, Antwerp B-2020, Belgium;
E-Mail: artur.ruuge@uantwerpen.be; Tel.: +32-3-265-3872; Fax: +32-3-265-3777

Received: 17 September 2013; in revised form: 31 October 2013 / Accepted: 6 November 2013 /
Published: 11 November 2013

Abstract: In phenomenological thermodynamics, the canonical coordinates of a physical
system split in pairs, with each pair consisting of an extensive quantity and an intensive
one. In the present paper, the quasithermodynamic fluctuation theory of a model system of
a large number of oscillators is extended to statistical thermodynamics based on the idea
of perceiving the fluctuations of intensive variables as the fluctuations of specific extensive
ones in a “thermodynamically dual” system. The extension is motivated by the symmetry of
the problem in the context of an analogy with quantum mechanics, which is stated in terms
of a generalized Pauli problem for the thermodynamic fluctuations. The doubled Boltzmann
constant divided by the number of particles plays a similar role as the Planck constant.
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1. Introduction

In quantum mechanics, it is a standard practice to perceive the Planck constant, ~, as a small parameter
of the semiclassical approximation [1,2] and to write ~→ 0. One should keep in mind that, in principle,
the symbol, ~, denotes a fundamental constant, which has a nontrivial physical dimension:

~ = 1.0545716× 10−27erg · s (1)

The smallness of ~ must be perceived in comparison to the “classical action”, i.e., to the typical values
of the classical action variables in the Hamilton-Jacobi formalism.

In statistical thermodynamics, the Boltzmann constant:

kB = 1.3806488× 10−16erg ·K−1 (2)
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is a natural candidate for a similar role. The notation, kB → 0, looks just like ~ → 0, but it is relatively
uncommon. Nonetheless, it can be defined in such a way that the corresponding limit transition is
equivalent to N → ∞, the large number of particles limit restricted by the condition that the values
of specific extensive quantities (e.g., average energy per particle) remain fixed. One may compare this
to an equivalent point of view on ~ → 0, which is also termed the “large quantum numbers” limit in
quantum mechanics.

It is convenient to separate three levels of description of an abstract mechanical system:

L1: Classical mechanics;
L2: Semiclassical mechanics;
L3: Quantum mechanics.

In thermodynamics, there are also three levels:

Λ1: Phenomenological thermodynamics;
Λ2: Quasithermodynamics;
Λ3: Statistical thermodynamics.

Quasithermodynamics is the theory of fluctuations of thermodynamic quantities if the number of
particles in the system, N � 1, is large, but not “huge”, and statistical thermodynamics is the
microscopic theory of heat associated with such concepts as the Gibbs distribution and the constant, kB.
Phenomenological thermodynamics is described by the facts that the amount of a chemical substance in
a system is measured in moles ν and not as a number of particles, N . The Boltzmann constant is not
introduced into the theory yet, but the universal gas constant:

R = 8.3144621× 107 erg ·K−1 ·mol−1 (3)

is well defined.
It is a rather special coincidence that two so different theories, like classical mechanics and

phenomenological thermodynamics, are closely related to such a fundamental mathematical concept,
like the Lagrangian manifold. Moreover, a further analysis [3–5] leads to an idea of axiomatizing the
asymptotic expansions of the partition function in terms of the tunnel canonical operator [6,7].

Take an abstract phenomenological thermodynamic system with extensive coordinates
E = (E0, E1, . . . , Ed). The entropy function S = S(E) satisfies S(λE0, λE1, . . . , λEd) = λS(E),
for all λ > 0. According to the first law of thermodynamics:

dS(E) = β0dE0 + β1dE1 + · · ·+ βddEd (4)

where β = (β0, β1, . . . , βd) is the collection of the corresponding intensive coordinates. For example,
take a one component system with ν moles of chemical substance described by the coordinates, E0 = ν,
the internal energy, E1, and the volume, E2, d = 2. Then, β0 = −µ/T , β1 = 1/T , and β2 = p/T , where
µ is chemical potential, T is absolute temperature and p is pressure.

Assume that S = S(E) is a smooth function over a domain, D ⊂ Rd+1(E), and consider a manifold,
ΛS ⊂ R2(d+1)(β,E):

ΛS = {(β,E) | βj = ∂S(E)/∂Ej, E ∈ D, j = 0, 1, . . . , d} (5)
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Let i : ΛS → R2(d+1)(β,E) be the canonical embedding, and put:

ω =
d∑
j=0

dβj ∧ dEj (6)

The two-form ω defines a symplectic structure on R2(d+1)(β,E), and we have: i∗(ω) = 0, i.e., ΛS

is a Lagrangian manifold with respect to ω. Note that ω does not depend on S, and therefore, ΛS is a
Lagrangian manifold for any S.

The Lagrangian manifold, ΛS in thermodynamics is connected and simply connected; plus, there is a
condition at infinity corresponding to the third law of thermodynamics. Furthermore, ΛS is covered by a
single global chart with coordinatesE = (E0, E1, . . . , Ed). The states of the thermodynamic equilibrium
of the system are in one-to-one correspondence with the points of ΛS , and it is convenient to lift
S = S(E) to a function Ŝ = Ŝ(α) on the Lagrangian manifold, α ∈ ΛS , so that dŜ = i∗(

∑d
j=0 βjdEj).

If we perceive Ej , j = 0, 1, . . . , d as an analogue of generalized coordinates in semiclassical mechanics,
then the entropy is an action on the Lagrangian manifold of the equilibrium states of a thermodynamic
system in the E-chart.

Consider now an abstract mechanical system with D degrees of freedom described by coordinates
q = (q1, q2, . . . , qD) and the canonically conjugate momenta p = (p1, p2, . . . , pD) corresponding to the
symplectic structure ωcl =

∑D
i=1 dpi ∧ dqi on the phase space R2D(p, q). Take a Lagrangian manifold,

Λcl ⊂ R2D(p, q), and assume that U ⊂ Λcl is a q-chart on Λcl. In semiclassical mechanics, the
action Scl = Scl(q) in U has another important interpretation: it corresponds to the phase of the fast
oscillating exponent in the Wentzel-Kramers-Brillouin (WKB) ansatz for the wavefunction, ψ~(q), in
the Schrödinger equation, ψ~(q) ∼ exp(iScl(q)/~). It is natural to expect that the semiclassical ~ → 0

methods of quantum mechanics can be “transplanted” to a thermodynamic Lagrangian manifold, ΛS ,
and that this might lead to some new insights about statistical thermodynamics.

There exists a certain similarity between the quasithermodynamic fluctuation theory and the
Heisenberg uncertainty relation, which has attracted the attention of many researchers [8–15]. This fact
has already been known to N. Bohr and W. Heisenberg, who have tried to extend the philosophical
concept of complementarity to thermodynamics. The corresponding analogy is far from being
straightforward, since it depends strongly on the interpretation of the nature of intensive thermodynamic
quantities. In [16–18], it is suggested to “span” a Pauli problem [19,20] over the fluctuations of
thermodynamic quantities considered in the quasithermodynamic approximation. The similarities in
the mathematical formalism of the classical mechanics and phenomenological thermodynamics are
quite of interest from the perspective of relativistic quantum physics [21–25], as well as in “quantum
thermodynamics” in the sense of [26–29]. There are also attempts to extend the analogy with
quantum mechanics to non-equilibrium thermodynamics [30–35]. It is worth mentioning that numerical
simulations of non-equilibrium multiparticle systems on a computer admit a natural parallelization [36].

The present work focuses on the equilibrium case. In quasithermodynamics, the intensive quantities
and the specific extensive quantities enter the theory in a very symmetric way. We consider a problem of
extension of this symmetry to statistical thermodynamics. The basic idea is to perceive the fluctuations
of intensive quantities as fluctuations of specific extensive quantities in another auxiliary system.
We provide a model example of thermodynamic duality and then state a generalized Pauli problem.
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It turns out that 2kB/N , where N is the number of particles in the model system, plays the same role as
~ in quantum mechanics.

2. Quasithermodynamics and Quantization

The Planck constant, ~, is similar to the Boltzmann constant, kB, but there is an essential difference.
In semiclassical mechanics, it enters the Bohr-Sommerfeld quantization condition, which for an abstract
D-dimensional mechanical system on a Lagrangian torus, Λcl ⊂ R2D(p, q), modulo the correction given
by the Maslov index, is of the shape:

1

2π

∮
γk

D∑
j=1

pjdqj ∼ ~nk (7)

where nk ∈ Z>0, k = 1, 2, . . . , D and γk correspond to the generators of the fundamental group,
π1(Λcl) ≈ ZD. For example, for a one-dimensional harmonic oscillator of frequency ω considered
near a classical value of energy, E, we have: Eω−1 ∼ ~n, n ∈ Z, n � 1. Intuitively, quantization is a
splitting of the classical quantity, Eω−1, into a product of a “very small” quantity, ~, and a “very large”
quantity, n.

The Lagrangian manifold, Λcl, in the Bohr-Sommerfeld formula is not simply connected, while
the Lagrangian manifold in thermodynamics is simply connected. This fact follows directly from
the axiomatics of phenomenological thermodynamics. For an abstract thermodynamic system,
Λ0 ⊂ R2(d+1)(β̃, E), of dimension d, where E = (E0, E1, . . . , Ed) are the extensive coordinates and
β̃ = (β0, β1, . . . , βd) are the intensive coordinates, we have:∮

γ

d∑
j=0

βjdEj = 0 (8)

for any closed path γ ⊂ Λ0. Therefore, the formula νR ∼ kBN , where ν is the number of moles and N
is the number of particles of a chemical substance in the system, is not exactly similar to Eω−1 ∼ ~n.

We should also point out that, since the entropy S = S(E) satisfies S(λE0, λE1, . . . , λEd) = λS(E),
for all λ > 0, the Lagrangian manifold Λ0 has an additional property: if α0 ∈ Λ0 has coordinatesEj(α0),
βl(α

0), j, l = 0, 1, . . . , d, then for every λ > 0, the manifold, Λ0, also contains α0
λ ∈ Λ0 with coordinates

Ej(α
0
λ) = λEj(α

0), βl(α0
λ) = βl(α

0), j, l = 0, 1, . . . , d.
We may assume that E0 > 0 on Λ0. Then, it is convenient to introduce the specific

extensive coordinates εj = Ej/E0, j = 1, 2, . . . , d and the specific entropy s = S/E0, s = s(ε),
ε = (ε1, ε2, . . . , εd). The Lagrangian manifold, Λ0, corresponds to Λ ⊂ R2d(β, ε), β = (β1, β2, . . . , βd),
which is a Lagrangian manifold with respect to the symplectic structure ω =

∑d
j=1 dβj ∧ dεj ,

and we have:

i∗Λ

(
ds−

d∑
j=1

βjdεj

)
= 0 (9)

where iΛ : Λ→ R2d(β, ε) is the canonical embedding.
The previous formula, Equation (9), is a formula of phenomenological thermodynamics. Let us now

discuss what happens in quasithermodynamics. Let d = 1, and assume that the thermodynamic system
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contains ν moles of a single chemical substance. Let E0 = νR/kB; R is the universal gas constant
Equation (3) and kB is the Boltzmann constant Equation (2). Let E1 denote the internal energy. Then,
β0 = −µkB/(RT ), and β1 = 1/T , where µ is the chemical potential and T is the absolute temperature.
It is convenient to write just β and ε in place of β1 and ε1 = E1/E0, respectively.

The quantity, ε, is termed the specific internal energy of the system. Assume that s′′(ε) < 0 for all
values of ε. Let φ(β) denote the Legendre transform of s(ε):

φ(β) = (−βε+ s(ε))|ε=ε(β) (10)

where ε = ε(β) is the solution of the equation−β+s′(ε) = 0 with respect to ε. In quasithermodynamics,
there is a large parameter in the formulae N → +∞, which corresponds to νR/kB ∈ R. More
precisely, the scheme of a computation is as follows: find an asymptotic expansion with respect to
N → +∞; keep the required number of terms, and then replace N with a numerical value, νR/kB.
Take a point, α ∈ Λ, and denote its coordinates in the ambient space, R2(β, ε), as (β(α), ε(α)).
The corresponding fluctuations, δβ and δε, around the values β = β(α) and ε = ε(α), are described by
the probability densities, fδβ(y;α,N), y ∈ R, and fδε(x;α,N), x ∈ R, which are approximated by the
normal distributions of the shape:

fδε(x;α,N) '
(2πkB
Nλ

)1/2

exp
{
−N λx2

2kB

}
(11)

fδβ(y;α,N) '
(2πkBλ

N

)1/2

exp
{
−N y2

2kBλ

}
(12)

where λ = λ(α) = −s′′(ε(α)) = 1/φ′′(β(α)), α ∈ Λ, N ∈ R.
The interpretation of the fluctuations, δε, is quite straightforward from the perspective of the canonical

Gibbs formalism, which we discuss in more detail in the next section. On the other hand, an interpretation
of the fluctuations of the inverse temperature, δβ, turns out to be quite problematic. Moreover, there are
different points of views on this subject, some of them described in [12].

Naively, if one accepts a “definition” of the inverse temperature as the parameter, β, in the canonical
Gibbs distribution, then the fluctuations of δβ do not exist at all if the system is placed in a thermostat.
At the same time, there is no problem to consider the quantities like the variance of energy in the system
or the higher moments, so the fluctuations, δε, receive a natural interpretation. What is then the meaning
of the probability density Equation (12)?

In Landau-Lifshitz [37], the problem with δβ is essentially “swept under the carpet”. They denote
the fluctuation of inverse temperature as ∆β and the fluctuation of the inner energy as ∆E and put “by
definition” ∆β ' (∂2S/∂E2)ν∆E, where S is the entropy as a function of the internal energy,E, and the
number of moles, ν, of the chemical substance. Basically, there is only one independent random variable,
∆E, associated with a selected equilibrium state (E, ν) of the system, and ∆β is just a transformation
of ∆E. In the geometric picture involving the Lagrangian manifold, Λ ⊂ R2(β, ε), one may then
intuitively think of the fluctuations as follows: there is a point on Λ that randomly moves a little around a
fixed position, but it stays always on the manifold, i.e., the value of β is immediately adjusted to the
value of ε.

The Equations (11) and (12), imply that:

〈(N1/2δε)2〉N,α〈(N1/2δβ)2〉N,α ' k2
B (13)
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where 〈−〉N,α denotes taking the average with respect to the distributions in Equations (11) and (12).
This is formally similar to the Heisenberg uncertainty relation in quantum mechanics, and we notice
that ~ corresponds to the doubled Boltzmann constant, 2kB. At the same time, if we accept the Landau-
Lifshitz point of view, then the linear correlation coefficient between N1/2δβ and N1/2δε is equal to
−1. Take an abstract one-dimensional quantum system with a coordinate q̂ = x and the canonically
conjugate momentum p̂ = −i~∂/∂x, in a coherent state with a wavefunction :

ψ~(x; p0, q0, λ) =
(2π~
λ

)1/4

exp(ip0x/~) exp
{
− λ(x− q0)2

4~

}
(14)

where p0, q0 ∈ R and λ > 0 are parameters. The corresponding quantum averages are 〈q̂〉~ = q0 and
〈p̂〉~ = p0, and for the fluctuations, δq̂ = q̂ − q0 and δp̂ = p̂ − p0; we have: 〈(δq̂)2〉~〈(δp̂)2〉~ = ~2/4,
which is reminiscent of Equation (13). On the other hand, the linear correlation coefficient
〈(δq̂δp̂+ δp̂δq̂)/2〉~〈(δq̂)2〉−1/2

~ 〈(δp̂)2〉−1/2
~ between δq̂ and δp̂ is equal to zero and not to −1.

Compare this to the following. In classical mechanics, we have a concept of an “action as a
function of coordinates”. To simplify the discussion, take a one-dimensional harmonic oscillator with the
HamiltonianH(p, q) = (p2+q2)/2, and look at the isoenergetic surfaceL = {(p, q) ∈ R2 |H(p, q) = c},
where c > 0 is a parameter. L is a one-dimensional Lagrangian manifold with respect to dp ∧ dq, and
in a q-chart U ⊂ L, it can be described as U = {(p, q) | p = ∂S(q)/∂q}, where S(q) is the action as a
function of q, dS = pdq on L. If α ∈ L is a point representing the state of the system at time t = 0, then
after a short interval of time ∆t, the system moves from q(α) to q(α) + ∆q, but one may say that the
momentum, p, “immediately adjusts” its value from p(α) to p(α)+∆p, so that the point stays onL. In the
linear approximation: ∆p ' S ′′(q(α))∆q. This equation on its own does not prevent us from studying
the quantum mechanics of our system. One may construct, for example, a semiclassical wavefunction of
the shape:

Ψ~(x) =

∫
L

dσ(α)ϕ(α)ψ~(x; p(α), q(α), 1) (15)

where dσ is the measure on L induced by dpdq and ϕ is a complex smooth function on L with a finite
support. In short, ∆p ' S ′′(q(α))∆q is a classical equation, and, similarly, ∆β ' (∂2S/∂E2)ν∆E

corresponds to the physics after the thermodynamic limit.
We can see that an analogy between Equation (13) and the Heisenberg uncertainty relation is not a

priori excluded, but it is far from being straightforward. Let us therefore clarify the concept of intensive
quantities in thermodynamics as it is accepted in the present paper by considering the definition of inverse
absolute temperature. I assume that one is well aware of what is a canonical Gibbs distribution. Naively,
in the standard notation, the inverse absolute temperature is the parameter, β, in this distribution. In the
opinion of the author, this is not a conceptually correct way to define temperature. My starting point
of view on thermodynamics is expressed in the book of M. Planck “Treatise on Thermodynamics” [38].
One should (not just can) start with phenomenological thermodynamics and perceive temperature (along
with other quantities, like pressure, volume, etc.) as an independently defined phenomenological
concept. It is wrong to derive the concept of temperature from a statistical model (the Gibbs distribution).
The Gibbs distribution is just a possible explanation and an interpretation of what we see in terms of an
underlying multiparticle mechanical system. This is captured by the term “mechanical theory of heat”
which was more common in the old days than now.
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Similarly, with the fluctuations, δβ, the phenomenology is described by the Einstein formula in
Equation (12), but the “mechanical theory” of such fluctuations is, in my opinion, quite fuzzy. The
aim of the present paper is to change this state of affairs a little. It is worth mentioning that
in [14], B. Mandelbrot derives a kind of uncertainty relation for statistical estimators of thermodynamic
quantities. I do not go in this direction in the present paper, but I consider essentially the same problem:
what is the mechanical theory beyond the Einstein formula for δβ?

The only reasonable possibility that I see to get some insight about such a theory is to use symmetry.
The Equations (11) and (12), for the fluctuations, δβ and δε, are completely similar. For the fluctuations,
δε, we have a “better” theory given by the canonical Gibbs distribution at inverse absolute temperature
β(α), α ∈ Λ, and for the fluctuations, δβ, we do not have one. It is natural to try to restore this
symmetry in a “better” theory. One may try to construct an auxiliary thermodynamic system similar
to the one that we have and define the notation, Λ′, ε′, β′, N ′, in a totally similar way to Λ, ε, β, N .
The idea is as follows: for a fixed point, α ∈ Λ, there is a point, α′ ∈ Λ′, such that:

〈(N1/2δβ)n〉“better theory”,N,α = 〈((N ′)1/2δε′)n〉 (16)

for n = 2, 3, 4, . . . , where 〈−〉 on the right-hand side corresponds to the averages computed using the
canonical Gibbs distribution for N ′ ∈ Z particles at the inverse temperature β′ = β′(α′).

3. Duality of Fluctuations

As implied by the previous section, the idea of a “quantum complementarity” for the fluctuations
of thermodynamic quantities should be handled with care. For a recent discussion, see [8,12,13].
Let us analyze this problem in terms of the inverse absolute temperature, β, and specific internal energy ε.
We keep the notation for the Lagrangian manifold: Λ ⊂ R2(β, ε). Consider a pair of cases:

(i) The system is in a thermostat.
(ii) The system is adiabatically isolated from the environment.

Case (i) is describing a parameter, β∗, which is the inverse absolute temperature of the thermostat.
For an N -particle system, we have a Gibbs distribution:

w(N)
n (β∗) =

1

ZN(β∗)
exp(−β∗u(N)

n /kB) (17)

where n is labeling all possible quantum states of the system, w(N)
n (β∗) is the probability of finding

the system in a state, n, u(N)
n is the energy of the system in this state and ZN(β∗) is the partition

function. Assume that the spectrum is discrete, n = 0, 1, 2, . . . , and that minn u
(N)
n > 0). If we look

at the system from a phenomenological level, then we say that the inverse absolute temperature of the
system β = β∗. If we look from the level of statistical thermodynamics, then we perceive the energy
present in the system as a random variable; denote it EN,β∗ . The possible values of EN,β∗ are {u(N)

n }n,
and the corresponding probability weights are {w(N)

n (β∗)}n. The quantity, EN,β∗ , fluctuates around
the value 〈EN,β∗〉 = −kB(∂/∂β) logZN(β)|β=β∗ , where 〈−〉 denotes the mathematical expectation,
with a nontrivial variance Var(EN,β∗) = (−kB∂/∂β)2 logZN(β)|β=β∗ . In the quasithermodynamic
approximation, we have:

〈EN,β∗〉 = O(N), Var(EN,β∗) = O(N) (18)
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where N → +∞. In the notation of the Equation (11), the point, α ∈ Λ, is determined by β(α) = β∗,
ε(α) = limN→+∞〈EN,β∗〉/N , the fluctuation, δε corresponds, to (EN,β∗ − 〈EN,β∗〉)/N , N ∈ Z and:

s(ε) = lim
N→+∞

N−1S(stat)(N,Nε) (19)

where S(stat) = S(stat)(N,E) is the Legendre transform of the function Φ(stat)(N, β) := kB logZN(β)

in the variable, β:
S(stat)(N,E) = (Φ(stat)(N, β) + βE)|β=β(N,E) (20)

where β = β(N,E) is the solution of the equation E = ∂Φ(stat)(N, β)/∂β with respect to β. It is
assumed that the corresponding limits and the Legendre transform exist.

Case (ii) is intuitively “dual” to case (i). The parameter, β∗, is replaced by the internal energy of
the system, E∗. It is quite important to stress that E∗ is defined at the level of phenomenological
thermodynamics. In this sense, it has nothing to do with the quantum mechanical energy spectrum of
the system, {u(N)

n }n, which is used in statistical thermodynamics. The parameter, E∗, is not a “selected”
energy level, u(N)

n0 ∈ {u
(N)
n }n.

It is a standard practice in the textbooks to replace Equation (17) with the microcanonical
Gibbs distribution:

W (N)
n (E∗; δ) =

1

ΓN(E∗; δ)
χ[−δ/2,δ/2](u

(N)
n − E∗) (21)

where W (N)
n (E∗; δ) are the probabilities of finding the system in the states, n = 0, 1, 2, . . . , δ > 0 is a

small parameter, χ[−δ/2,δ/2] is the indicator function of the segment, [−δ/2, δ/2], and ΓN(E∗; δ) is the
normalization constant termed the statistical weight. The problem with Equation (21) is that it contains
an arbitrary parameter δ > 0, and one first needs to compute the asymptotic behavior of the system as
N → +∞ in the thermodynamic limit and then take the limit, δ → 0.

The quasithermodynamic Equations (11) and (12) for the fluctuations, δε and δβ, look very similar,
while Equations (17) and (21) are completely different. It is natural, on the other hand, to expect that the
symmetry between δε and δβ stems from a deeper level of statistical thermodynamics. Unfortunately,
essentially, there is no theory of fluctuations of intensive thermodynamic parameters beyond the
quasithermodynamic theory.

It would be nice to have something like w̃m ∼ exp(−E∗bm/kB) for the probability, w̃m, of the inverse
temperature in the system to have a value of bm, m = 0, 1, 2, . . . . There is no distribution like this that is
known for a generic thermodynamic system, but, at the same time, nobody has proven that it cannot exist.

It is nonetheless completely legal to state the problem as follows. We may assume, without loss of
generality, that β and ε have the same physical units:

[β] = [ε] = [k
1/2
B ] (22)

Since β is initially the inverse absolute temperature, we need to redefine it by multiplying by a
constant factor, and similarly, we need to redefine the energy by dividing it by the same factor. The
canonical Gibbs distribution in Equation (17) keeps its original shape. Imagine that we have another
thermodynamic system of N ′ particles with an energy spectrum, {u′(N

′)
n }n, n = 0, 1, 2, . . . , and the

rescaled inverse absolute temperature, β′, such that [β′] = [k
1/2
B ]. Define E ′N ′,β′ in analogy with EN,β ,
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replacing β with β′ and {u(N)
n }n with {u′(N

′)
n }n, n = 0, 1, 2, . . . . Let Λ′ ⊂ R(β′, ε′) be the Lagrangian

manifold for the second system defined similar to Λ ⊂ R2(β, ε). We state the problem as follows:
adjust the state, α′ ∈ Λ′, and the parameters of the construction of the second system in such a way
that the fluctuations of δε′ := (E ′N ′,β′(α′) − 〈E ′N ′,β′(α′)〉)/N ′ approximate the fluctuations of the inverse
temperature in the first system as well as possible. If α ∈ Λ is a selected point on the Lagrangian
manifold, Λ ⊂ R2(β, ε), of the first system, then we are interested in the fluctuations, δβ, around the
value β = β(α), and the ultimate goal is:

〈(δβ)n〉 = 〈(δε′)n〉 (23)

for n = 2, 3, 4, . . . , where the moments of δβ on the left-hand side are determined by experiment. If we
restrict the range of possible values of n as n = 2, 3, . . . , n0, then, assuming the auxiliary thermodynamic
system contains many enough parameters, the tuning Equation (23) becomes possible.

Before working out some examples, let us comment on the notation, kB → 0, mentioned in the
Introduction. Suppose we have an entropy of the system, S(stat)(E0, E1, . . . , Ed), in terms of the
extensive coordinates E = (E0, E1, . . . , Ed), which we have computed from the canonical partition
function. Speaking of a thermodynamic limit, we are interested in the asymptotic behavior of a function:

S
(stat)
λ (E) := λ−1S(stat)(λE0, λE1, . . . , λEd) (24)

where λ → +∞ is a dimensionless large parameter. The limit S(E) = limλ→+∞ S
(stat)
λ (E) is the

entropy in the phenomenological thermodynamics, and its gradient determines the Lagrangian manifold,
Λ0 ⊂ R2(d+1)(β̃, E), β̃ = (β0, β1, . . . , βd). The scheme of the computations can be organized as follows:

(1) Put formally, kB = 1 (this trick is similar to ~ = c = 1).
(2) Compute the required number of terms of the asymptotic expansion of S(stat)

λ (E) as λ→∞.
(3) Specialize λ = 1.
(4) Recover the Boltzmann constant, kB, given by Equation (2) from the dimension analysis.

Since at Step (2), the notation, kB, is not reserved, we may re-denote λ = (kB)−1 and speak of
kB → 0. At Step (3), we then specialize kB = 1, making the symbol, kB, unreserved again.

Example 1. Take a system of N quantum harmonic oscillators with frequency ω. Put kB = 1. If we
shift the ground energy level of an oscillator to zero, then the partition function of a single oscillator at
inverse temperature β is of the shape:

Z1(β) =
∞∑
n=0

exp(−βε̄n) = (1− exp(−βa))−1 (25)

where a = ~ω, ε̄n = an. Note that the parameters, β and a, enter the formula Z1(β) =∑∞
n=0 exp(−βan) in the same way, and one can perceive it as a sum

∑∞
n=0 exp(−aβ̄n), β̄n = βn.

The partition function of N oscillators is ZN(β) = (Z1(β))N , and the corresponding derivatives yield:

〈EN,β〉 = Na(exp(βa)− 1)−1 (26)

Var(EN,β) = N−1 exp(βa)〈EN,β〉2 (27)
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The entropy function S(stat) = S(stat)(E0, E1), where E0 = N and E1 = E is the internal energy, is
of the shape:

S(stat)(N,E) = N
{
− log

aN

E
+
(

1 +
E

aN

)
log
(

1 +
aN

E

)}
(28)

The Lagrangian manifold, Λ ⊂ R2(β, ε), corresponding to the phenomenological specific entropy
s(ε) = limN→+∞N

−1S(stat)(N,Nε) is described by an equation:

β = a−1 log(1 + a/ε) (29)

The Boltzmann constant is recovered as: β = kBa
−1 log(1 + a/ε) ♦

Proposition 1 Let X be a system of N quantum harmonic oscillators of frequency ω put in a
thermostat at inverse absolute temperature β. Then, there exists a system, X ′, of N ′ quantum harmonic
oscillators of frequency ω′ and a value, β′, of the inverse absolute temperature in X ′, such that
the quasithermodynamic fluctuations, δβ, in X are described by the same probability density as the
quasithermodynamic fluctuations of the specific internal energy, δε′, in X ′.

Proof. Put kB = 1. Denote a = ~ω, a′ = ~ω′. We need to satisfy a condition:

Var(EN,β/N)Var(E ′N ′,β′/N ′) = 1 (30)

We have the unknowns a′, β′, N ′ and the parameters, a, β, N . Impose a condition:

(〈EN,β〉/N)(〈E ′N ′,β′〉/N ′) = β′β (31)

and put N ′ = N . Taking into account Example 1, we obtain a system of equations:

a

exp(βa)− 1

a′

exp(β′a′)− 1
= β′β (32)

(β′β)2 exp(βa) exp(β′a′) = 1 (33)

Using the second equation, we derive from the first equation:

β′a′

1− exp(−β′a′)
=

1− exp(−βa)

βa
(34)

The function ϕ(z) = z/(1 − exp(−z)), z ∈ R is a continuous and monotonic function, ϕ(0) = 1,
such that ϕ(z) → 0, if z → −∞, and ϕ(z) → +∞, if z → +∞. Our equation is of the shape
ϕ(β′a′) = 1/ϕ(βa), so if βa is known, then β′a′ is uniquely determined. Once we know β, a and β′a′,
we can compute β′ as β′ = β−1 exp(−βa/2) exp(−β′a′/2). In other words, for any β > 0 and a > 0,
the system Equations (32) and (33) have a unique solution (β′, a′) = (β′0, a

′
0) with respect to β′ > 0 and

a′ > 0. The required system, X ′, is described by a′ = a′0 and N ′ = N , and the corresponding inverse
temperature is β′ = β′0. �

Remark 1. The construction of (X ′, β′) is not uniquely determined. The additional Equation (31) can be
chosen differently. Let, for example, 〈E ′N ′,β′〉/N ′ = β. Keeping N ′ = N , one arrives at a system:

a′(exp(β′a′)− 1)−1 = β, (35)

exp(βa+ β′a′)
( βa

exp(βa)− 1

)2

= 1 (36)
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It follows that β′a′ = 2 log(sinh(βa/2)/(βa/2)). Substituting this into the first equation, one
computes a′. The system Equations (35) and (36) have a unique solution with respect to (a′, β′). On
the other hand, it does not follow that 〈EN,β〉/N = β′, so the option Equation (31) is more symmetric. ♦

Let us say that (X ′, β′) satisfying Proposition 1 is quasithermodynamically dual to (X, β).
The quasithermodynamic fluctuations of intensive and specific extensive thermodynamic quantities
Equations (11) and (12) switch their roles if we switch between (X, β) and (X ′, β′).

4. The Pauli Problem

Let X = XN(a) be the thermodynamic system, N , oscillators of frequency ω = a/~ in a thermostat
at inverse temperature β. Denote E (a)

N,β as the random variable corresponding to the energy contained in
X = XN(a) at inverse temperature β. We have already computed 〈E (a)

N,β〉 and Var(E (a)
N,β), but it is not

difficult to find the higher order cumulants, as well:

Kn[E (a)
N,β] :=

(
− ∂

∂β

)n
logZN(β; a) (37)

where n = 1, 2, 3, . . . , ZN(β; a) is the partition function of the system X = XN(a), and we work in the
system of units kB = 1. Let us remind that if t→ 0 is a small parameter, then, for any n > 1, it holds:

1 +
n∑

m=1

tm

m!
〈(E (a)

N,β)m〉 = exp

( n∑
m=1

tm

m!
Km[E (a)

N,β]

)
+O(tn+1) (38)

as long as the corresponding moments exist. Expanding the exponent into a power series, one may
recompute the cumulants in terms of the moments, and vice versa.

Since Kn[E (a)
N,β] = Nan(−∂/∂x)n−1(ex − 1)−1|x=βa, we obtain:

Kn[E (a)
N,β] = Nan

n∑
m=1

c(n,m)

(eβa − 1)m
(39)

where c(n, 1) = 1, c(n, n) = (n− 1)! and the coefficients, c(n,m), satisfy a recurrent equation:

c(n+ 1,m) = mc(n,m) + (m− 1)c(n,m− 1) (40)

where 2 6 m 6 n− 1, and n = 1, 2, 3, . . . . This equation emerges in number theory in connection with
the Bernoulli polynomials. For every pair of positive integers, m and n, look at the sum:

Sm(n) = 1m + 2m + · · ·+ nm (41)

This sum is known to be a polynomial in n:

Sm(n) =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bkn

m+1−k (42)

whereBk are the Bernoulli numbers, x/(ex−1) =
∑∞

n=0 Bnx
n/n!. Another way to write the sum Sm(n)

is as follows:

Sm(n) =
n−1∑
k=0

(
n

k + 1

)
c(m, k) (43)
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where c(m, k) are the same coefficients as in Equation (39). It is possible to describe them explicitly:

c(n,m) =
1

m

m∑
k=0

(−1)m−k
(
m

k

)
kn (44)

for all m = 1, 2, . . . , n, and n = 1, 2, 3, . . . .
In Proposition 1, we have constructed another system X ′ of N ′ = N oscillators with frequency

ω′ = a′/~ at inverse temperature β′. Consider the cumulants of the energy in this system E (a′)
N ′,β′ at

inverse temperature β′:

Kn[E (a′)
N ′,β′ ] :=

(
− ∂

∂β′

)n
logZN ′(β

′; a′) (45)

where n = 1, 2, 3, . . . . We know that (X ′, β′) and (X, β) are quasithermodynamically dual, i.e.:

K2[E (a′)
N ′,β′ ]K2[E (a)

N,β] = N ′N (46)

Let us imagine for a short while that (X ′, β′) and (X, β) are not just quasithermodynamically, but
“completely” thermodynamically dual, i.e., for every n > 2, the n-th cumulant of of the fluctuation,
δβ, of the inverse temperature in X coincides with Kn[E (a′)

N ′,β′/N
′]. Equivalently, this implies that we

know all moments 〈(δβ)n〉, n = 2, 3, 4, . . . . In addition to the knowledge of the moments, 〈(δε)n〉,
n > 2, for the fluctuations of the specific internal energy:

δε = (E (a)
N,β − 〈E

(a)
N,β〉)/N (47)

can we unite these data in a single mathematical object?
In quantum mechanics, the role of such an object is played by the wavefunction or, more generally,

by the Wigner quasiprobability function. We wish to find RN(x, y) ∈ L1(R2(x, y)), satisfying∫
R2 dxdy RN(x, y) = 1, such that:

〈(δε)n〉 =

∫
R2

dxdy xnRN(x, y), 〈(δβ)n〉 =

∫
R2

dxdy ynRN(x, y) (48)

for n = 1, 2, 3, . . . . We do not require RN(x, y) to be non-negative, but all that matters is that
the integrals R(1)

N (x) :=
∫
R dy RN(x, y) and R

(2)
N (y) :=

∫
R dxRN(x, y) can be perceived as usual

probability densities.
It is natural to consider a truncated version of the system Equation (48) by requiring that these

equalities hold only for n 6 n0, where n0 is a positive integer, termed the degree of truncation. Then, we
can always construct probability densities f (n0)

δε (x), x ∈ R and f (n0)
δβ (y), y ∈ R, which are non-negative

smooth real functions, such that:∫
R
dx xnf

(n0)
δε (x) = 〈(δε)n〉,

∫
R
dy ynf

(n0)
δβ (y) = 〈(δβ)n〉 (49)

where n = 1, 2, . . . , n0. The element, RN(x, y) ∈ L1(R2(x, y)), should satisfy:

f
(n0)
δε (x) =

∫
R
dy RN(x, y), f

(n0)
δβ (y) =

∫
R
dxRN(x, y) (50)

and it is necessary to impose some additional conditions on RN(x, y) to make this problem non-trivial.
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Proposition 2 Assume that RN(x, y) ∈ L1(R2(x, y)) satisfies the system Equation (50) and that it is a
symbol of a Weyl pseudo-differential operator R̂N = RN(x,−iκN∂/∂x) on L2(R(x)), where κN > 0 is
a constant. If R̂N is an orthogonal projector onto a one-dimensional subspace, then κN ∼ 2kB/N , as
N →∞.

Proof. The parameter, κN , is an analogue of ~ in the Pauli problem in quantum mechanics. Let
us remind, that in one-dimensional quantum mechanics, the standard Pauli problem is defined as a
problem of a reconstruction of a wavefunction, ψ~(z) ∈ L2(R(z)), from the knowledge of |ψ~(z)|2 and
|ψ̃~(z)|2, where ψ̃~(z), y ∈ R, is the ~-Fourier transform of ψ~(z). Since δβ and δε are fluctuations
of thermodynamic quantities around a point, α ∈ Λ, on the Lagrangian manifold, Λ ⊂ R2(β, ε),
describing the system, they are approximated as N → +∞ by the normal distributions, δε ∼
N (0, kBN

−1[−s′′(ε(α))]−1) and δβ ∼ N (0, kBN
−1[−s′′(ε(α))]), where s = s(ε) is the specific entropy

as a function of the specific internal energy, ε.
Take a one-dimensional quantum system with a coordinate q̂ = z and the corresponding momentum

p̂ = −i~∂/∂z, and consider a Pauli problem with the densities of distribution of the coordinate and
momentum given by the normal distributions, N (0, λ~/2) and N (0, ~/(2λ)), respectively, where λ > 0

is a parameter. The solution, ρ~(q, p;λ), is known to exist, and it is given by the Wigner quasiprobability
function associated with the wavefunction of the coherent state Equation (14) concentrated in p0 = 0,
q0 = 0. The operator ρ̂~(λ) = ρ~(z,−i~∂/∂z;λ) is a one-dimensional orthogonal projector onL2(R(z)).

If we formally replace the parameter, λ, with [−s′′(ε(α))]−1, q with the coordinate, x, corresponding
to δε, p with the coordinate, y, corresponding to δβ, and ~ with 2kB/N , then we obtain a solution of
the Pauli problem, R(quasi)

N (x, y), for the fluctuations described by Equations (11) and (12). The Weyl
pseudo-differential operator R̂(quasi)

N = R
(quasi)
N (x,−i2kBN

−1∂/∂x) is a one-dimensional orthogonal
projector on L2(R(x)). Comparing this to R̂N = RN(x,−iκN∂/∂x), we conclude: κN ∼ 2kB/N , as
N →∞. �

Proposition 2 implies that if we are interested in the Pauli problem in thermodynamics, then the
parameter κ = 2kB/N plays a similar role to the semiclassical parameter, ~→ 0, in quantum mechanics.
We have a self-adjoint operator on L2(R(x)) with a unit trace:

R̂N = RN

(
x,−i

2kB
N

∂

∂x

)
(51)

where x and −i2kBN
−1∂/∂x are Weyl ordered. There is an additional condition on RN(x, y). In

the quasithermodynamic limit, N → ∞, the symbol, RN(x, y), must be concentrated in the point
(x, y) = (0, 0):

RN(x, y) ∼ N

2πkB
exp

{N(x2s′′(ε(α)) + y2[s′′(ε(α))]−1)

2kB

}
(52)

where α ∈ Λ, s′′(ε(α)) < 0.

Remark 2. It might seem that there is an essential difference between the fluctuations of β and ε in
statistical thermodynamics and the fluctuations of p and q in quantum mechanics. In quantum mechanics,
we have a freedom of choice of what to measure, p or q, but at the same time, we cannot choose to
measure both. If the variance of p tends to zero, then the variance of q tends to infinity, and vice versa,
in accordance with the Heisenberg uncertainty relation. If we put a thermodynamic system, X , in a
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thermostat with inverse absolute temperature β∗, then we “know” the inverse absolute temperature in X ,
but at the same time, the variance of the fluctuation of ε is finite.

In quantum mechanics, we should distinguish between two different stages: a preparation of an
experiment, and an interpretation of the outcome of an experiment. These stages are separated by an act
of measurement. A preparation is described in the language of classical mechanics (i.e., the conditions of
experiment, the choice of a measuring device, etc.). An outcome is described in the language of quantum
mechanics (i.e., the spectrum of an observable, quantum numbers, etc.).

We should perceive thermodynamics in a similar way. When we put the system, X , in a thermostat,
we make a choice of a measuring device, i.e., we say that we are going to observe the fluctuations of ε.
We speak of β∗ in the language of phenomenological thermodynamics, and we interpret the observations
of the fluctuations of ε in the language of statistical thermodynamics.

If we surround the system, X , with adiabatic walls, then we make a choice of another “measuring
device”. We say that we are going to observe the fluctuations of β. The result of our preparation
for the experiment is the internal energy, E∗, for which we use the language of phenomenological
thermodynamics. The fluctuations of β are observed in terms of statistical thermodynamics.

We cannot observe the fluctuations of ε and β both at the same time, just like we cannot do it with
p and q in quantum mechanics. From the perspective of statistical thermodynamics, the symbols, β∗
and E∗, are parameters of distributions describing observable quantities, like the fluctuations of β and ε.
They are not “observables” themselves. What we can do is not measuring, but constructing statistical
estimators for β∗ or E∗ working with finite samples of measurement outcomes.

One can find a much more detailed analysis of complementarity in statistical physics from a similar
perspective in [8]. In the terminology of that paper, it is important to distinguish between the variables
that parametrize the existence of the system (e.g., the mechanical macroscopic observables), and the
conjugated variables that are relevant for dynamical descriptions of a tendency of the system to approach
a thermodynamic equilibrium. ♦

Remark 3. In principle, in thermodynamics, the number of particles, N , is large. On the other hand, we
can formally specialize N = 1 in the final formulae, and this leaves us with a rather “weird” entity: a
thermodynamic system consisting of just one particle. At the same time, this particle is still a mechanical
particle, so it has some mechanical coordinates, q, and momenta, p, described by quantum mechanics.
It follows that we arrive at some kind of hybrid object: it is a quantum particle equipped with additional
degrees of freedom of a thermodynamic nature. There is, for example, an additional degree of freedom,
β, which is the inverse absolute “temperature” of the particle. Let us term this N = 1 thermodynamic
system a thermoparticle.

In thermodynamics, when one performs an intellectual leap from the phenomenological
thermodynamics to the Gibbs distribution, one splits the system into a huge number of quantum particles,
νR = kBN ; ν is the number of moles of the chemical substance of the system. Intuitively, it might
be better to split the phenomenological thermodynamic system not into purely mechanical particles,
but into thermoparticles. This is a “natural speculation” that goes far beyond the scope of the
present article. ♦
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Let us now briefly consider from the perspective of the Pauli problem a possible construction of
the fluctuation theory for δε, δβ, beyond the Gaussian approximation in Equations (11), (12) and (52).
Take a one-dimensional quantum mechanical system with a coordinate q̂ = x and the corresponding
momentum p̂ = −i~∂/∂x acting on the Hilbert space, L2(R(x)). The usual Pauli problem deals with
a reconstruction of a wavefunction, ψ~(x) ∈ L2(R(x)), from the knowledge of |ψ~(x)|2 and |ψ̃~(p)|2,
where:

ψ̃~(p) := (2πeiπ/2~)−1/2

∫
R
dx exp(−ipx/~)ψ~(x) (53)

is the ~-Fourier transform of ψ~(x).
Suppose now that the state of the system is not necessarily pure, but is described by a density matrix,

ρ~(x, x
′). The corresponding Wigner quasiprobability function,W~(p, q), is computed as follows:

W~(p, q) =

∫
R
dx ρ~(q + x/2, q − x/2) exp(−ipx/~) (54)

The normalization condition (2π~)−1
∫
R2 dpdqW~(p, q) = 1. If the state is ψ~(x), then ρ~(x, x

′) =

ψ~(x)ψ~(x
′), where the bar denotes the complex conjugation. For the coherent state Equation (14),

we have: W~(p, q) = 2 exp(−λ(q − q0)2/(2~)) exp(−2(p − p0)2/(λ~)). The value of an integral,
(2π~)−1

∫
R2 dqdpW~(p, q)q

mpn, where m,n ∈ Z+, yields an average corresponding to the Weyl
ordering of the expression, q̂mp̂n; for example: (2π~)−1

∫
R2 dqdpW~(p, q)qp = 〈(q̂p̂ + p̂q̂)/2〉~. Note

that (2π~)−1W~(p, q), considered as a replacement of the joint probability distribution density for the
coordinate and the canonically conjugate momentum in classical mechanics, need not be non-negative,
but it is real. Look at the observables:

Ẑ(µ, ν) = µq̂ + νp̂ (55)

where µ and ν vary over R. Denote T (z;µ, ν) as the density of the probability that Ẑ(µ, ν) has a value
in (z, z + dz]. There exists a tomographic reconstruction formula [19,20]:

W~(p, q) =
~
2π

∫
R3

T (z;µ, ν) exp{−i(z − µq − νp)} dzdµdν (56)

Note that it suffices to have the data only for the observables:

Ẑ(cos(θ), sin(θ)) = cos(θ)q̂ + sin(θ)p̂ (57)

where θ ∈ [0, π), since the following should hold:

T (z;λµ, λν) = |λ|−1T (λ−1z;µ, ν) (58)

for any λ 6= 0.
In principle, to step outside the Gaussian approximation in Equations (11) and (12), one can mimic

the reconstruction formula in Equation (56). The problem here is not in whether or not one is ready
to perceive (δε, δβ) in analogy with quantum mechanics, but in the fact that we do not really use
δξ = µδε + νδβ. It is nonetheless possible to obtain the quantum mechanical type formulae in a
consistent way as follows.
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Write the variances, 〈(δε)2〉N,α and 〈(δβ)2〉N,α, corresponding to Equations (11) and (12), as
follows [16–18]:

〈(δε)2〉N,α =

∫
R
dx x2|ϕh(x)|2, 〈(δβ)2〉N,α =

∫
R
dy y2|ϕ̃h(y)|2 (59)

where h = 2kB/N , ϕh(x) = (πh/λ)1/4 exp(−λx2/(2h)), and ϕ̃h(y) is the h-Fourier transform of ϕh(x).
The thermodynamic “wavefunction”, ϕh(x), is just a square root of fδε(x;α,N), λ = λ(α), α ∈ Λ. Let
us perceive the h-Fourier transform ϕ̃h(y) as follows:

ϕ̃h(y) =

∫
R
dxG(y, x, π/2)ϕh(x) (60)

where G(y, x, t), t > 0, is the solution of the Cauchy problem:

i~
∂G

∂t
=

1

2

(
− h2 ∂

2

∂x2
+ x2

)
G (61)

G|t=0 = δ(y − x) (62)

The function, G(y, x, t), is known explicitly:

G(y, x, t) = (2πeiπ/2h sin t)−1/2 exp
{ i

h

(cot t

2
(y2 + x2)− yx

sin t

)}
(63)

Take a little more generic function than ϕh(x):

ϕh(x;λ, x0, y0) = (πh/λ)1/4 exp
{ i

h

[ iλ

2
(x− x0)2 + y0x

]}
(64)

where x0, y0 ∈ R and λ > 0 are parameters. It is straightforward to check, that for:

ϕth(y;λ, x0, y0) :=

∫
R
dxG(y, x, t)ϕh(x;λ, x0, y0) (65)

we obtain:
|ϕth(y;λ, x0, y0)|2 = (πh/λt)

1/2 exp{−λt(y − ct)2/h} (66)

where: ct = x0 cos t+ y0 sin t, and λt = (λ−1 cos2 t+ λ sin2 t)−1. Hence:∫
R
dx x|ϕth(x;λ, x0, y0)|2 = ct = x0 cos t+ y0 sin t∫

R
dx (x− ct)2|ϕth(x;λ, x0, y0)|2 = kBN

−1(λ−1 cos2 t+ λ sin2 t)

(67)

where we have substituted h = 2kB/N .
Consider now, as in Example 1 and Proposition 1, a systemX = XN(a) ofN oscillators of frequency

ω = a/~ at inverse temperature β. The average ε of the specific internal energy, E (a)
N,β/N , and its variance,

〈(δε)2〉, δε := (E (a)
N,β − 〈E

(a)
N,β〉)/N , which we compute using the canonical Gibbs formalism, are of

the shape:
ε = a(exp(βa/kB)− 1)−1 〈(δε)2〉 = N−1 exp(βa/kB)(ε)2 (68)

Take another system, X ′, of N ′ = N oscillators with frequency ω′ = a′/~ at inverse temperature β′.
Adjust the combination of parameters (a′, β′) in such a way that 〈(δε)2〉〈(δε′)2〉 = k2

BN
−2, where δε′ is
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the fluctuation of specific internal energy in X ′. Construct now a “homotopy” from X to X ′. Let Xt,
t ∈ R be a system of N oscillators of frequency ωt = at/~ at inverse temperature βt. Determine the
parameters, at and βt, from the requirement:

εt = ε cos t+ ε′ sin t

〈(δεt)2〉 = 〈(δε)2〉 cos2 t+ 〈(δε′)2〉 sin2 t
(69)

where εt is the average specific internal energy in (Xt, βt). Substituting the expressions
εt = at(exp(βtat/kB) − 1)−1 and 〈(δεt)2〉 = N−1 exp(βtat/kB)(εt)

2, we note that N cancels out and
that at and βt are uniquely determined, for every t ∈ R and:

(at, βt)|t=0 = (a, β), (at, βt)|t=π/2 = (a′, β′) (70)

The right-hand side of the Equation (39), if we substitute βt in place of β, and at in place of a, deter-
mines the higher order cumulants Kn[E (at)

N,βt
], n = 3, 4, 5, . . . , of the energy, E (at)

N,βt
in (Xt, βt). One can

always recompute these cumulants into the moments 〈(δεt)n〉, n = 2, 3, 4, . . . , if necessary, 〈δεt〉 = 0.
Assume that for some n0 ∈ Z, n0 > 3, we have constructed a function, T (z;µ, ν), such that:

T (z;λ cos t, λ sin t) = |λ|−1T (λ−1z; cos t, sin t) (71)

〈(δεt)n〉 =

∫
R
dz znT (z; cos t, sin t) (72)

where λ 6= 0, t ∈ [0, π), n = 1, 2, . . . , n0. Then, it remains to apply the tomographic reconstruction
formula in Equation (56) replacing ~ with 2kB/N . This yields a joint quasiprobability function
describing (δε, δβ), which is more advanced than the right-hand side of Equation (52).

One should stress that this function is obtained by a mathematical analogy, and it certainly
requires experimental tests and a theoretical extension to more realistic systems. This can be a subject
of future research.

5. Conclusions

In phenomenological thermodynamics, as well as in the theory of quasithermodynamic fluctuations,
there exists a certain symmetry between intensive and extensive quantities. At the same time, this
symmetry is not immediately visible in statistical thermodynamics, since the Gibbs formalism deals
only with the fluctuations of extensive quantities (energy, number of particles, etc.). An interpretation of
the fluctuations of intensive quantities is a rather controversial issue.

In quasithermodynamics, the probability densities for the fluctuations of specific extensive quantities
(e.g., δε, where ε is specific internal energy) and the associated intensive quantities (e.g., δβ, where
β is inverse absolute temperature) are completely similar. In particular, the corresponding variances
satisfy the same asymptotic estimates, 〈(δε)2〉 = O(N−1) and 〈(δβ)2〉 = O(N−1), as the number of
particles N → +∞. Mathematically, it is possible to perceive the quasithermodynamic fluctuations of
intensive quantities in a systemX , as quasithermodynamic fluctuations of specific extensive quantities in
another system, Y .

In the present paper, it is suggested to extend this fact to statistical thermodynamics in order to
construct a fluctuation theory of intensive quantities. This turns out to be possible for a model system of
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N quantum harmonic oscillators of the same frequency if one takes into account an analogy between the
transition from quantum to classical mechanics and the transition from statistical to phenomenological
thermodynamics. In the main text, we “span” a generalized Pauli problem over the fluctuations, δβ
and δε, and apply the tomographic reconstruction formula. This yields a self-adjoint non-negative
operator, R̂, with a unit trace on L2(R(x)):

R̂ = RN

(
x,−i

2kB
N

∂

∂x

)
(73)

which is similar to the density matrix operator in quantum mechanics (we use the Weyl quantization).
The symbol, RN(x, y), replaces the Wigner function, and it is concentrated in a point (x, y) = (0, 0) in
the quasithermodynamic limit, N → +∞. The combination, 2kB/N , plays the same role as the Planck
constant, ~.
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