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Abstract: We demonstrate that the q-exponential family particularly admits natural
geometrical structures among deformed exponential families. The property is the invariance
of structures with respect to a general linear group, which transitively acts on the space
of positive definite matrices. We prove this property via the correspondence between
information geometry induced by a deformed potential on the space and the one induced
by what we call β-divergence defined on the q-exponential family with q = β + 1. The
results are fundamental in robust multivariate analysis using the q-Gaussian family.
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1. Introduction

Generalizations of the exponential family have recently had much attention paid to them in
mathematical statistics or statistical physics [1–6]. One of their goals is to attack a wider class of
statistical problems that ranges outside the ones solved via the well-established theory of the exponential
family [7]. Among such generalizations, the q-exponential family, where the ordinary exponential
function is replaced by the q-exponential [8], often naturally appears to play important roles in
experimental and theoretical aspects.

For example, the family not only describes phenomena obeying the power-law well [6], but also, it
is theoretically proven to include a velocity distribution of the classical gas with N particles [9,10], an



Entropy 2013, 15 4733

attracting invariant manifold of porous media flow [11], and so on. In statistics, it is reported to provide a
reasonable statistical model in robust inference from data losing normality [1,12–14]. In addition, quite
interesting and abundant mathematical structures have been developed [15–19] for the q-exponential
function itself.

On certain families of elliptical distributions [20,21], we can introduce information geometric
structures [22,23] starting from what is called the U-divergence [1] instead of the Kullback-Leibler
divergence, in order to geometrically tackle various statistical problems that include the above robustness
analysis. Zero-mean elliptical density functions fP (x) = u(−xTPx/2 − cU(detP )), with a fixed
function, u, and the normalizing constant, cU(detP ), can be specified by positive definite matrices, P .
Hence, we can discuss the geometric structures of such density functions explicitly, e.g., with no
integrations, via the corresponding information geometry on the parameter space of positive definite
matrices, called the V-geometry [24].

In the present paper, we focus on investigating the geometric structures of the q-Gaussian family
induced from the β-divergence [1] via the V -geometry following the above idea. For this purpose,
we establish the correspondence between two geometries and derive explicit formulas of important
geometric quantities, such as the Riemannian metric and mutually dual affine connections. Consequently,
we can prove that the information geometry on the q-Gaussian family enjoys fairly natural group
invariance properties. These invariances or homogeneities are important in multivariate analysis (see,
e.g., [21,25]). Further, they practically assure that the statistical inferences based on the geometrical
theory are independent of linear transformations of multivariate random variables, such as scaling or
numerical conditioning in computations. It should be additionally mentioned that our results might shed
new light on the rich mathematical structures of the q-exponential or power functions.

The organization of the paper is as follows: Section 2 collects necessary results on the V -geometry
of positive definite matrices and the U -divergence defined on elliptical distributions. In Section 3,
we discuss the group invariances of fundamental structures of the V -geometry induced by the power
potentials. We find that its pair of mutually dual connections and orthogonality are GL(n,R)-invariant,
which is a natural requirement for geometries on positive definite matrices. Section 4 is devoted
to demonstrating that the dualistic geometry on the q-Gaussian family induced by the β-divergence
coincides with the V -geometry with the power potentials. Finally, Section 5 gives concluding remarks.

2. Preliminaries: Geometries on Positive Definite Matrices and the U -Model

We recall the relation between information geometry on positive definite matrices induced by
V -potentials and that on a multivariate statistical model called the U -model. Details described in this
section and the ideas behind them can be found in [1,24].

2.1. V-Potential Function and the Induced Geometry on Positive Definite Matrices

Denote by Sym(n,R) the vector space of n × n real symmetric matrices, and by PD(n,R) the
convex cone of n×n positive definite matrices in Sym(n,R), respectively. For two matrices, X and Y ,
in Sym(n,R), we denote tr(XY ) by 〈X, Y 〉. For an arbitrary set of basis matrices {Ei}n(n+1)/2

i=1 of
Sym(n,R), we can introduce a coordinate system, (xi), by X =

∑n(n+1)/2
i=1 xiEi. Note that Sym(n,R)
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is isomorphic to a tangent vector space at each P ∈ PD(n,R). Hence, we particularly identify Ei with
a tangent vector, (∂/∂xi)P .

Definition 1. Let V (s) be a smooth function of real numbers s > 0. The function defined by:

ϕ(V )(P ) = V (detP ) (1)

is called a V -potential on PD(n,R).

When V (s) = − log s, the V -potential reduces to the standard one, called the characteristic function
on PD(n,R), which plays a fundamental role in the geometrical theory of PD(n,R) [26–28].

Let νi(s), i = 1, 2, · · · be functions defined by

νi(s) =
dνi−1(s)

ds
s, i = 1, 2, · · · , where ν0(s) = V (s) (2)

We assume that V (s) satisfies the following two conditions:

i) ν1(s) < 0 (s > 0), ii) β(V )(s) =
ν2(s)

ν1(s)
<

1

n
(s > 0) (3)

which are later shown to ensure the convexity of ϕ(V )(P ) on PD(n,R). Note that the first condition,
ν1(s) < 0, for all s > 0 implies the function, V (s), is strictly decreasing on s > 0.

Using the formula grad detP = (detP )P−1, we have the gradient mapping, gradϕ(V ) :

gradϕ(V ) : P 7→ P ∗ = ν1(detP )P−1 (4)

The Hessian of ϕ(V ) at P ∈ PD(n,R), which we write as g(V )
P , is given by:

g
(V )
P (X, Y ) = −ν1(detP ) tr(P−1XP−1Y ) + ν2(detP ) tr(P−1X) tr(P−1Y ) (5)

for arbitrary tangent vectors, X and Y , in Sym(n,R).

Proposition 1. [24] The Hessian, g(V ), is positive definite on PD(n,R), if and only if the conditions in
Equation (3) hold.

To establish the Legendre relation on PD(n,R), we consider the conjugate function of ϕ(V ) denoted
by ϕ(V )∗. Define the Legendre transform:

ϕ(V )∗(P ∗) = sup
P∈PD(n;R)

{〈P ∗, P 〉 − ϕ(V )(P )} (6)

Since the extremal condition is:

P ∗ = gradϕ(V )(P ) = ν1(detP )P−1 (7)

and gradϕ(V ) is invertible by the positive definiteness of g(V ), we have the following expression for ϕ(V )∗

with respect to P :
ϕ(V )∗(P ∗) = nν1(detP )− ϕ(V )(P ) (8)
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Hence, the canonical divergence [23] D(V ) of (PD(n,R),∇, g(V )) is obtained as:

D(V )(P,Q) = ϕ(V )(P ) + ϕ(V )∗(Q∗)− 〈Q∗, P 〉
= V (detP )− V (detQ) + 〈Q∗, Q− P 〉 (9)

Regarding g(V ) as a Riemannian metric, we can consider PD(n,R) as a Riemannian manifold.
Further, using the canonical flat affine connection on Sym(n,R) denoted by ∇, define the dual affine
connection [23], ∗∇(V ), satisfying:

Xg(V )(Y, Z) = g(V )(∇XY, Z) + g(V )(Y, ∗∇(V )
XZ) (10)

for arbitrary tangent vector fields, X, Y and Z, on PD(n,R); then, we can introduce a dually flat
structure [23] or a Hessian structure [29] (PD(n,R), g(V ),∇, ∗∇(V )).

Their covariant derivatives at P are actually given by:(
∇∂/∂xi∂/∂x

j
)
P

= 0(
∗∇(V )

∂/∂xi
∂/∂xj

)
P

= −EiP−1Ej − EjP−1Ei − Φ(Ei, Ej, P )− Φ⊥(Ei, Ej, P ) (11)

where:

Φ(X, Y, P ) =
ν2(s) tr(P−1X)

ν1(s)
Y +

ν2(s) tr(P−1Y )

ν1(s)
X

Φ⊥(X, Y, P ) =
{ν3(s)ν1(s)− 2ν22(s)} tr(P−1X) tr(P−1Y ) + ν2(s)ν1(s)tr(P

−1XP−1Y )

ν1(s){ν1(s)− nν2(s)}
P

and s = detP .
Since several properties of the pair of mutually dual connection, ∇ and ∗∇(V ), are stated in [24], we

omit them here for the sake of simplicity. However, from a geometrical viewpoint, we should note that
the following two important properties are related to the invariance of structures. In Section 3, we shall
return to these points and discuss them in detail.

Proposition 2. [24]

1. The dually flat structure, (PD(n,R), g(V ),∇, ∗∇(V )), is SL(n,R)-invariant for general V (s)

satisfying Equation (3), while it is GL(n,R)-invariant for V (s) = c1 + c2 log s for real constants,
c1 and c2 < 0.

2. When V (s) is a power function (with a constant term) of the form:

V (s) = c1 + c2s
β (12)

for real constants, c1, c2 and β, satisfying Equation (3), both affine connections,∇ and ∗∇(V ), are
GL(n,R)-invariant. Further, the orthogonality with respect to g(V ) is also GL(n,R)-invariant,
while g(V ) itself is not.
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Remark 1. One of interesting implications is that the above second point means that for the power
function in Equation (12), both ∇- and ∗∇(V )-projections [23], which can be also variationally
characterized by the divergence in Equation (9) and its dual, are GL(n,R)-invariant; hence, so is
the Pythagorean theorem [23] as a one-dimensional special case for this implication. Conversely,
GL(n,R)-invariance of the Pythagorean theorem means those of both projections, because∇ and ∗∇(V )

are torsion-free [23].

2.2. Relation between Information Geometries on the U-model and Positive Definite Matrices

We briefly introduce the U -divergence and U -model and show how the dualistic geometries induced
from U -divergence and V -potential are related.

In the field of statistical inference, the well-established method is the maximum likelihood method,
which is based on the Kullback-Leibler divergence. To improve the robustness performance of the
method, maintaining its theoretical advantages, such as efficiency, the methods of minimizing general
divergences have been proposed as alternatives to the maximum likelihood method [1,13,30–32].

Definition 2. Let U(s) be a smooth convex function with the positive derivative u(s) = U ′(s) > 0 on R

or its (semi-infinite) interval and ξ be the inverse function of u there. If the following functional for two
functions, f(x) and g(x), on Rn:

DU(f, g) =

∫
U(ξ(g))− U(ξ(f))− {ξ(g)− ξ(f)}fdx (13)

exists, we call it the U-divergence.

It follows that DU(f, g) ≥ 0 and DU(f, g) = 0, if and only if f = g, because the integrand, U(ξg)−
{U(ξf ) + u(ξf )(ξg − ξf )}, where ξf = ξ(f) and ξg = ξ(g), is interpreted as the difference of the convex
function, U , and its supporting function. If we set U(s) = 1

β+1
(1 + βs)(β+1)/β for β ∈ R, then the

corresponding U -divergence is the beta-divergence [1] defined by:

Dβ(f, g) =

∫
g(x)β+1 − f(x)β+1

β + 1
− f(x){g(x)β − f(x)β}

β
dx (14)

As β goes to zero, it reduces to the Kullback-Leibler divergence; on the other hand, as β goes to one, it
reduces to the squared L2-distance. Thus, the efficiency increases as β goes to zero, while the robustness
increases as β goes to one. In this sense, we could find an appropriate β between zero and one as a
trade-off between efficiency and robustness. The beta-divergence is strongly connected to the Tsallis
entropy [33].

When we consider the family of functions parametrized by elements in a manifold, M, the
divergences on the family induce the dualistic structure on M [1]. Concretely, we here confine our
attention to the family of multivariate probability density functions specified by P inM = PD(n,R)

and then study its structure on PD(n,R). The family is natural in the sense that it is a dually flat
statistical manifold with respect to the dualistic geometry induced by the U -divergence.

Definition 3. Let U and u be the functions given in Definition 2. The family of elliptical distributions
with the following density functions:

MU =

{
fU(x, P ) = u

(
−1

2
xTPx− cU(detP )

)∣∣∣∣P ∈ PD(n,R)

}
(15)
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is called the U-model associated with the U -divergence. Here, we set f(x, P ) = 0 if the right-hand side
is nonpositive or undefined, and cU(detP ) is a normalizing constant.

Note that if u satisfies the following self-similarity property:

∀t = cU(detP ), ∃at, ∃bt, u(s− t) = atu(bts) (16)

where at and bt are positive constants depending on detP , the density function, fU , in the U -model can
be alternatively expressed in the usual form of an elliptical distribution [20,21], i.e.,

fU(x, P ) = atu
(
−xTP ′x/2

)
, P ′ = btP (17)

One such example is the β-model, to be discussed in Section 4 and the Appendix. Thus, the
probability density function, fU(x, P ), has the mean vector of zero and the variance matrix, cP−1,
where c is a positive constant obtained from the characteristic function of fU(x, P ), and P is called
the precision matrix.

Now, we consider the correspondence between the dualistic geometry induced byDU on the U -model
and that on PD(n,R) induced by the V -potential function discussed.

Proposition 3. [24] Define the V -potential function, ϕ(V ), via:

V (s) = s−
1
2

∫
U

(
−1

2
xTx− cU(s)

)
dx+ cU(s), s > 0 (18)

Assume that V satisfies the conditions in Equation (3); then, the dually flat structure, (g(V ),∇, ∗∇(V )),
on PD(n,R) coincides with that on U -model induced by the U -divergence, DU .

2.3. Statistical Estimation on the U-Model

We discuss a statistical estimation for the precision matrix parameter, P , in the U -model,MU . The
U -divergence, DU(f, g), is decomposed into the difference of U-cross entropy, CU(f, g), and U-entropy,
HU(f) [1], that is, DU(f, g) = CU(f, g)−HU(f), where

CU(f, g) = −
∫
ξ(g(x))f(x)dx+

∫
U(ξ(g(x))dx (19)

and HU(f) = CU(f, f). Consider a maximum U -entropy distribution on the moment equal space. Let
F be the space of all probability density functions on Rn and

F(P ) = {f ∈ F : Ef (X) = 0,Ef (XXT ) = cP−1} (20)

the zero-mean and equal variance space in F , where Ef denotes the statistical expectation with respect
to f , and c is the aforementioned constant. Then, we observe that:

fU(·, P ) = argmin
f∈F(P )

HU(f) (21)

In effect, for any f in F(P ),

H(fU(·, P ))−HU(f) = DU(fU(·, P ), f) ≥ 0 (22)
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with equality only if f = fU(·, P ). Thus, the U -model,MU , is characterized by maximum U -entropy
distributions.

Let {Xi}1≤i≤N be random samples from a probability density function, fU(x, P ). Then, the U -loss
function is defined by

LU(P ) = − 1

N

N∑
i=1

ξ(fU(Xi, P )) +

∫
U(ξ(fU(x, P )))dx (23)

in which the U-estimator, P̂U , is defined by the minimizer of LU(P ). The U -loss function is an empirical
analogue ofU -cross entropy, in the sense that EfLU(P ) = CU(f, f(·, P )). By definition, P̂U is a solution
of ∂

∂P
LU(P ) = 0 if the solution is unique. Hence, we conclude that if N ≥ n, then P̂U = cS−1, where

S is the sample variance matrix defined by 1
N

∑N
i=1XiX

T
i , because

∂

∂P
LU(P ) =

1

2

(
S −

∫
xxTfU(x, P )dx

)
(24)

and cP−1 =
∫
xxTfU(x, P )dx. We remark that S is positive-definite with a probability of one if N ≥ n.

The derivation for P̂U is confirmed by the following fact

LU(P )− LU(P̂U) = DU(fU(·, P̂U), fU(·, P )) ≥ 0 (25)

with equality, only if P = P̂U .
Surprisingly, such U -estimators are independent of the choice of U , which implies that a U -estimator

for a U -model equals the maximum likelihood estimator for the Gaussian model. On the other hand,
assume that {Xi}1≤i≤N are random samples from a Gaussian density function, that is, fU(x, P ) with
U = exp. Then, unless U = exp, the U -estimator, P̂U , for the precision parameter, P , in the Gaussian
model has no exact expression. This is rather a different aspect from the situation discussed above,
and P̂U solved by an iteration algorithm is shown to be robust against heavy outliers if the generator
function, U , satisfies a tail condition.

For example, if we select as U(s) = 1
β+1

(1 + βs)(β+1)/β with a fixed β > 0, then the corresponding
divergence is the β-divergence given in Equation (14), and the corresponding U -estimator is called the
β-estimator. The estimator is associated with the iteration algorithm, say {Pt, t = 1, 2, · · · }, with an
initial value, P1, in which the update, Pt+1, from the t-step, Pt, is given by:

P−1t+1 =
1∑N

i=1w(Xi, Pt)− dβ

N∑
i=1

w(Xi, Pt)XiX
T
i (26)

where w(x, P ) = exp(−β
2
xTPx) and dβ = β/(β + 1)n+1. See [1] for a detailed discussion. We

remark that the β-estimator, P̂β , satisfies the fixed-point condition by setting as Pt+1 = Pt = P̂β in
Equation (26). Therefore, if the i-th observation, Xi, has an extremely large value, XT

i P̂βXi, then the
i-th weight w(Xi, P̂β) in the weighted variance form of Equation (26) becomes negligible, so that the
β-estimator is automatically robust for theses outliers. The degree of robustness for P̂β depends on the
value of β. In this way, it is also possible to introduce a dualistic structure on the product space of (U,U ′)

for U -models and U ′-estimators.
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3. GL(n,R)-Invariance Induced from the Power Function

The transformation group, τG, with G ∈ GL(n,R), transitively acts on PD(n,R), i.e., there exists
G ∈ GL(n,R) for all P, P ′ ∈ PD(n,R), such that τGP = GPGT = P ′. We denote by τG∗ the
differential of τG. The invariance of geometry for these transformations is defined as follows:

Definition 4. We say a dually flat structure, (PD(n,R), g(V ),∇, ∗∇(V )), is GL(n,R)-invariant if the
Riemannian metric, g(V ), and the pair of mutually dual connections,∇ and ∗∇(V ), satisfy:

g
(V )
P (X, Y ) = g

(V )
P ′ (X ′, Y ′) (27)

τG∗ (∇XY )P = (∇X′Y
′)P ′ , τG∗

(
∗∇(V )

X Y
)
P

=
(
∗∇(V )

X′ Y
′
)
P ′

(28)

for arbitrary G ∈ GL(n,R), where P ′ = τGP,X
′ = τG∗X and Y ′ = τG∗Y , respectively.

We can similarly define SL(n,R)-invariance while SL(n,R) is not transitive on PD(n,R). These
invariances mean that the geometries are homogeneous to the corresponding transformations. They
practically imply that the obtained geometrical results are not influenced by scaling (unit change),
numerical conditioning, and so on. Note that (PD(n,R), g(V ),∇, ∗∇(V )) is GL(n,R)-invariant, if and
only if the corresponding canonical divergence is also, i.e.,

∀G ∈ GL(n,R), D(V )(P,Q) = D(V )(τGP, τGQ) (29)

because the dually flat structure can be alternatively derived from the canonical divergence [1,23].
Now, we fix the form of V as V (s) = c1 + c2s

β to actually confirm the invariance property described
in the second statement of Proposition 2. First, the convexity conditions in Equation (3) reduce to:

(i) βc2 < 0, (ii) β <
1

n
(30)

The dual variables, P ∗, and the conjugate function, ϕ(V )∗, are expressed by P as:

P ∗ = c2β(detP )βP−1, ϕ(V )∗(P ∗) = nc2β(detP )β − c1 − c2(detP )β

The corresponding Riemannian metric in Equation (5) and divergence in Equation (9) are respectively
given by:

g
(V )
P (X, Y ) = c2β(detP )β

{
− tr(P−1XP−1Y ) + β tr(P−1X) tr(P−1Y )

}
(31)

D(V )(P,Q) = c2
{

(detP )β − (detQ)β + β(detQ)β tr(I −Q−1P )
}

(32)

When we particularly set c1 = −c2 = 1/β, i.e., V (s) = (1−sβ)/β, and move β to zero, we find that they
converge to the standard Riemannian metric and divergence [27] for V (s) = − log s. We immediately
see that the above g(V ) and D(V ) are not GL(n,R)- but SL(n,R)-invariant. However, g(V )

P (X, Y ) = 0,
if and only if g(V )

P ′ (X ′, Y ′) = 0 for any G ∈ GL(n,R). Thus, the orthogonality is GL(n,R)-invariant.
Next, the covariant derivatives of∇ vanish everywhere, since it is the canonical flat affine connection.

For the covariant derivatives of ∗∇(V ), it is seen that the first and second terms in Equation (11) are
GL(n,R)-invariant. The third and fourth terms of the dual covariant derivatives respectively reduce to:

Φ(X, Y, P ) = β tr(P−1X)Y + β tr(P−1Y )X (33)

Φ⊥(X, Y, P ) =
−β2 tr(P−1X) tr(P−1Y ) + βtr(P−1XP−1Y )

1− nβ
P (34)
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which are independent of detP . Thus, we can find that both∇ and ∗∇(V ) are GL(n,R)-invariant.
Finally, consider two smooth curves, γ = {Cγ(t)| − ε < t < ε} and γ∗ = {Cγ∗(t)| − ε < t < ε}, in

PD(n,R), satisfying:

Cγ(0) = Cγ∗(0) = Q,
dCγ
dt

(0) = X,
dCγ∗

dt
(0) = Y (35)

Since∇ is the canonical flat connection on Sym(n,R), γ is∇-geodesic iff it is represented by Cγ(t) =

Q+tX . On the other hand, γ∗ is ∗∇(V )-geodesic iff it is represented as a straight line in the dual variable,
C∗γ∗(t) [23]. Let us obtain its explicit form. Since it follows that:

d

dt
C∗γ∗ = c2β

{(
d

dt
(detCγ∗)

β

)
C−1γ∗ + (detCγ∗)

(
d

dt
C−1γ∗

)}
= c2β

2(detCγ∗)
β−1
〈

grad detCγ∗ ,
dCγ∗

dt

〉
+ c2β(detCγ∗)

β

(
−C−1γ∗

dCγ∗

dt
C−1γ∗

)
(36)

we have:

Ỹ =
dC∗γ∗

dt
(0) = c2β(detQ)β{β tr(Q−1Y )Q−1 −Q−1Y Q−1} (37)

by substituting Equation (35). Thus, γ∗ is ∗∇(V )-geodesic iff it is represented in the dual variables by:

C∗γ∗(t) = Q∗ + tỸ (38)

Assume that X and Y are mutually orthogonal at Q, and two points, P and R, in PD(n,R) are,
respectively, located on the∇-geodesic γ and ∗∇(V )-geodesic γ∗ satisfying Equation (35), i.e.,

P = Q+ t1X, R∗ = Q∗ + t2Ỹ , g
(V )
Q (X, Y ) = 0 (39)

for some real numbers, t1 and t2. Then, we have:

D(V )(P,Q) +D(V )(Q,R)−D(V )(P,R) = 〈R∗ −Q∗, P −Q〉
= t1t2〈Ỹ , X〉
= t1t2g

(V )
Q (X, Y ) = 0 (40)

which results in the Pythagorean theorem. If we, respectively, transform Q,X, Y in Equation (35) to
Q′ = τGQ,X

′ = τG∗X, Y
′ = τG∗Y , we see that Equations (39) and (40) hold by replacing t2 with

t2(detG)2β . Thus, even if such three points, P,Q,R, are, respectively, transformed by τG to P ′, Q′, R′

with arbitrary, but common, G ∈ GL(n,R), the Pythagorean theorem still holds for P ′, Q′, R′.
The GL(n,R)-invariances of both∇- and ∗∇(V )-projections are similarly confirmed.
Thus, we have confirmed the second statement of Proposition 2, i.e., the above GL(n,R)-invariance

holds if V (s) = c1 + c2s
β . In fact, we can show that the converse of Proposition 2 is also true.

Theorem 1. Assume that the function, V , meets Equation (3). Mutually dual connections,∇ and ∗∇(V ),
and the orthogonality with respect to g(V ) are GL(n,R)-invariant, if and only if V (s) = c1 + c2s

β or
V (s) = c1 + c2 log s.
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Proof. We only show the if part. The covariant derivatives of ∇ are independent of V and clearly
invariant. For those of ∗∇(V ) in Equation (11), the first and second terms can be readily understood to
be invariant. The third term, Φ, and the fourth term, Φ⊥, are invariant, only if the ratios, ν2(s)/ν1(s) and
ν3(s)/ν1(s), also are, because the coefficients in these terms are respectively expressed by:

ν2
ν1

tr(P−1X),
ν2
ν1

tr(P−1Y ) (41)

ν3/ν1 − 2(ν2/ν1)
2

1− nν2/ν1
tr(P−1X) tr(P−1Y ) +

ν2/ν1
1− nν2/ν1

tr(P−1XP−1Y ) (42)

where tr(P−1X), tr(P−1Y ) and tr(P−1XP−1Y ) are invariant.
From the definition of νi(s)’s, the invariance of ν2(s)/ν1(s) is satisfied by the solutions, ν1(s), of the

ordinary differential equation:
1

ν1

dν1
ds

=
β

s
(43)

for a real constant, β. By solving the ODEand integrating again, we have V (s) = c1 + c2s
β or V (s) =

c1 + c2 log s for real constants, ci, i = 1, 2. These forms also meet the invariance of ν3(s)/ν1(s). The
invariance of the orthogonality for such functions, V , have been already confirmed.

Note that the above theorem does not reject the possibility of the GL(n,R)-invariances for the
potentials of the other forms, except the V -potentials.

4. Geometry on the q-Gaussian Family Induced by the β-Divergence and the V -Geometry

This section demonstrates the main result.
Let β be a real parameter satisfying β 6= 0 and β 6= −1 and define a function, U , by:

U(s) =


1

β + 1
(1 + βs)(β+1)/β, s ∈ Iβ = {s ∈ R|1 + βs > 0}

0, otherwise
(44)

Using its derivative, we define a function, u, by:

u(s) =


dU(s)

ds
= (1 + βs)1/β s ∈ Iβ = {s ∈ R|1 + βs > 0}

0, otherwise
(45)

and the inverse, ξ of u, on Iβ by:

ξ(t) =
tβ − 1

β
, t > 0 (46)

Note that U is convex and u is positive where s > −1/β if β > 0 and s < −1/β if β < 0, respectively.
Further, u and ξ respectively approach the usual exponential and logarithmic functions when β goes to
zero. Hence, by introducing a parameter, q = 1 + β, they are called the q-exponential and q-logarithmic
functions in the literature of nonextensive statistical physics [4,6].

Let us fix the parameter, β, arbitrarily and consider an elliptical density function, f(x, P ), specified
by P ∈ PD(n,R) using the q-exponential function, u:

f(x, P ) = u

(
−1

2
xTPx− cβ(detP )

)
(47)
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where cβ(detP ) is the normalizing constant. The density function, f , is said to be the (zero-mean)
q-Gaussian [4,6], and we call the family of all such f ’s denoted byMβ the q-Gaussian family or β-model.

By starting from the β-divergence, we can define a dualistic structure on Mβ , which invokes the
corresponding V -geometry on the parameter space, PD(n,R). The V -potential for the V -geometry is
obtained as follows:

Theorem 2. The information geometry on Mβ induced from the β-divergence is characterized by a
dually flat structure, (g(V ),∇, ∗∇(V )), on PD(n,R) induced by the V -potentials:

V (s) =


1

β
+ c+s1/(2nβ), β > 0

1

β
+ c−s1/(2nβ), − 2

n+ 2
< β < 0

(48)

satisfying Equation (30), where s = detP , nβ = n/2+1/β and c± are constants depending on β and n.

The proof can be found in the Appendix.
The above theorem implies that geometric structure on Mβ induced from the β-divergence admits

the natural invariance properties discussed in Section 3.

5. Conclusions

We prove that information geometry on the q-Gaussian family induced by the β-divergence is
equivalently characterized by the V -geometry on the space of positive definite matrices induced by the
power potential. Studying the corresponding V -geometry, we show that some of the dually flat structures
of the q-Gaussian family admit theGL(n,R)-invariances. This fact implies the importance of the family
in multivariate statistical analysis, as well as gives a geometrical viewpoint to mathematical properties of
the q-exponential functions. Following the way given in Section 2.1, we can introduce the other dually
flat structures via any convex potentials in addition to the V -potential, by defining Riemannian metrics
as their Hessians and dual flat connections satisfying Equation (10) for ∇. The relations between such
dually flat structures and the ones on the other deformed exponential families are left for future work.

Robustness in statistical estimations involving the q-Gaussian family (β-model) and the β-divergence,
which is another important aspect, is roughly explained at the end of Section 2.3.

Recently, the theory of optimal transportation has made great developments in which a geometrical
insight is founded with a close relation to the problem of Poincaré’s conjecture [34]. We can find some
ideas and arguments similar to those established in this paper, while no direct link exists between their
objectives. In effect, a divergence is defined in [35] and shown to play a significant role on checking a
condition for the existence of the optimal transportation, where geometry is deeply explored to consider
a family of probability density functions on a space in place of investigating properties of the space
directly. It is expected that a coupling of the theory and information geometry will give fruitful results
in the near future.
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Appendix: Proof of Theorem 2

Proof. We prove the theorem by solving the corresponding V -potential according to Equation (18).

Derivation for the case β > 0

In the case β > 0, we see that the density function, f(x, P ), has a bounded support, and f(0, P ) > 0

implies cβ(detP ) < 1/β by considering the positivity of u.
We first calculate cβ(detP ). Set y = P 1/2x; then the normalizing condition is:∫

Rn

f(x, P )dx = (detP )−
1
2

∫
Rn

u

(
−1

2
yTy − cβ(detP )

)
dy = 1 (49)

The equality is modified as:

(detP )−
1
2
π
n
2

Γ(n
2
)

∫ ρ

0

u
(
−r

2
− cβ(detP )

)
r
n
2
−1dr = 1 (50)

where ρ = min{r|u(−r/2− cβ) = 0} = −2cβ + 2/β > 0 and Γ is the Euler’s gamma function.
For a positive number, α, let us define the integral appearing in the above as:

Iα,β(cβ) =

∫ ρ

0

u
(
−r

2
− cβ

)
rα−1dr =

∫ ρ

0

(
1− βcβ −

β

2
r

)1/β

rα−1dr (51)

then, by a change of variables r = ρz, we have:

Iα,β(cβ) = (β/2)1/β
∫ ρ

0

(ρ− r)1/βrα−1dr

= (β/2)1/β
∫ 1

0

ρ1/β(1− z)1/βρα−1zα−1ρdz

= (β/2)1/β ρα+1/βB

(
1

β
+ 1, α

)
= 2αβ1/βB

(
1

β
+ 1, α

)(
1

β
− cβ

)α+1/β

(52)

where B is Euler’s beta function.
From Equations (50) and (52), the normalizing constant for α = n/2 is given by:

cβ(s) =
1

β
− (k+s1/2)1/nβ (53)

where s = detP , nβ = n/2 + 1/β > 0 and:

k+ =
( 1
β
)1/β

(2π)
n
2

Γ(n
2
)

B( 1
β

+ 1, n
2
)

=
( 1
β
)1/β

(2π)
n
2

Γ(nβ + 1)

Γ( 1
β

+ 1)
> 0 (54)

Now, to derive V (s) for β > 0, substitute U(s) into Equation (18). Then, we have:

V (s) = s−1/2
π
n
2

(β + 1)Γ(n
2
)

∫ ρ

0

(
1− βcβ(s)− β

2
r

)(β+1)/β

r
n
2
−1dr + cβ(s) (55)
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Since the integral in the above equation can be computed similarly to Equation (52), it holds that:

V (s) = s−1/2
(2π)

n
2 β1+ 1

β

(β + 1)Γ(n
2
)
B

(
1

β
+ 2,

n

2

)(
1

β
− cβ(s)

)nβ+1

+ cβ(s) (56)

Substituting cβ(s) in Equation (53), we see that:

V (s) = κ1s
−1/2 (κ2s1/(2nβ))nβ+1

+
1

β
− κ2s1/(2nβ)

=
1

β
+
(
κ1κ

nβ
2 − 1

)
κ2s

1/(2nβ) (57)

where κi, i = 1, 2 are constants respectively represented by:

κ1 =
(2π)

n
2 β1+ 1

β

(β + 1)

B
(

1
β

+ 2, n
2

)
Γ(n

2
)

=
(2π)

n
2 β1+ 1

β

(β + 1)

Γ( 1
β

+ 2)

Γ(nβ + 2)
, κ2 = (k+)1/nβ (58)

Using the well-known formula Γ(x + 1) = xΓ(x) for x > 0, we see that the coefficient meets
β
(
κ1κ

nβ
2 − 1

)
κ2 < 0. Further, it holds that the exponent meets 1/(2nβ) < 1/n, since β is

positive. These two conditions assure the positive definiteness of the Riemannian metric, g(V ), given
by Equation (30).

Derivation for the Case β < 0

In the case β < 0, the support of f(x, P ) is Rn, and f(0, P ) > 0 implies that cβ(detP ) > 1/β.
Again, we first calculate cβ(detP ). The normalizing condition in Equation (49) is modified as:

(detP )−
1
2
π
n
2

Γ(n
2
)

∫ ∞
0

r
n
2
−1(

1− βcβ(detP )− β
2
r
)−1/β dr = 1 (59)

where we assume that the integral converges. Let us define ρ = −2cβ + 2/β < 0 and consider changes
of the variables r = (−ρ)z and z = (1 − z̃)/z̃; then, for a positive number, α, the integral in the
above is: ∫ ∞

0

rα−1(
1− βcβ − β

2
r
)−1/β dr = (−β/2)1/β

∫ ∞
0

rα−1

((−ρ) + r)−1/β
dr

= (−β/2)1/β (−ρ)α+1/β

∫ ∞
0

zα−1

(1 + z)−1/β
dz

= (−β/2)1/β (−ρ)α+1/β

∫ 1

0

z̃−1/β−α−1(1− z̃)α−1dz̃

= 2α(−β)1/βB

(
− 1

β
− α, α

)(
cβ −

1

β

)α+1/β

(60)

Thus, by α = n/2 the convergence condition for β is:

β > −2/n (61)

From Equations (59) and (60), the normalizing constant is given by:

cβ(s) =
1

β
+ (k−s1/2)1/nβ (62)
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where s = detP , nβ = n/2 + 1/β < 0 and:

k− =
(− 1

β
)1/β

(2π)
n
2

Γ(n
2
)

B(− 1
β
− n

2
, n
2
)

=
(− 1

β
)1/β

(2π)
n
2

Γ(− 1
β
)

Γ(−nβ)
> 0 (63)

Now, to derive V (s) for β < 0, substitute U(s) into Equation (18):

V (s) = s−1/2
π
n
2

(β + 1)Γ(n
2
)

∫ ∞
0

(
1− βcβ(s)− β

2
r

)1+1/β

r
n
2
−1dr + cβ(s) (64)

Here, we assume that the exponent at least meets 1 + 1/β < 0 for the above integral to converge. Then,
the integral can be computed similarly to Equation (60) as:

V (s) = s−1/2
(2π)

n
2 (−β)1+

1
β

(β + 1)Γ(n
2
)
B
(
−nβ − 1,

n

2

)(
cβ(s)− 1

β

)nβ+1

+ cβ(s) (65)

Thus, the exact convergence condition is nβ + 1 < 0 or, equivalently, β > −2/(n+ 2), which is stronger
than Equation (61) and 1 + 1/β < 0. Substituting the expression of cβ(s) in Equation (62), we see:

V (s) = κ3s
−1/2 (κ4s1/(2nβ))nβ+1

+
1

β
+ κ4s

1/(2nβ)

=
1

β
+
(
κ3κ

nβ
4 + 1

)
κ4s

1/(2nβ) (66)

where κi, i = 3, 4 are constants respectively represented by:

κ3 =
(2π)

n
2 (−β)1+

1
β

β + 1

B
(
−nβ − 1, n

2

)
Γ(n

2
)

=
(2π)

n
2 (−β)1+

1
β

(β + 1)

Γ(−nβ − 1)

Γ(− 1
β
− 1)

, κ4 = (k−)1/nβ . (67)

It is readily confirmed that β
(
κ3κ

nβ
4 + 1

)
κ4 < 0 holds. Further, we see 1/(2nβ) < 1/n, since nβ is

negative. These two conditions again assure the positive definiteness of g(V ) given by Equation (30).
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