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Abstract:



The law of multiplicative error is presented for independent observations and correlated observations represented by the q-product, respectively. We obtain the standard log-normal distribution in the former case and the log-q-normal distribution in the latter case. Queirós’ q-log normal distribution is also reconsidered in the framework of the law of error. These results are presented with mathematical conditions to give rise to these distributions.
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1. Introduction


In physics, especially in thermodynamics, statistical physics and quantum physics, fluctuation of a physical observable has been significant for describing many physical phenomena [1]. There are many theoretical ways to unify fluctuations, such as the Boltzmann equation, the maximum entropy principle, the Fokker-Planck equation, and so on. In every approach, fluctuation is considered as a variance of values of a physical observable. In repeated measurements of a physical observable, the most natural and simplest assumption is the “independence” of the measurements. This corresponds to the treatment in Boltzmann-Gibbs-Shannon statistics, i.e., every value of a physical quantity is observed independently in repeated measurements [2]. On the other hand, in generalized statistics, such as Tsallis statistics, a certain correlation as a generalized independence (e.g., the “q-product” in Tsallis statistics) is applied. In fact, starting from the q-product, Tsallis entropy is uniquely determined as the corresponding entropy [3]. In order to unify and determine probability distributions of physical values for each of the statistics, the most simple and powerful way is the reformulation of the “law of error” because the standard product as independence (which appears in the likelihood function) in Boltzmann-Gibbs-Shannon statistics is only replaced by the generalized product in generalized statistics. Note that the “error” in the law of error means “fluctuation” in physics.



The law of error is well known as the first derivation of the normal distribution by Carl F. Gauss, so that, nowadays, the normal distribution is also called Gaussian distribution [4,5]. Gauss’ contribution on this topic is not only his discovery of the important probability distribution, but it is also the first application of the likelihood function in his discovery, although it might be intuitive. Later, the likelihood function was fully understood by Ronald A. Fisher [6], the pioneer of modern statistics wherein the maximum likelihood estimation plays an important role [7]. Gauss’ derivation is now considered a typical application of the maximum likelihood method. Moreover, Gauss’ law of error has often been taken as an assumption of error in most of the fields related to measurement.



In the original Gauss’ law of error, an observed value is given by the addition of an error to the true value. We call this type of error “additive error”, which is the most fundamental and natural type in our understanding. An error is a difference between an observed value and the true value, so other types of error such as the ratio can be also considered. In this paper, a “multiplicative error”, given by the ratio of an observed value and the true value, is applied to the formulation of the law of error. As a result, a multiplicative error is found to follow a log-normal distribution, which is quite a natural derivation of a log-normal distribution with fruitful backgrounds in the sense that the mathematical condition to obtain a log-normal distribution is clearly presented. Moreover, the original law of error was recently generalized for the so-called q-statistics (i.e., Tsallis statistics [8,9]) by means of the q-product [10,11]. Tsallis statistics describes a strongly correlated system exhibiting power-law behavior, which results in the q-Gaussian distribution as the distribution of an additive error in q-statistics [12]. Along similar lines, the laws of error for other generalized statistics are also presented in [13,14]. The q-Gaussian distribution provides us not only with a one-parameter generalization of the standard Gaussian distribution ([image: there is no content]), but also with a nice unification of important probability distributions such as the Cauchy distribution ([image: there is no content]), the t-distribution ([image: there is no content]) and Wigner semicircle distribution ([image: there is no content]). The q-Gaussian distribution was originally derived from the maximization of Tsallis entropy under the appropriate constraint [15,16], and Tsallis entropy is uniquely determined from the q-multinomial coefficient defined by means of the q-product [3]. Therefore, these mathematical results are consistent with each other, because every mathematical formulation in q-statistics originates in the fundamental nonlinear differential equation [image: there is no content] with the q-exponential function as its solution [17,18,19]. Thus, along these characterizations using the maximum likelihood method, a probability distribution for a multiplicative error in q-statistics is expected, that is, a log-q-normal distribution, with clear mathematical reasons for obtaining this distribution in the framework of the law of error. Note that this paper analytically derives the q-Gaussian distribution and the log-q-normal distribution from the maximum likelihood principle. Relevant important discussions about the numerical verification in q-statistics can be found in [20,21], which is not applicable in the present mathematical work.



This paper consists of five sections. Following this first section, the introduction, Section 2 presents the definition of additive error and multiplicative error for the discussion in this paper. Section 3 derives the law of error for these two types of error in the case of independent observations. Based on the previous sections, Section 4 discusses its generalization for the case of correlated observations represented by the q-product. The final section is devoted to the conclusion.




2. Additive Error and Multiplicative Error


A given observed value, [image: there is no content], is assumed to have some kinds of error in it. In the original law of error, an additive error is considered in the sense:


[image: there is no content]



(1)




where [image: there is no content] is the true value and [image: there is no content] is an additive error. On the other hand, in some fields, a multiplicative error is taken into consideration in the form:


x=[image: there is no content]·[image: there is no content]



(2)




where [image: there is no content] is a multiplicative error. An alternative expression for a multiplicative error, [image: there is no content], is sometimes formulated as x=1+[image: there is no content][image: there is no content] with 1+[image: there is no content]>0, but for simplicity, we use Equation (2) throughout the paper. In case the true value [image: there is no content]=0i.e.,x=0 in Equation (2), obviously, a multiplicative error, [image: there is no content], is not employed. Due to the positivity of [image: there is no content], the sign of x and [image: there is no content] coincide with each other. When a multiplicative error, [image: there is no content], is considered, the only case x>0i.e.,[image: there is no content]>0 is discussed without loss of generality. Then, Equation (2) is reformed to be


lnx=ln[image: there is no content]+ln[image: there is no content]



(3)




which has a similar structure to the additive error Equation (1). Therefore, the law of multiplicative error can be formulated in the same way as the case of additive error.



If the true value, [image: there is no content]≠0, and both of these two kinds of errors, [image: there is no content] and [image: there is no content], are considered, an observed value, x, is given in the form:


x=[image: there is no content][image: there is no content]+[image: there is no content]orx=[image: there is no content]([image: there is no content]+[image: there is no content]).



(4)




Throughout the paper, the term “observation” is often used, which means “random variable” in the mathematical sense.



Under these preparations, some mathematical definitions are given for our discussion.

Definition 1

Let [image: there is no content]i=1,⋯,n be a random variable with value xi∈[image: there is no content]i=1,⋯,n, respectively. Then, for random variables, [image: there is no content][image: there is no content] defined by


[image: there is no content]:=[image: there is no content]-[image: there is no content]i=1,⋯,n



(5)




with a constant [image: there is no content]∈[image: there is no content], each value [image: there is no content] of [image: there is no content] is called an additive error and satisfies


[image: there is no content]=xi-[image: there is no content]i=1,⋯,n.



(6)




Under the same situation as above, if


[image: there is no content][image: there is no content]>0



(7)




for random variables [image: there is no content] defined by


[image: there is no content]:=[image: there is no content][image: there is no content]i=1,⋯,n,



(8)




each value [image: there is no content] of [image: there is no content] is called a multiplicative error and satisfies


[image: there is no content]=xi[image: there is no content]i=1,⋯,n.



(9)









Note 2 

Due to the positivity of [image: there is no content], the sign of [image: there is no content] and [image: there is no content] coincide with each other. When a multiplicative error is considered, without loss of generality, only the case [image: there is no content]>0 is discussed.







Note that, if both of these two errors are considered, each [image: there is no content] is given by


[image: there is no content]=[image: there is no content][image: there is no content]+[image: there is no content]or[image: there is no content]=[image: there is no content][image: there is no content]+[image: there is no content]i=1,⋯,n.



(10)




Usually, only observed values, [image: there is no content], are given, and other values such as [image: there is no content],[image: there is no content],[image: there is no content] are not known in advance (of course!). Thus, under the assumption that observed values include one of the two kinds of error, the probability distribution of each error should be studied.




3. Law of Error for Independent Observations


In this section, let [image: there is no content]i=1,⋯,n in Definition 1 be i.i.d. (independent, identically distributed) random variables which means independent and identical observations.



3.1. Additive Error


[image: there is no content] are i.i.d. random variables, so every [image: there is no content] has the same probability density function, [image: there is no content]. Then, we define the likelihood function for additive error in independent observations.

Definition 3 

Let [image: there is no content] be the probability density function (pdf, for short) for [image: there is no content] defined by Equation (5). The likelihood function, [image: there is no content], for additive error is defined as a function of a variable, θ, such that


Laθ:=∏i=1n[image: there is no content]xi-θ.



(11)








Then, we have the famous theorem which is often referred to as “Gauss’ law of error” [5].

Theorem 4 

If the function [image: there is no content] of θ for any fixed [image: there is no content] attains the maximum value at


[image: there is no content]



(12)




then [image: there is no content] must be a Gaussian pdf:


[image: there is no content]e=12πσexp-e22[image: there is no content].



(13)











In the proof of this theorem, the following lemma plays an essential role.

Lemma 5 

Let φ be a continuous function from [image: there is no content] into itself and satisfying that [image: there is no content] for every [image: there is no content] and e1,⋯,en∈[image: there is no content] with [image: there is no content]. Then, there exists a∈[image: there is no content], such that [image: there is no content]







The proofs of Theorem 4 and Lemma 5 are found in [12].




3.2. Multiplicative Error


In the case of a multiplicative error, the random variables, [image: there is no content] and [image: there is no content], and a constant, [image: there is no content], are all positive, so that by taking the logarithm of both sides of (8), we have


ln[image: there is no content]=ln[image: there is no content]-ln[image: there is no content]i=1,⋯,n



(14)




which is a similar form to (5). The ln[image: there is no content] are also i.i.d. random variables, so every ln[image: there is no content] has the same probability density function.

Definition 6 

By means of the random variables, [image: there is no content], defined by (8), the new random variables, [image: there is no content] and [image: there is no content], are defined by


[image: there is no content]:=ln[image: there is no content]i=1,⋯,n,



(15)






[image: there is no content]:=ln[image: there is no content]i=1,⋯,n.



(16)




Then, the likelihood function, [image: there is no content], for multiplicative error is defined by


[image: there is no content]



(17)




where [image: there is no content] is the pdf of [image: there is no content].







Then, we obtain the law of multiplicative error in independent observations.

Theorem 7 

If, for any fixed x1,x2,⋯,xn∈[image: there is no content]+, the function [image: there is no content] attains the maximum value at


[image: there is no content]



(18)




then [image: there is no content] must be a Gaussian pdf:


[image: there is no content]e=12πσexp-e22[image: there is no content].



(19)











Note that


[image: there is no content]



(20)




which means that Lemma 5 can be applied to the proof of the theorem, which is almost the same as that of Gauss’ law of error.



The pdf, [image: there is no content], is for the random variable [image: there is no content]=ln[image: there is no content], so that the pdf, [image: there is no content], for [image: there is no content] is easily obtained.

Corollary 8 

The pdf, [image: there is no content], for the random variable, [image: there is no content]>0, is given by the log-normal distribution:


[image: there is no content]e=[image: there is no content]lne1e=12πσeexp-lne22[image: there is no content].



(21)













4. Law of Error for Correlated Observations Represented by the q-Product


In the standard maximum likelihood principle, the random variables used in the likelihood function, [image: there is no content], are assumed to be independent. Recently, the likelihood function was generalized for correlated systems by means of the q-product and its maximization results in the q-Gaussian distribution which coincides with the probability distribution obtained in the maximization of Tsallis entropy under the appropriate constraint on the variance [12]. The q-Gaussian distribution recovers several typical distributions: Cauchy distribution ([image: there is no content]), t-distribution ([image: there is no content]), the standard Gaussian distribution ([image: there is no content]) and Wigner semicircle distribution ([image: there is no content]). In other words, these distributions belong to a family of q-Gaussian distributions.



The law of multiplicative error for correlated observations will be obtained in this section, following the lines of the derivation in the previous section. For this purpose, the mathematical preliminaries on the q-product are given.



The maximum entropy principle (MaxEnt, for short) for Boltzmann-Gibbs-Shannon entropy:


[image: there is no content]



(22)




yields the exponential function, [image: there is no content], which is well known to be characterized by the fundamental linear differential equation [image: there is no content]. In parallel with this, the MaxEnt for Tsallis entropy:


[image: there is no content]



(23)




yields a generalization of the exponential function, [image: there is no content], [17,19,22] which is characterized by the nonlinear differential equation [image: there is no content] [23] (see also Chapter 10 in [24] for more general deformations). According to the solution of [image: there is no content], the q-logarithm [image: there is no content] and the q-exponential [image: there is no content] are defined as follows:

Definition 9 

The q-logarithm lnqx:[image: there is no content]+→[image: there is no content] and the q-exponential expqx:[image: there is no content]→[image: there is no content] are defined by


[image: there is no content]



(24)






expqx:=1+1-qx11-qif1+1-qx>0,0otherwise.



(25)











Then, a new product, [image: there is no content], to satisfy the following identities as the q-exponential law is introduced.


lnqx[image: there is no content]y=lnqx+lnqy,



(26)






expqx[image: there is no content]expqy=expqx+y.



(27)




For this purpose, the new multiplication operation, [image: there is no content], is introduced in [10,11]. The concrete forms of the q-logarithm and q-exponential are given in Equation (24) and Equation (25), so that the above requirement, Equation (26) or (27), as the q-exponential law leads to the definition of [image: there is no content] between two positive numbers.

Definition 10 

For x,y∈[image: there is no content]+, if [image: there is no content], the q-product [image: there is no content] is defined by


x[image: there is no content]y:=x1-q+y1-q-111-q.



(28)











The q-product recovers the standard product in the sense limq→1x[image: there is no content]y=xy. The fundamental properties of the q-product [image: there is no content] are almost the same as the standard product, but


ax[image: there is no content]y≠ax[image: there is no content]ya,x,y∈[image: there is no content].



(29)




The other properties of the q-product are available in [10,11].



Note that, in general, the maximization of some general entropies such as Rényi entropy yields the same q-exponential function. Contrary to the procedure in the MaxEnt, starting from the q-exponential function and the q-product, Tsallis entropy is uniquely determined, which means that the entropy corresponding to the q-exponential function is only Tsallis entropy in the mathematically consistent sense. See [3,19] for these approaches.



In this section, let [image: there is no content]i=1,⋯,n in Definition 1 be identically distributed random variables.



4.1. Additive Error


[image: there is no content] are identical random variables, so every [image: there is no content] has the same pdf [image: there is no content]. Then, we define the q-likelihood function, [image: there is no content], for additive error in the correlated observations.

Definition 11 

Let [image: there is no content] be the pdf for [image: there is no content] defined by Equation (5). The q-likelihood function [image: there is no content] for additive error is defined by


Lqaθ:=[image: there is no content]x1-θ[image: there is no content]⋯[image: there is no content][image: there is no content]xn-θ.



(30)









Theorem 12 

If the function, [image: there is no content], of θ for any fixed [image: there is no content] attains the maximum value at


[image: there is no content]



(31)




then [image: there is no content] must be a q-Gaussian pdf:


[image: there is no content]e=1[image: there is no content]expq-βe2



(32)




with [image: there is no content] and where


[image: there is no content]



(33)











The proof of the theorem is found in [12].



Using the so-called q-variance, [image: there is no content], β and [image: there is no content] are represented by


β=13-q[image: there is no content],



(34)






[image: there is no content]=3-qq-1[image: there is no content]12B3-q2q-1,121<q<33-q1-q[image: there is no content]12B2-q1-q,12q<1



(35)




where B is the beta function.



The q-Gaussian pdf can also be derived by using the standard product (independence) and the general error, [image: there is no content] (defined further on), instead of the q-product in Equation (30).

Theorem 13 

If the likelihood function:


[image: there is no content]



(36)




for any fixed [image: there is no content] attains the maximum value at


θ=θ*suchthat∑i=1nexi-θ*=0



(37)




where


eθ:=tanβq-1θβq-1,q>1θ,[image: there is no content]tanβ1-qθβ1-q,q<1andβ>0,



(38)




then the probability density function, f, must be a q-Gaussian probability density function:


[image: there is no content]



(39)











The meaning of the general error Equation (38) is still missing at present. The proof of this theorem is found in the Appendix.




4.2. Multiplicative Error


Similar to above, the ln[image: there is no content] defined by Equation (14) are identical random variables, so every ln[image: there is no content] has the same pdf.

Definition 14 

Given the random variables, [image: there is no content] and [image: there is no content], defined by Equations (15) and (16), respectively, the q-likelihood function, [image: there is no content], for a multiplicative error is defined by


[image: there is no content]θ:=[image: there is no content]y1-θ[image: there is no content]⋯[image: there is no content][image: there is no content]yn-θ



(40)




where [image: there is no content] is the pdf of [image: there is no content].





Theorem 15 

If the function, [image: there is no content]θ, for any fixed [image: there is no content] attains the maximum value at


[image: there is no content]



(41)




then [image: there is no content] must be a q-Gaussian pdf:


[image: there is no content]e=1[image: there is no content]expq-βe2.



(42)











As expected, [image: there is no content] is the pdf for [image: there is no content]=ln[image: there is no content], so that the pdf, [image: there is no content], for [image: there is no content] is easily obtained.

Corollary 16 

The pdf, [image: there is no content], for the random variable [image: there is no content]>0 is given by


[image: there is no content]e=[image: there is no content]lne1e=1[image: there is no content]·eexpq-βlne2.



(43)




Here, the support of [image: there is no content] is


x>0,q>1,exp-1β1-q<x<exp1β1-q,q<1.



(44)











We call this distribution Equation (43) “log-q-normal distribution” in contrast to “q-log-normal distribution” given by Queirós, discussed in the next section. The graphs of the log-q-normal distribution are given in Figure 1.


Figure 1. Log-q-normal distribution (q = 0.2, 1.0, 1.8) (linear-linear scale (upper), log-linear (center), log-log scale (lower)).



[image: Entropy 15 04634 g001]









4.3. Reconsideration of Queirós’ q-Log-Normal Distribution in the Framework of the Law of Error


In advance of the present work, Queirós derived the q-log-normal distribution [25,26]:


fqQueiróse=12πσeqexp-lnqe22[image: there is no content]



(45)




where [image: there is no content] in his original distribution: 12πσeqexp-lnqe-μ22[image: there is no content]. In the framework of the law of error, this distribution can be derived under the following conditions:

	
independent observations, i.e., [image: there is no content]i=1,⋯,n are i.i.d. random variables,



	
multiplicative error Equation (2) is modified to


x=[image: there is no content][image: there is no content][image: there is no content].



(46)




i.e., the standard logarithm in Equation (14) is replaced by the q-logarithm:


lnq[image: there is no content]=lnq[image: there is no content]-lnq[image: there is no content]i=1,⋯,n.



(47)












Equation (46) obviously differs from the original multiplicative error Equation (2). Using the q-logarithm, Equation (46) is reformulated to


lnqx[image: there is no content]=lnq[image: there is no content][image: there is no content]1-q



(48)




which reveals a scaling by means of [image: there is no content]. This scaling effect disappears when [image: there is no content]. However, at present, a satisfactory explanation of Equation (46) is missing in the law of error, but an interesting interpretation may be found in some physical models.



If Equation (46) is accepted as a modified multiplicative error, the pdf obtained from the similar maximum likelihood method is


fq,q′e=1Z[image: there is no content]·eqexp[image: there is no content]-lnqe23-q′[image: there is no content]



(49)




where Equation (35) is used. We can call this distribution “q-log-[image: there is no content]-normal distribution” or“[image: there is no content]-log-normal distribution”. This is the most general form of the standard log-normal distribution in the framework of the law of error. Of course, such a general pdf recovers more data than the standard case. The condition giving rise to this general distribution are

	
The likelihood function of identical random variables [image: there is no content]i=1,⋯,n is given by the [image: there is no content]-product of its pdf,



	
Instead of Equation (2), a modified multiplicative error Equation (46) is obtained.










5. Conclusions


Along the generalization of the law of additive error [12], the law of multiplicative error is presented in the case of independent and correlated observations, respectively. As a result, the standard log-normal distribution and log-q-normal distribution are determined with mathematical conditions to give rise to these distributions. Furthermore, Queirós’ q-log normal distribution is reconsidered in the framework of the law of error.



The law of error is a direct application of the maximum likelihood principle, so that the study on this topic can be applied not only in error analysis or assumptions in practical science such as engineering and experimental physics, but also in statistical inference and divergence theory in theoretical science such as mathematics and theoretical physics.
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Appendix: Proof of Theorem 13



Proof. 

By taking the derivative of the log-likelihood function [image: there is no content] in Equation (36) with respect to θ leads to


dLgdθ[image: there is no content]=∑i=1ndfde·dexi-θdθfexi-θ.



(50)




When [image: there is no content] the likelihood function [image: there is no content] attains the maximum value, so that


dLgdθ[image: there is no content]θ=θ*=0ifandonlyif∑i=1ndfde·dexi-θdθθ=θ*fexi-θ*=0.



(51)




Let ρ be defined by


[image: there is no content]



(52)




then Equation (51) can be rewritten as


[image: there is no content]



(53)







With this, our problem is reduced to determining the function, ρ, satisfying Equation (53) under the constraint Equation (37). By means of Lemma 5, we have


[image: there is no content]



(54)




for a∈[image: there is no content]. Thus,


[image: there is no content]



(55)




that is,


[image: there is no content]



(56)




From Equation (38) follows


[image: there is no content]



(57)




so that Equation (55) becomes


[image: there is no content]



(58)




The solution, f, satisfying Equation (58) can be obtained as a q-Gaussian pdf:


fe=1[image: there is no content]expq-βe2.



(59)













The general error, [image: there is no content], defined by Equation (38), is obtained as the solution of the differential Equation (57). The graph of e as a function of q is given in Figure 2.


Figure 2. e as a function of qβ=θ=1.



[image: Entropy 15 04634 g002]
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