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Abstract:



Kernel density estimation is a technique for approximating probability distributions. Here, it is applied to the calculation of mutual information on a metric space. This is motivated by the problem in neuroscience of calculating the mutual information between stimuli and spiking responses; the space of these responses is a metric space. It is shown that kernel density estimation on a metric space resembles the k-nearest-neighbor approach. This approach is applied to a toy dataset designed to mimic electrophysiological data.
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1. Introduction


This paper is concerned with the calculation of mutual information for spike trains using the data that are available in a typical in vivo electrophysiology experiment in the sensory system. It uses a kernel-based estimation of probability distributions.



In particular, this paper is concerned with computing the mutual information, [image: there is no content], between two random variables, R and S. The motivating neuroscience example is a typical sensory pathway electrophysiology experiment in which the corpus of sensory stimuli are presented over multiple trials, so there is a set of recorded responses for each of a number of stimuli. The stimuli are drawn from a discrete space, the corpus, but the responses are spike trains. The space of spike trains is peculiar; locally, it is like a smooth manifold, with the spike times behaving like coordinates; but, globally, it is foliated into subspaces, each with a different number of spikes. The space of spike trains does, however, have a metric. As such, S takes values in a discrete set, [image: there is no content], and models the stimulus, and R takes values in a metric space, [image: there is no content], and models the response.



[image: there is no content] is not a discrete space, and so, to calculate the mutual information between S and R, it is necessary to either discretize [image: there is no content] or to use differential mutual information. In the application of information theory to electrophysiological data, it is common to take the former route and discretize the data. Here, the latter alternative is chosen, and the differential mutual information is estimated.



The mutual information between two random variables, R and S, is a measure of the average amount of information that is gained about S from knowing the value of R. With S, a discrete random variable taking values in [image: there is no content] and R, a continuous random variable, the mutual information is:


I(R;S)=∑s∈[image: there is no content]∫[image: there is no content]p(r,s)log2[image: there is no content]p(r)p(s)dr



(1)




where [image: there is no content] is the measure on [image: there is no content]: computing the differential mutual information between R and S requires integration over [image: there is no content]. Integration requires a measure, and when there are coordinates on a space, it is common to use the integration measure derived from these coordinates.



The space of spike trains has no system of coordinates, and so, there is no coordinate-based measure. This does not mean that the space has no measure. As a sample space, it has an intrinsic measure corresponding to the probability distribution; thus, there is a measure, just not one derived from coordinates. The probability of an event occurring in a region of sample space gives a volume for that region. In other words, the volume of a region, [image: there is no content], can be identified with P([image: there is no content]∈[image: there is no content]). This is the measure that will be used throughout this paper; it does not rely on coordinates, and so, can be applied to the case of interest here.



Of course, in practice, the probability density is not usually known on the space of spike trains, but P([image: there is no content]∈[image: there is no content]) can be estimated from the set of experimental data. A Monte-Carlo-like approach is used: the volume of a region is estimated by counting the fraction of data points that lie within it:


vol([image: there is no content])=P([image: there is no content]∈[image: there is no content])≈number of data points in [image: there is no content]total number of points



(2)







This is exploited in this paper to estimate the volume of square kernels, making it possible to estimate conditional probabilities using kernel density estimation.



The classical approach to the problem of estimating [image: there is no content] is to map the spike trains to binary words using temporal binning [1,2], giving a histogram approximation for [image: there is no content]. This approach is very successful, particularly when supplemented with a strategically chosen prior distribution for the underlying probability distribution of words [3,4]. This is sometimes called the plug-in method, and that term is adopted here. One advantage of the plug-in method is that the mutual information it calculates is correct in the limit: in the limit of an infinite amount of data and an infinitesimal bin size, it gives the differential mutual information.



Nonetheless, it is interesting to consider other approaches, and in this spirit, an alternate approach is presented here. This new method exploits the inherent metric structure of the space of spike trains, it is very natural and gives an easily implemented algorithm, which is accurate on comparatively small datasets.




2. Methods


This section describes the proposed method for calculating mutual information. Roughly, the conditional probability is approximated using kernel density estimation and, by using the unconditioned probability distribution as a measure, integration is approximated by the Monte-Carlo method of summing over data points.



Since this is a kernel-based approach, a review of kernel density estimation is given in Section 2.1. This also serves to establish notation. The two key steps used to derive the kernel-based estimate are a change of measure and a Monte-Carlo estimate. The change of measure, described in Section 2.2, permits the estimation of probabilities by a simple Monte-Carlo method. The new measure also simplifies the calculation of [image: there is no content], resulting in a formula involving a single conditional distribution. This conditional distribution is estimated using a Monte-Carlo estimate in Section 2.3.



2.1. Kernel Density Estimation


The non-parametric kernel density estimation (KDE) method [5,6,7] is an approach to estimating probability densities. In KDE, a probability density is estimated by filtering the data with a kernel. This kernel is normalized with an integral of one and is usually symmetric and localized. For an n-dimensional distribution with outcome vectors [image: there is no content] and a kernel, [image: there is no content], the estimated distribution is usually written:


[image: there is no content]



(3)




where, because the argument is [image: there is no content], there is a copy of the kernel centered at each data point. In fact, this relies on the vector-space structure of n-dimensional space; in the application considered here, a more general notation is required, with [image: there is no content] denoting the value at [image: there is no content] of the kernel when it is centered on [image: there is no content]. In this situation, the estimate becomes:


p˜([image: there is no content])=1m∑ik([image: there is no content];[image: there is no content]i)



(4)







The square kernel is a common choice. For a vector space, this is:


k([image: there is no content];[image: there is no content])=1V∥[image: there is no content]-[image: there is no content]∥<10otherwise



(5)




where V is chosen, so that the kernel integrates to one. The kernel is usually scaled to give it a bandwidth:


k([image: there is no content];[image: there is no content],h)=1hV∥[image: there is no content]-[image: there is no content]∥<h0otherwise



(6)




This bandwidth, h, specifies the amount of smoothing. The square kernel is the most straight-forward choice of kernel mathematically, and so, in the construction presented here, a square kernel is used.



In the case that will be of interest here, where [image: there is no content] and [image: there is no content] are not elements of a vector space, the condition ∥[image: there is no content]-[image: there is no content]∥<h must be replaced by d([image: there is no content],[image: there is no content])<h, where d([image: there is no content],[image: there is no content]) is a metric measuring the distance between [image: there is no content] and [image: there is no content]. Calculating the normalization factor, V, is more difficult, since this requires integration. This problem is discussed in the next subsection.




2.2. Change of Measure


Calculating the differential mutual information using KDE requires integration, both the integration required by the definition of the mutual information and the integration needed to normalize the kernel. As outlined above, these integrals are estimated using a Monte-Carlo approach; this relies on a change of measure, which is described in this section.



For definiteness, the notation used here is based on the intended application to spike trains. The number of stimuli is [image: there is no content], and each stimulus is presented for [image: there is no content] trials. The total number of responses, [image: there is no content], is then [image: there is no content]=[image: there is no content][image: there is no content]. Points in the set of stimuli are called s and in the response space, r; the actual data points are indexed, [image: there is no content], and ([image: there is no content],[image: there is no content]) is a response-stimulus pair. As above, the random variables for stimulus and response are S and R, whereas the set of stimuli and the space of responses are denoted by a calligraphic [image: there is no content] and [image: there is no content], respectively. It is intended that when the method is applied, the responses, r∈[image: there is no content], will be spike trains.



The goal is to calculate the mutual information between the stimulus and the response. Using the Bayes theorem, this is:


I(R;S)=∑s∈[image: there is no content]∫[image: there is no content]p(r,s)log2[image: there is no content][image: there is no content]dr



(7)




Unlike the differential entropy, the differential mutual information is invariant under the choice of measure. Typically, differential information theory is applied to examples where there are coordinates, [image: there is no content], on the response space and the measure is given by [image: there is no content]. However, here, it is intended to use the measure provided by the probability distribution, [image: there is no content]. Thus, for a region, [image: there is no content]⊂[image: there is no content], the change of measure is:


vol([image: there is no content])=∫[image: there is no content]p(r)dr=∫[image: there is no content]dβ



(8)




so:


[image: there is no content]



(9)




The new probability density relative to the new measure, [image: there is no content], is now one:


pβ(r)=[image: there is no content]dβ/dr=1



(10)




Furthermore, since [image: there is no content] and [image: there is no content] are both densities, [image: there is no content] is invariant under a change of measure and:


I(R;S)=∑s∫[image: there is no content]pβ(r,s)log2[image: there is no content][image: there is no content]dβ=∑s∫[image: there is no content]pβ(r,s)log2pβ(r|s)dβ



(11)




where, again, [image: there is no content] and [image: there is no content] are the values of the densities, [image: there is no content] and [image: there is no content], after the change of measure.



The expected value of any function, [image: there is no content], of random variables, R and S, is:


⟨f⟩=∑s∈[image: there is no content]∫[image: there is no content]pβ(r,s)f(r,s)dβ



(12)




and this can be estimated on a set of outcomes, {([image: there is no content],[image: there is no content])}, as:


⟨f⟩≈1[image: there is no content]∑if([image: there is no content],[image: there is no content])



(13)




For the mutual information, this gives:


I(R;S)≈1[image: there is no content]∑ilog2pβ([image: there is no content]|[image: there is no content])



(14)




Now, an estimate for pβ([image: there is no content]|[image: there is no content]) is needed; this is approximated using KDE.




2.3. A Monte-Carlo Estimate


One advantage to using [image: there is no content] as the measure is that [image: there is no content], and this simplifies the expression for [image: there is no content]. However, the most significant advantage is that under this new measure, volumes can be estimated by simply counting data points. This is used to normalize the kernel. It is useful to define the support of a function: if [image: there is no content] is a function, then the support of [image: there is no content], supp[image: there is no content], is the region of its domain where it has a non-zero value:


[image: there is no content]



(15)




Typically, the size of a square kernel is specified by the radius of the support. Here, however, it is specified by volume. In a vector space where the volume measure is derived from the coordinates, there is a simple formula relating radius and volume. That is not the case here, and specifying the size of a kernel by volume is not equivalent to specifying it by radius. Choosing the volume over the radius simplifies subsequent calculations and, also, has the advantage that the size of the kernel is related to the number of data points. This also means that the radius of the kernel varies across [image: there is no content].



The term, bandwidth, will be used to describe the size of the kernel, even though here, the bandwidth is a volume, rather than a radius. Since [image: there is no content] is a probability measure, all volumes are between zero and one. Let h be a bandwidth in this range. If [image: there is no content] is the value at [image: there is no content] of a square kernel with bandwidth h centered on r, the support will be denoted as [image: there is no content](r;h):


[image: there is no content](r;h)=supp[k([image: there is no content];r,h)]



(16)




and the volume of the support of the kernel is vol[[image: there is no content](r;h)]. The value of the integral is set at one:


∫[image: there is no content](r;h)k([image: there is no content];r,h)dβ=1



(17)




and so, since the square kernel is being used, [image: there is no content] has a constant value of 1/vol[[image: there is no content](r;h)] throughout [image: there is no content](r;h).



Thus, volumes are calculated using the measure, [image: there is no content], based on the probability density. However, this density is unknown, and so, volumes need to be estimated. As described above, using [image: there is no content], the volume of a region is estimated by the fraction of data points that lie within it. In other words, the change of measure leads to a Monte-Carlo approach to calculating the volume of any region. In the Monte-Carlo calculation, the volume of the support of a kernel is estimated as the fraction of data points that lie within it. A choice of convention has to be made between defining the kernel as containing ⌊h[image: there is no content]⌋ or ⌈h[image: there is no content]⌉ points, that is, on whether to round h[image: there is no content] down or up. The former choice is used, so, the kernel around a point, r, is estimated as the region containing the nearest [image: there is no content]=⌊h[image: there is no content]⌋ points to r, including r itself. Thus, the kernel around a point, [image: there is no content], is defined as:


k(r;[image: there is no content],[image: there is no content])=1[image: there is no content],r is one of the [image: there is no content] closest points to [image: there is no content]0,otherwise



(18)




and the support, [image: there is no content]([image: there is no content];[image: there is no content]), has [image: there is no content]∈[image: there is no content]([image: there is no content];[image: there is no content]) if k([image: there is no content];[image: there is no content],[image: there is no content])=1/[image: there is no content], or, put another way, [image: there is no content] is one of the [image: there is no content] nearest data points. In practice, rather than rounding h[image: there is no content] up or down, the kernel volume in a particular example can be specified using [image: there is no content] rather than h.



Typically, kernels are balls: regions defined by a constant radius. As such, the kernel described here makes an implicit assumption about the isotropic distribution of the data points. However, in the normal application of KDE, special provision must be made near boundaries, where the distribution of data points is not isotropic [8]. Here, these cases are dealt with automatically.



Since pβ([image: there is no content]|[image: there is no content])=[image: there is no content]pβ([image: there is no content],[image: there is no content]), here, the conditional distribution, pβ([image: there is no content]|[image: there is no content]), is estimated by first estimating pβ([image: there is no content],[image: there is no content]). As described above, a kernel has a fixed volume relative to the measure based on [image: there is no content]. Here, the kernel is being used to estimate pβ([image: there is no content],[image: there is no content]):


p˜β([image: there is no content],[image: there is no content])=c([image: there is no content],[image: there is no content];[image: there is no content])[image: there is no content]



(19)




where c([image: there is no content],[image: there is no content];[image: there is no content]) is the number of data points evoked to stimulus [image: there is no content] for which [image: there is no content] is one of the [image: there is no content] closest points:


c([image: there is no content],[image: there is no content];[image: there is no content])=|{([image: there is no content],[image: there is no content]):[image: there is no content]∈[image: there is no content]([image: there is no content];[image: there is no content])}|



(20)




This gives the estimated mutual information:


I(R;S)≈I(R,S;[image: there is no content])=1[image: there is no content]∑ilog2[image: there is no content]c([image: there is no content],[image: there is no content];[image: there is no content])[image: there is no content]



(21)




Remarkably, although this is a KDE estimator, it resembles a k-, or, here, [image: there is no content]-, nearest-neighbors estimator. Basing KDE on the data available for spike trains appears to lead naturally to nearest neighbor estimation.



The formula for I(R,S;[image: there is no content]) behaves well in the extreme cases. If the responses to each stimulus are close to each other, but distant from responses to all other stimuli, then c([image: there is no content],[image: there is no content];[image: there is no content])=[image: there is no content] for all stimulus-response pairs ([image: there is no content],[image: there is no content]). That is, for each data point, all nearby data points are from the same stimulus. This means that the estimate will be:


I(R,S;[image: there is no content])=log2[image: there is no content]



(22)




This is the correct value, because, in this case, the response completely determines the stimulus, and so, the mutual information is exactly the entropy of the stimulus. On the other hand, if the responses to each stimulus have the same distribution, then c([image: there is no content],[image: there is no content];[image: there is no content])/[image: there is no content]≈1/[image: there is no content], so the estimated mutual information will be close to zero. This is again the correct value, because in this case, the response is independent of the stimulus.





3. Results


As a test, this method has been applied to a toy dataset modelled on the behavior of real spike trains. It is important that the method is applied to toy data that resemble the data type, electrophysiological data, on which the method is intended to perform well. As such, the toy model is selected to mimic the behavior of sets of spike trains. The formula derived above acts on the matrix of inter-data-point distances, rather than the points themselves, and so, the dataset is designed to match the distance distribution observed in real spike trains [9]. The test dataset is also designed to present a stiff challenge to any algorithm for estimating information.



The toy data are produced by varying the components of one of a set of source vectors. More precisely, to produce a test dataset, a variance, [image: there is no content], is chosen uniformly from [image: there is no content], and [image: there is no content] sources are chosen uniformly in a [image: there is no content]-dimensional box centered at the origin with unit sides parallel to the Cartesian axes. Thus, the sources are all [image: there is no content]-dimensional vectors. The data points are also [image: there is no content]-dimensional vectors; they are generated by drawing each component from a normal distribution about the corresponding component of the source. Thus, data points with a source [image: there is no content]=(s1,s2,…,s[image: there is no content]) are chosen as [image: there is no content]=(r1,r2,…,r[image: there is no content]), where the [image: there is no content] are all drawn from normal distributions with variance [image: there is no content] centered at the corresponding [image: there is no content]:


[image: there is no content]∼N([image: there is no content],[image: there is no content])



(23)




[image: there is no content] data points are chosen for each source, giving [image: there is no content]=[image: there is no content][image: there is no content] data points in all.



Each test uses 200 different datasets; random pruning is used to ensure that the values of mutual information are evenly distributed over the whole range from zero to log2[image: there is no content]; otherwise, there tends to be an excess of datasets with a low value. The true mutual information is calculated using a Monte-Carlo estimate sampled over 10,000 points. The actual probability distributions are known: the probability of finding a point [image: there is no content] generated by a source, [image: there is no content], depends only on the distance d=|[image: there is no content]-[image: there is no content]| and is given by the χ-distribution:


p(d)=21-[image: there is no content]/2Γ([image: there is no content]/2)dσ[image: there is no content]-1e-d2/2[image: there is no content]



(24)







There is a bias in estimating the mutual information, in fact, bias is common to any approach to estimating mutual information [10]. The problem of reducing bias, or defining the mutual information, so that the amount of bias is low, is well studied and has produced a number of sophisticated approaches [4,10,11,12,13,14]. One of these, quadratic estimation, thanks to [11,13], is adapted to the current situation. Basically, it is assumed that for large numbers of data points, [image: there is no content], the estimated information, [image: there is no content], is related to the true mutual information [image: there is no content] by:


I˜(R;S)=I(R;S)+A[image: there is no content]+Bnt2+O(1/nt3)



(25)




This asymptotic expansion is well-motivated in the case of the plug-in approach to spike train information [10,11,15,16,17], and since the sources of bias are presumably similar, it is assumed the same expansion applies. In fact, this assumption is supported by plots of I(R,S;[image: there is no content]) against [image: there is no content]. To extract [image: there is no content], the estimate, I(R,S;[image: there is no content]), is calculated for λ[image: there is no content] with λ taking values from 0.1 to one in 0.1 increments. Least squares fit is used to estimate [image: there is no content] from these ten values.



The new method works well on these toy data. It is compared to a histogram approach, where the [image: there is no content]-dimensional space is discretized into bins and counting is used to estimate the probability of each bin. This is an analog of the plug-in method, and the same quadratic estimation technique is used to reduce bias.





In Figure 1, the new method is compared to the histogram method when [image: there is no content]=10 and [image: there is no content]=3, and for both low and high numbers of trials, [image: there is no content]=10 and [image: there is no content]=200. For the histogram method, the optimum discretization width is used. This optimal width is large, [image: there is no content] in each case; this roughly corresponds to a different bin for each octant of the three-dimensional space containing the data. In the new method, the bandwidth is not optimized on a case by case basis; instead, the kernel bandwidth, [image: there is no content], is chosen as being equal to the number of trials, [image: there is no content]. It can be seen that the new method is better at estimating the information: for [image: there is no content]=10, it has an average absolute error of [image: there is no content] bits, compared to [image: there is no content] bits for the histogram method; for [image: there is no content]=200, the average absolute error is [image: there is no content] bits, compared to [image: there is no content] bits for the histogram approach.


Figure 1. Comparing kernel density estimation (KDE) to the histogram method for ten sources, [image: there is no content]=10, and three dimensions, [image: there is no content]=3. In each case, the true information is plotted against the estimated information; the line, [image: there is no content], which represents perfect estimation, is plotted for clarity. For convenience, the mutual information has been normalized, so in each case, the value plotted is the estimate of I(R;S)/log2[image: there is no content], with a maximum value of one; in the cases plotted here, that means the information is measured in ban. (A) and (B) show the distribution for the histogram method for [image: there is no content]=10 and [image: there is no content]=200; (C) and (D) show the kernel method.



[image: Entropy 15 04540 g001]








In Figure 2, the histogram and kernel methods are compared for [image: there is no content]=10 and [image: there is no content]=10 and for [image: there is no content]=3 and [image: there is no content]=3; the number of trials is [image: there is no content]=200 in each case. The kernel method outperforms the histogram method. When [image: there is no content]=10 and [image: there is no content]=10, the average absolute error for the kernel method is 0.139 bits, compared to 0.876 bits for the histogram method; for [image: there is no content]=3 and [image: there is no content]=3, its average absolute error is 0.076 bits compared to 0.141 bits for the histogram. Furthermore, the errors for the kernel method are less clearly modulated by the actual information, which makes the method less prone to producing misleading results.


Figure 2. Comparing the KDE to the histogram method for high and low numbers of sources and dimensions. The true information is plotted against the estimated information; in (A) and (C), [image: there is no content]=10 and [image: there is no content]=10; in (B) and (D), [image: there is no content]=3 and [image: there is no content]=3. The top row, (A) and (B), is for the histogram method, the bottom row, (C) and (D), is for the kernel method. As before, the normalized information, I(S;R)/log2[image: there is no content], is plotted. So, for [image: there is no content]=10, the information is in ban, for [image: there is no content]=3, in trit, and in each case, the maximum mutual information is one. [image: there is no content]=200 for all graphs.



[image: Entropy 15 04540 g002]







4. Discussion


Although the actual method presented here is very different, it was inspired in part by the transmitted information method for calculating mutual information using metric-based clustering described in [18] and by the novel approach introduced in [19], where a kernel-like approach to mutual information is developed. Another significant motivation was the interesting technique given in [20], where the information is estimated by measuring how large a sphere could be placed around each data point without it touching another data point. In [20], the actual volume of the sphere is required, or, rather, the rate the volume changes with diameter. This is calculated by foliating the space of spike trains into subspaces with a fixed spike number and interpreting the spike times as coordinates. This is avoided here by using the Monte-Carlo estimate of volumes. Finally, the copula construction is related to the approach described here. In fact, the construction here can be thought of as a reverse copula construction [21].



An important part of the derivation of the kernel method is the change of measure to one based on the distribution. Since the kernel size is defined using a volume based on this measure, the radius of the kernel adapts to the density of data points. This is similar to the adaptive partitioning described, for example, in [22]. Like the plug-in method of computing mutual information for spike trains, adaptive partitioning is a discretization approach. However, rather than breaking the space into regions of fixed width, the discrete regions are chosen dynamically, using estimates of the cumulative distribution, similar to what is proposed here.



One striking aspect of KDE seen here is that it reduces to a kth nearest-neighbor (kNN) estimator. The kNN approach to estimating the mutual information of variables lying in metric spaces has been studied directly in [23]. Rather than using a KDE of the probability distribution, a Kozachenko-Leonenko estimator [24] is used. To estimate [image: there is no content], where X and Y are both continuous random variables taking values in [image: there is no content] and [image: there is no content], Kozachenko-Leonenko estimates are calculated for [image: there is no content], [image: there is no content] and [image: there is no content]; by using different values of k in each space, the terms that would otherwise depend on the dimension of [image: there is no content] and [image: there is no content] cancel.



This approach can be modified to estimate [image: there is no content], where S is a discrete random variable. Using the approach described in [23] to estimate [image: there is no content] and [image: there is no content] gives:


Ie(R;S)≈ϝ([image: there is no content])+ϝ([image: there is no content][image: there is no content])-ϝ([image: there is no content])-1[image: there is no content]∑iϝ[C([image: there is no content],[image: there is no content];[image: there is no content])]



(26)




where [image: there is no content] is the digamma function, [image: there is no content] is an integer parameter and C([image: there is no content],[image: there is no content];[image: there is no content]) is similar to c([image: there is no content],[image: there is no content];[image: there is no content]) above. Whereas ck([image: there is no content],[image: there is no content];[image: there is no content]) counts the number of responses to [image: there is no content] for which [image: there is no content] is one of the [image: there is no content] closest data points, C([image: there is no content],[image: there is no content];[image: there is no content]) is computed by first finding the distance, d, from [image: there is no content] to the [image: there is no content]th nearest spike-train response to stimulus [image: there is no content]; then, C([image: there is no content],[image: there is no content];[image: there is no content]) counts the number of spike trains, from any stimulus, that is at most a distance of d from [image: there is no content]. [image: there is no content] is the mutual information with base e, so [image: there is no content]. During the derivation of this formula, expressions involving the dimension of [image: there is no content] appear, but ultimately, they all cancel, leaving an estimate which can be applied in the case of interest here, where [image: there is no content] has no dimension. Since the digamma function can be approximated as:


[image: there is no content]



(27)




for large x, this kNN approach and the kernel method produce very similar estimates. The similarity between the two formulas, despite the different routes taken to them, lends credibility to both estimators.



Other versions of the kernel method can be envisaged. A kernel with a different shape could be used or the kernel could be defined by the radius rather than by the volume of the support. The volume of the support and, therefore, the normalization would then vary from data point to data point. This volume could be estimated by counting, as it was here. However, as mentioned above, the volume-based bandwidth has the advantage that it gives a kernel that is adaptive: the radius varies as the density of data points changes. Another intriguing possibility is to investigate if it would be possible to follow [20] and [23] more closely than has been done here and use a Monte-Carlo volume estimate to derive a Kozachenko and Leonenko estimator. Finally, KDE applied to two continuous random variables could be used to derive an estimate for the mutual information between two sets of spike trains or between a set of spike trains and a non-discrete stimulus, such as position in a maze.



There is no general, principled approach to choosing bandwidths for KDE methods. There are heuristic methods, such as cross-validation [25,26], but these include implicit assumptions about how the distribution of the data is itself drawn from a family of distributions, assumptions that may not apply to a particular experimental situation. The KDE approach developed here includes a term analogous to bandwidth, and although a simple choice of this bandwidth is suggested and gives accurate estimates, the problem of optimal bandwidth selection will require further study.



Applying the KDE approach to spike trains means it is necessary to specify a spike train metric [18,27,28]. Although the metric is only used to arrange points in the order of proximity, the dependence on a metric does mean that the estimated mutual information will only include mutual information encoded in features of the spike train that affect the metric. As described in [20], in the context of another metric-dependent estimator of mutual information, this means the mutual information may underestimate the true mutual information, but it does allow the coding structure of spike trains to be probed by manipulating the spike train metrics.



It is becoming increasingly possible to measure large number spike trains from large numbers of spike trains simultaneously. There are metrics for measuring distances between sets of multi-neuron responses [29,30,31], and so, the approach described here can also be applied to multi-neuronal data.
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