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Abstract: Bayesian testing of a point null hypothesis is considered. The null hypothesis
is that an observation, x, is distributed according to the normal distribution with a mean of
zero and known variance σ2. The alternative hypothesis is that x is distributed according
to a normal distribution with an unknown nonzero mean, µ, and variance σ2. The testing
problem is formulated as a prediction problem. Bayesian testing based on priors constructed
by using conditional mutual information is investigated.
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1. Introduction

We investigate a problem of testing a point null hypothesis from the viewpoint of prediction. The null
hypothesis, H0, is that an observation, x, is distributed according to the normal distribution, N(0, σ2),
with a mean of zero and variance σ2, and the alternative hypothesis, H1, is that x is distributed according
to a normal distribution N(µ, σ2) with unknown nonzero mean µ and variance σ2. The variance, σ2, is
assumed to be known. This simple testing problem has various essential aspects in common with more
general testing problems and has been discussed by many researchers. An essential part of our discussion
in the present paper holds for other testing problems based on more general models.

The assumption that the sample size is one is not essential. When we have N observations
x1, x2, . . . , xN from N(0, σ2) or N(µ, σ2), then the sufficient statistic x̄ =

∑N
i=1 xi/N is distributed

according to N(0, σ2/N) under H0 or N(µ/N, σ2/N) under H1, respectively. Then, the null hypothesis is
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that x̄ is distributed according to N(0, σ̃2), and the alternative hypothesis is that x̄ is distributed according
to N(µ̃, σ̃2) (µ̃ ̸= 0), where σ̃2 := σ2/N and µ̃ := µ/N . Thus, the testing problem with sample size
N is essentially equal to that with the sample size one. From now on, the variance, σ2, is set to be one
without loss of generality.

We formulate the testing problem as a prediction problem. Let m = 0 if H0 is true and m = 1 if
H1 is true. Let w be the probability that m = 0, and let π(dµ) be the prior probability measure of µ.
The probability, w, is set to be 1/2 in many previous studies, and the choice of π(dµ) is discussed;
see, e.g., [1] and the references therein. The objective is to predict m by using a Bayesian predictive
distribution, pw,π(m | x), depending on the prior π(dµ) and the observation, x.

Common choices of π are the Normal prior (1/
√
2πτ 2) exp(−µ2/2τ 2)dµ and the Cauchy prior

1/{πγ(1 +mu2/γ2)}dµ, recommended by Jeffreys [2]. Sometimes, it is considered that large values of
scale parameters τ and γ represent “ignorance” about µ. However, such a naive choice of scale parameter
values could cause a serious problem known as the Jeffreys–Lindley paradox [3].

We choose π(dµ) from the viewpoint of prediction and construct a Bayesian predictive distribution to
predict m based on an objectively chosen prior In the testing problem, the variable, m, is predicted, the
variable, x, is observed and the parameter, µ, is neither observed nor predicted. The latent information
prior π∗ [4] is defined as a prior maximizing the conditional mutual information:

Im;µ|x(w, π) =
1∑

m=0

∫∫
pw,π(x, µ,m | w) log pw,π(m,µ | x)

pw,π(m | x)pw,π(µ | x)
dxdµ (1)

between m and µ given x.
The latent information prior introduced in [4] is an objective Bayes prior. An outline of the method

based on it is as follows. First, a statistical problem is formulated as a prediction problem, in which x is
the observed random variable, y is the random variable to be predicted and θ is the unknown parameter.
Then, a prior π(dθ) that maximizes the conditional mutual information Iy;θ|x(π) between y and θ given
x is adopted.

In Section 2, we consider for Kullback-Leibler loss for prediction corresponding to Bayesian testing.
In Section 3, we obtain the latent information prior and discuss properties of Bayesian testing based on
it. In Section 4, we compare the proposed testing based on the latent information prior with Bayesian
testing based on the normal prior and the Cauchy prior.

2. Kullback-Leibler Loss of Predictive Densities

We consider Kullback-Leibler loss of prediction corresponding to Bayesian testing. The Bayesian
predictive density with respect to w and π is given by:

pw,π(m = 0 | x) = wp0(x)

wp0(x) + (1− w)pπ(x)
(2)

and

pw,π(m = 1 | x) = (1− w)pπ(x)

wp0(x) + (1− w)pπ(x)
(3)
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where:

p0(x) =ϕ(x; 0, 1) and pπ(x) =

∫
ϕ(x;µ, 1)π(dµ) (4)

and ϕ(x;µ, σ) is the density function of the normal distribution, N(µ, σ2).
If the value of µ is known, then the alternative hypothesis, H1: N(µ, 1), becomes a simple hypothesis,

and the predictive distribution is given by the posterior:

pw(m = 0 | x, µ) = wϕ(x; 0, 1)

wϕ(x; 0, 1) + (1− w)ϕ(x;µ, 1)
(5)

and:

pw(m = 1 | x, µ) = (1− w)ϕ(x; a, 1)

wϕ(x; 0, 1) + (1− w)ϕ(x;µ, 1)
(6)

To evaluate the performance of predictive densities, we adopt the Kullback-Leibler divergence:

1∑
m=0

pw(m | x, µ) log pw(m | x, µ)
pw,π(m | x)

(7)

from pw(m | x, µ) and to pw,π(m | x) as a loss function.
The risk function is given by:

rw(µ, π) =

∫
pw(x | µ)

1∑
m=0

pw(m | x, µ) log pw(m | x, µ)
pw,π(m | x)

dx

=
1∑

m=0

w(m)

∫
p(x | m,µ) log

pw(m | x, µ)
pw,π(m | x)

dx (8)

where w(0) = w and w(1) = 1 − w. Here, pw,π(m | x, µ) and pw,π(x | µ) are denoted by pw(m | x, µ)
and pw(x | µ), respectively, because they do not depend on π. The distribution of x does not depend on
µ if m = 0, because p(x | m = 0, µ) = ϕ(x; 0, 1).

It is not fruitful to discuss decision theoretic properties, such as the minimaxity of the risk defined by:

−
1∑

m=0

w(m)

∫
p(x | m,µ) log pw,π(m | x)dx (9)

because it is easy to distinguish between H0 and H1 when |µ| is very large.
The Kullback-Leibler risk in Equation (8) corresponds to the regret type quantity:

− log pw,π(m | x) + log pw(m | x, µ) (10)

which means the loss by not knowing the value of µ. By considering the minimaxity of the regret type
risk in Equation (8), several reasonable results are obtained.

Lemma 1. The risk of a Bayesian predictive density, pw,π(m | x), is given by:

rw(µ; π) =w

∫
p0(x) log

1 +
1− w

w

pπ(x)

p0(x)

1 +
1− w

w

p0(x− µ)

p0(x)

dx
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+ (1− w)

∫
p0(x) log

1 +
w

1− w

p0(x+ µ)

pπ(x+ µ)

1 +
w

1− w

p0(x+ µ)

p0(x)

dx (11)

Proof. See the Appendix.

The risk function in Equation (11) is a continuous function of µ for every w and π.
The Bayes risk with respect to a prior π of a Bayesian predictive density based on π̄ is:

Rw(π; π̄) =

∫
rw(µ, π̄)π(dµ)

=
1∑

m=0

∫∫
w(m)p(x | m,µ) log

pw(m | x, µ)
pw,π̄(m | x)

π(dµ)dx

=
1∑

m=0

∫∫
w(m)p(x | m,µ) log

pw,π̄(m | x, µ)pw,π̄(µ | x)
pw,π̄(m | x)pw,π̄(µ | x)

π(dµ)dx

=
1∑

m=0

∫∫
w(m)p(x | m,µ) log

pπ̄(µ | m,x)

pw,π̄(µ | x)
π(dµ)dx (12)

It is known that an important relation:

inf
π̄
Rw(π; π̄) = Rw(π;π) (13)

holds; see [5]. Here, Rw(π;π) coincides with the conditional mutual information, Im;µ|x(w, π), defined
by Equation (1) between m and µ given x.

3. Latent Information Priors

We obtain the latent information prior defined as a prior maximizing the conditional mutual
information, Im;µ|x(w, π). We restrict the original parameter space, R, of µ to a compact subset, K ⊂ R,
for mathematical convenience. A typical choice is a bounded closed interval K = [−b, b]. If b is
large enough, the testing problem H0 : N(0, σ2) versus H1 : N(µ, σ2), µ ∈ [−b, b] is close to the
original problem.

Let P(K) and P(R) be the spaces of all probability measures on K and R, respectively, endowed
with the weak convergence topology. Then, P(K) is compact, since the K is compact. It is easy to
verify that the conditional mutual information, Im;µ|x(w, π), is a continuous function of w ∈ [0, 1] and
π ∈ P(K). Therefore, there exists π∗

w that attains the maximum of Equation (1) for fixed w ∈ (0, 1),
since P(K) is compact. In the following, π∗

w is denoted as π∗ by omitting the subscript, w, when there
is no confusion.

The Bayesian testing based on the latent information prior, π∗ ∈ P(K), has the following
minimax property.

Theorem 1. Let π∗ ∈ P(K) be the latent information prior. Then:

inf
π∈P(R)

sup
µ∈K

rw(µ, π) = sup
µ∈K

rw(µ, π
∗) = Iµ;m|x(w, π

∗) (14)
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Proof. It is sufficient to show the relations:

Iµ;m|x(w, π
∗) = Rw(π

∗, π∗) = inf
π∈P(R)

Rw(π
∗, π) ≤ sup

π′∈P(K)

inf
π∈P(R)

Rw(π
′, π)

≤ inf
π∈P(R)

sup
π′∈P(K)

Rw(π
′, π) = inf

π∈P(R)
sup
µ∈K

rw(µ, π) ≤ sup
µ∈K

rw(µ, π
∗) ≤ Rw(π

∗, π∗) (15)

In the previous section, we have seen the equalities Iµ;m|x(w, π) = Rw(π, π) and
Rw(π

′, π′) = infπ Rw(π
′, π), corresponding to the first and second equalities in Equation (15).

Thus, it is enough to show the last inequality, supµ rw(µ, π
∗) ≤ Rw(π

∗, π∗), since the relations, except
for the first and second equalities and the last inequality, are obvious.

We prove the inequality by contradiction. Assume that there exists a value, ξ ∈ K, such that:

rw(ξ, π
∗) > Rw(π

∗, π∗) (16)

Let πt = (1− t)π∗+ tδξ (0 ≤ t ≤ 1), where δξ is the delta measure concentrated at ξ. Then, πt ∈ P(K).
From Equations (12) and (16):

∂

∂t
Rw(πt;πt)

∣∣∣∣
t=0

=
∂

∂t

{
w

∫
p0(x) log

wp0(x)

wp0(x) + (1− w)p1(x | µ)
wp0(x)

wp0(x) + (1− w)pπt(x)

dxπt(dµ)

+(1− w)

∫
p1(x | µ) log

(1− w)p1(x | µ)
wp0(x) + (1− w)p1(x | µ)

(1− w)pπt(x)

wp0(x) + (1− w)pπt(x)

dxπt(dµ)

}∣∣∣∣∣
t=0

=w

∫
p0(x)

(1− w){pδξ(x)− pπ∗(x)}
wp0(x) + (1− w)pπt(x)

dxπt(dµ)

∣∣∣∣∣
t=0

+ w

∫
p0(x) log

wp0(x)

wp0(x) + (1− w)p1(x | µ)
wp0(x)

wp0(x) + (1− w)pπt(x)

dx{−π∗(dµ) + δξ(dµ)}

∣∣∣∣∣
t=0

− (1− w)

∫
p1(x | µ)

(1− w){pδξ(x)− pπ∗(x)}
(1− w)pπt(x)

dxπt(dµ)

∣∣∣∣∣
t=0

+ (1− w)

∫
p1(x | µ)

(1− w){pδξ(x)− pπ∗(x)}
wp0(x) + (1− w)pπt(x)

dxπt(dµ)

∣∣∣∣∣
t=0

+ (1− w)

∫
p1(x | µ) log

(1− w)p1(x | µ)
wp0(x) + (1− w)p1(x | µ)

(1− w)pπt(x)

wp0(x) + (1− w)pπt(x)

dx{−π∗(dµ) + δξ(dµ)}

∣∣∣∣∣
t=0

=w

∫
p0(x) log

wp0(x)

wp0(x) + (1− w)p1(x | µ)
wp0(x)

wp0(x) + (1− w)pπ∗(x)

dx{−π∗(dµ) + δξ(dµ)}
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+ (1− w)

∫
p1(x | µ) log

(1− w)p1(x | µ)
wp0(x) + (1− w)p1(x | µ)

(1− w)pπt(x)

wp0(x) + (1− w)pπ∗(x)

dx{−π∗(dµ) + δξ(dµ)}

=−Rw(π
∗, π∗) + rw(ξ, π

∗) > 0 (17)

where we put p1(x | µ) := p(x | m = 1, µ). However, maxt∈[0,1] Rw(πt;πt) = Rw(π0;π0) =

Rw(π
∗;π∗), because of the definition of π∗ and the fact that πt ∈ P(K). This is a contradiction. Thus,

we have proven the desired result.

The discussion in the proof is parallel to that for submodels of multinomial models in [4], although
the testing problem is not included in the class considered there. Closely related discussion on the
unconditional mutual information is given in Csiszár [6]. See also, [7,8].

We set K = [−b, b] with b = 7 and consider two values, 0.5 and 0.355, of w. The latent information
priors, π∗

w, for two values w = 0.5 and w = 0.355 are numerically obtained by using a generalized
Arimoto-Blahut algorithm, the details of which will be discussed in another place. Here, w = 0.5 is the
setting adopted in many previous studies, and w = 0.355 is the value maximizing Im;µ|x(w, π

∗
w).

The Arimoto-Blahut algorithm [9,10] is widely used in information theory to obtain the capacity of
channels. A channel is defined to be a conditional distribution, p(y | θ), of y given θ, where y and
θ are random variables taking values in finite sets, Y and Θ, respectively. If a channel, p(y | θ), is
given, then the mutual information, Iy;θ(π), between y and θ is a function of the distribution, π(θ),
of θ. The maximum value, maxπ Iy;θ(π), of the mutual information as a function of π is called the
capacity of the channel p(y | θ). The Arimoto-Blahut algorithm is an iterative algorithm to obtain
the capacity maxπ Iy;θ(π) and the corresponding distribution π(θ), attaining the maximum value. The
original Arimoto-Blahut algorithm cannot be directly applied to our problem, since we need to maximize
the conditional mutual information, Im;θ|x, where x and θ are not discrete random variables, to obtain the
latent information prior.

Figure 1. Latent information priors for (a) w = 0.5 and for (b) w = 0.355.
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Figure 1 shows the numerically-obtained latent information priors. The priors have the form:

π∗
w =

u

2
(δ−a + δa) +

1− u

2
(δ−b + δb) (18)

The parameter values are a = 1.21, b = 7 and u = 0.440, when w = 0.5, and a = 1.10, b = 7 and
u = 0.393, when w = 0.355.

Lemma 2 below gives the risk of Bayesian testing based on the prior in Equation (18).

Lemma 2. Let:
πa,b,u =

u

2
(δ−a + δa) +

1− u

2
(δ−b + δb) (19)

where a, b > 0 and 0 ≤ u ≤ 1. Then, the risk in Equation (8) is given by:

rw(µ;πa,b,u) = −w

∫
ϕ(x) log

{
1 +

1− w

w
exp

(
−1

2
µ2 + µx

)}
dx

− (1− w)

∫
ϕ(x) log

{
1 +

w

1− w
exp

(
−1

2
µ2 − µx

)}
dx

+ w

∫
ϕ(x) log

{
1 +

1− w

w
(1− u) exp

(
−1

2
b2
)
cosh(bx) +

1− w

w
u exp

(
−1

2
a2
)
cosh(ax)

}
dx

+ (1− w)

∫
ϕ(x− µ) log

{
1 +

w

1− w

1

(1− u) exp
(
−1

2
b2
)
cosh(bx) + u exp

(
−1

2
a2
)
cosh(ax)

}
dx

(20)

and the conditional mutual information in Equation (1) is given by:

Im;µ|x(w, πa,b,u) = u

[
− w

∫
ϕ(x) log

{
1 +

1− w

w
exp

(
−1

2
a2 − ax

)}
dx

− (1− w)

∫
ϕ(x) log

{
1 +

w

1− w
exp

(
−1

2
a2 − ax

)}
dx

]
+ (1− u)

[
− w

∫
ϕ(x) log

{
1 +

1− w

w
exp

(
−1

2
b2 − bx

)}
dx

− (1− w)

∫
ϕ(x) log

{
1 +

w

1− w
exp

(
−1

2
b2 − bx

)}
dx

]
+ w

∫
ϕ(x) log

{
1 +

1− w

w
u exp

(
−1

2
a2
)
cosh(ax) +

1− w

w
(1− u) exp

(
−1

2
b2
)
cosh(bx)

}
dx

+ (1− w)u

∫
ϕ(x− a) log

{
1 +

w

1− w

1

(1− u) exp
(
− b2

2

)
cosh(bx) + u exp

(
−a2

2

)
cosh(ax)

}
dx

+ (1− w)(1− u)

∫
ϕ(x− b) log

{
1 +

w

1− w

1

(1− u) exp
(
− b2

2

)
cosh(bx) + u exp

(
−a2

2

)
cosh(ax)

}
dx

(21)

The first and second terms in Equation (20) do not depend on π. The third term in Equation (20) does
not depend on µ.

Figure 2 shows the risk functions of the latent information priors when w = 0.5 and
w = 0.355, respectively. Note that maxµ∈[−b,b] rw(µ, π

∗) is attained at µ = a and b in both
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examples. This is consistent with the proof of Theorem 1, and it is numerically verified that the prior
maximizes the conditional mutual information. Furthermore, we observe that the supremum value,
supµ∈R rw(µ, π

∗), of the risk without restriction µ ∈ [−b, b] is only slightly larger than the maximum
value, maxµ∈[−b,b] rw(µ, π

∗), with the restriction µ ∈ [−b, b]. The risk functions rapidly converge as µ

exceeds seven.

Figure 2. Risk functions of Bayesian testing based on latent information priors for
(a) w = 0.5 and for (b) w = 0.355. When w = 0.5, a = 1.21 and b = 7. When w = 0.355,
a = 1.10 and b = 7. The vertical dotted lines indicate the locations of a and b.
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Since:

sup
µ∈K

r(µ, π∗) = sup
π′∈P(K)

inf
π∈P(K)

R(π′, π) = sup
π′∈P(K)

inf
π∈P(R)

R(π′, π)

≤ sup
π′∈P(R)

inf
π∈P(R)

R(π′, π) ≤ inf
π∈P(R)

sup
π′∈P(R)

R(π′, π) = inf
π∈P(R)

sup
µ∈R

r(µ, π) ≤ sup
µ∈R

r(µ, π∗) (22)

and supµ∈R r(µ, π
∗)−supµ∈K r(µ, π∗) is small in our problem when K = [−b, b] (b = 7), the supremum

value, supµ∈R r(µ, π
∗), of the risk function of the latent information prior, π∗, under the parameter

restriction, µ ∈ [−7, 7], is only slightly larger than the minimax value, infπ∈P(R) supµ∈R r(µ, π) without
the restriction. We see in the next section that the supremum, supµ∈R r(µ, π), of the risk functions of
commonly used priors are much larger than those of π∗.

The discreteness of latent information priors shown in Figure 1 is a remarkable feature. In Bayesian
statistics, k-reference priors have been known to be discrete measures in many examples; see [11–13].
The k-reference prior is defined to be a prior maximizing the mutual information between xk and θ

when we have a set, xk, of k-independent observations, x1, . . . , xk, from p(x | θ) in a parametric model,
{p(x | θ) | θ ∈ Θ ⊂ Rd}. However, such discrete priors have not been widely used. Instead of
k-reference priors, reference priors introduced by Bernardo [14] have been used for many problems.
Reference priors are not discrete and are defined by considering the limit that the sample size k goes
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to infinity. One main reason why discrete priors are not popular is that discrete priors are totally
unacceptable form the viewpoint of subjective Bayes in which priors are considered to represent prior
belief on parameters.

Although they have not been widely used, discrete priors, such as latent information priors, are
reasonable from the viewpoint of prediction and objective Bayes. Various statistical problems, including
estimation and testing, can be formulated from the viewpoint of prediction, and priors can be constructed
by considering the conditional mutual information. Thus, latent information priors depending on
the choice of variables to be predicted could play important roles in many statistical applications.
Conditional mutual information is essential in information theory and naturally appeared in several
studies in statistics; see e.g., [15,16]. Priors based on conditional mutual information and those based on
unconditional mutual information are often quite different; see [4].

Bayesian testing based on latent information priors is free from the Jeffreys-Lindley paradox [3], since
the priors are constructed by using conditional mutual information and depend properly on sample sizes.
Posterior probabilities, pw,π∗(m = 0 | x), are shown in Figure 3 and are compared with p-values of the
two-sided test in Table 1. When x = 2, 3 and 4, posterior probabilities are much smaller than p-values of
the two-sided test. Large differences of posterior probabilities and p-values have been widely observed
and discussed in [1,17,18].

Figure 3. Posterior probabilities pw,π∗(m = 0 | x) based on latent information priors for
(a) w = 0.5 and for (b) w = 0.355.
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Table 1. Comparison of posterior probabilities and p-values.

x 0 1 2 3 4

pw=0.5(m = 0 | x) 0.702 0.564 0.295 0.112 0.0217
pw=0.355(m = 0 | x) 0.560 0.434 0.220 0.0867 0.0145

p-value (two-sided test) 1 0.317 0.0455 0.00267 6.33× 10−5
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4. Other Common Priors

Discrete priors, including latent information priors discussed in the previous section, have not been
widely used in Bayesian statistics. Common priors for the testing are the normal prior and the Cauchy
prior. It seems to have been believed by many statisticians that the Cauchy prior is slightly better than
the normal prior; see, e.g., [1,2]. In this section, we evaluate the conditional mutual information for the
priors and compare the performance of them to that of the latent information prior.

4.1. The Normal Prior

The normal prior, ϕ(µ; 0, τ 2), is denoted by Nτ . From Lemma 1, we have:

rw(µ,Nτ ) =− w

∫
ϕ(x; 0, 1) log

{
1 +

1− w

w
exp

(
−1

2
µ2 + µx

)}
dx

− (1− w)

∫
ϕ(x; 0, 1) log

{
1 +

w

1− w
exp

(
−1

2
µ2 − µx

)}
dx

+ w

∫
ϕ(x; 0, 1) log

{
1 +

1− w

w

ϕ(x; 0, τ 2 + 1)

ϕ(x; 0, 1)

}
dx

+ (1− w)

∫
ϕ(x;µ, 1) log

{
1 +

w

1− w

ϕ(x; 0, 1)

ϕ(x; 0, τ 2 + 1)

}
dx (23)

Thus, the conditional mutual information is given by:

Im;µ|x(w,Nτ ) =

∫
rw(µ,Nτ )ϕ(µ; 0, τ

2)dµ

=− w

∫
ϕ(x; 0, 1)ϕ(µ; 0, τ 2) log

{
1 +

1− w

w
exp

(
−1

2
µ2 + µx

)}
dµdx

− (1− w)

∫
ϕ(x; 0, 1)ϕ(µ; 0, τ 2) log

{
1 +

w

1− w
exp

(
−1

2
µ2 − µx

)}
dµdx

+ w

∫
ϕ(x; 0, 1) log

{
1 +

1− w

w

ϕ(x; 0, τ 2 + 1)

ϕ(x; 0, 1)

}
dx

+ (1− w)

∫
ϕ(x; 0, τ 2 + 1) log

{
1 +

w

1− w

ϕ(x; 0, 1)

ϕ(x; 0, τ 2 + 1)

}
dx (24)

The conditional mutual information is evaluated by numerical integration. When w = 0.5 and
w = 0.355, the maximum values:

max
τ

Im;µ|x(w = 0.5,Nτ ) = 0.156 and max
τ

Im;µ|x(w = 0.355,Nτ ) = 0.166 (25)

of Equation (24) are attained at τ = 4.92 and τ = 5.36, respectively. The variation of the risk functions,
rw=0.5(µ,Nτ=4.92) and rw=0.355(µ,Nτ=5.36), shown in Figure 4 are much larger than those of the risk
functions of the latent information priors shown in Figure 2. Thus, the performance of the Bayesian
testing based on the normal prior is worse than that based on the latent information prior if we adopt the
Kullback-Leibler loss.
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Figure 4. Risk functions of Bayesian testing based on normal priors for (a) w = 0.5

and τ = 4.92; and for (b) w = 0.355 and τ = 5.36. The functions have symmetry
rw(−µ,Nτ ) = rw(µ,Nτ ) about the origin.

0 2 4 6 8 10

0
.1

0
0

.1
2

0
.1

4
0

.1
6

0
.1

8
0
.2

0

µ

r
w

(µ
,

N
4

.9
2
)

w = 0.5

(a)

0 2 4 6 8 10

0
.1

0
0

.1
2

0
.1

4
0

.1
6

0
.1

8
0
.2

0

µ

r
w

(µ
,

N
5

.3
6
)

w = 0.355

(b)

4.2. The Cauchy Prior

The Cauchy prior, 1/{γπ(µ2/γ2 − 1)}, is denoted by Cγ . Since the characteristic functions of
N(0, σ2) and Cγ are exp

(
−1

2
σ2t2

)
and exp(−γ|t|), respectively, the characteristic function of the

marginal density:

pC(x | γ) =
∫

1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}
1

π(µ2/γ2 − 1)

1

γ
dµ (26)

with respect to the Cauchy prior, Cγ , is given by:

exp

(
−γ|t| − 1

2
t2
)

(27)

The expression:

pC(x | γ) = 1

2π

∫ ∞

−∞
e−ixt exp

(
−γ|t| − 1

2
t2
)
dt

=
1√
2πσ

Re

[
exp

{
(ix− γ)2

2

}
erfc

(
−i

x+ iγ√
2

)]
(28)

where erfc is the complementary error function defined by:

erfc(z) =
2√
π

∫ ∞

z

e−t2dt (29)

obtained by the inverse transform of Equation (27) is useful for numerical computation; see [19] (p. 183)
and [20]. From Lemma 1, we have:

rw(µ;Cγ) =− w

∫
ϕ(x; 0, 1) log

{
1 +

1− w

w
exp

(
−1

2
µ2 + µx

)}
dx
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− (1− w)

∫
ϕ(x; 0, 1) log

{
1 +

w

1− w
exp

(
−1

2
µ2 − µx

)}
dx

+ w

∫
ϕ(x; 0, 1) log

{
1 +

1− w

w

pC(x | γ)
ϕ(x; 0, 1)

}
dε

+ (1− w)

∫
ϕ(x; 0, 1) log

{
1 +

w

1− w

ϕ(x+ µ; 0, 1)

pC(x+ µ | γ)

}
dx (30)

We numerically evaluate the conditional mutual information:

Im;µ|x(w,Cγ) =

∫
rw(µ;Cγ)

1

π(µ2/γ2 − 1)

1

γ
dµ (31)

by the Monte-Carlo method. When w = 0.5 and w = 0.355, the maximum values:

max
γ

Im;µ|x(w = 0.5,Cγ) = 0.161 and max
γ

Im;µ|x(w = 0.355,Cγ) = 0.170

of Equation (31) are attained at γ = 3.31 and γ = 3.63, respectively. The risk functions
rw=0.5(µ,Cγ=3.31) and rw=0.355(µ,Cγ=3.63) are shown in Figure 5. The variation of the risk function
rw=0.5(µ,Cγ=3.31) is milder than that of the risk function rw=0.5(µ,Nτ=4.92) based on the normal prior,
and the inequality supµ rw=0.5(µ,Cγ=3.31) < supµ rw=0.5(µ,Nτ=4.92) holds. Thus, the Cauchy prior is
preferable to the normal prior from the viewpoint of the Kullback-Leibler loss. However, the variation
of the risk function shown in Figure 2 based on the latent information prior is much smaller than that of
rw=0.5(µ,Cγ=3.31). Similar relations also hold when w = 0.355.

Figure 5. Risk functions of Bayesian testing based on Cauchy priors for (a) w = 0.5

and γ = 3.31; and for (b) w = 0.355 and γ = 3.63. The functions have symmetry
rw(−µ,Cγ) = rw(µ,Cγ) about the origin.
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5. Conclusions

We discussed the use of latent information priors for Bayesian testing of a point null hypothesis. The
testing problem was formulated as a prediction problem, and latent information priors were numerically
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obtained. The variations of the risk functions of latent information priors are much smaller than those of
normal and Cauchy priors. Although the testing problem treated in the present paper is simple, the results
may indicate that latent information priors could be useful for various problems, since many statistical
problems can be formulated from the viewpoint of prediction.

When the parameter space is multidimensional, it becomes difficult to numerically obtain latent
information priors, and some approximations need to be used. One possible approach is to use
asymptotic methods, and another possible approach is to choose an approximating prior from a tractable
subset of the set of all probability measures on the parameter space. These approaches require
further investigation.
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Appendix. Proofs of Lemmas

Proof of Lemma 1. From Equation (8), we have:

rw(µ; π) =w

∫
p(x | m = 0) log

pw(m = 0 | µ, x)
pw,π(m = 0 | x)

dx

+ (1− w)

∫
p(x | m = 1, µ) log

pw(m = 1 | µ, x)
pw,π(m = 1 | x)

dx (32)

because m and µ are independent. Since:

pw(m = 0 | µ, x)
pw,π(m = 0 | x)

=

wp(x | m = 0)

wp(x | m = 0) + (1− w)p(x | m = 1, µ)

wp(x | m = 0)

wp(x | m = 0) + (1− w)pπ(x | m = 1)

=

1 +
1− w

w

pπ(x | m = 1)

p(x | m = 0)

1 +
1− w

w

p(x | m = 1, µ)

p(x | m = 0)

(33)

and:

pw(m = 1 | µ, x)
pw,π(m = 1 | x)

=

(1− w)p(x | m = 1, µ)

wp(x | m = 0) + (1− w)p(x | m = 1, µ)

(1− w)pπ(x | m = 1)

wp(x | m = 0) + (1− w)pπ(x | m = 1)

=

w

1− w

p(x | m = 0)

pπ(x | m = 1)
+ 1

w

1− w

p(x | m = 0)

p(x | m = 1, µ)
+ 1

(34)
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we have:

rw(µ; π) = w

∫
p(x | m = 0)

1 +
1− w

w

pπ(x | m = 1)

p(x | m = 0)

1 +
1− w

w

p(x | m = 1, µ)

p(x | m = 0)

dx

+ (1− w)

∫
p(x | m = 1, µ) log

1 +
w

1− w

p(x | m = 0)

pπ(x | m = 1)

1 +
w

1− w

p(x | m = 0)

p(x | m = 1, µ)

dx

=w

∫
p0(x) log

1 +
1− w

w

pπ(x)

p0(x)

1 +
1− w

w

p0(x− µ)

p0(x)

dx+ (1− w)

∫
p0(x) log

1 +
w

1− w

p0(x+ µ)

pπ(x+ µ)

1 +
w

1− w

p0(x+ µ)

p0(x)

dx (35)

Proof of Lemma 2. Since:

ϕ(x− a) + ϕ(x+ a) =
1√
2π

exp

{
−1

2
(x2 − 2ax+ a2)

}
+

1√
2π

exp

{
−1

2
(x2 + 2ax+ a2)

}
= 2ϕ(x) exp

(
−1

2
a2
)
cosh(ax) (36)

we have:

pπ(x)

p0(x)
=

1

2
u {ϕ(x+ a) + ϕ(x− a)}+ 1

2
(1− u) {ϕ(x+ b) + ϕ(x− b)}

ϕ(x)

=u exp

(
−1

2
a2
)
cosh(ax) + (1− u) exp

(
−1

2
b2
)
cosh(bx) (37)

From Lemma 1, we have:

rw(µ; π)

=− w

∫
p0(x) log

{
1 +

1− w

w

p0(x− µ)

p0(x)

}
dx− (1− w)

∫
p0(x) log

{
1 +

w

1− w

p0(x+ µ)

p0(x)

}
dx

+ w

∫
p0(x) log

{
1 +

1− w

w

pπ(x)

p0(x)

}
dx+ (1− w)

∫
p0(x) log

{
1 +

w

1− w

p0(x+ µ)

pπ(x+ µ)

}
dx

=− w

∫
ϕ(x) log

{
1 +

1− w

w
exp

(
−1

2
µ2 + µx

)}
dx

− (1− w)

∫
ϕ(x) log

{
1 +

w

1− w
exp

(
−1

2
µ2 − µx

)}
dx

+ w

∫
ϕ(x)

× log

{
1 +

1− w

w
u exp

(
−1

2
a2
)
cosh(ax) +

1− w

w
(1− u) exp

(
−1

2
b2
)
cosh(bx)

}
dx

+ (1− w)

∫
ϕ(x− µ)
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× log

{
1 +

w

1− w

1

u exp
(
−1

2
a2
)
cosh(ax) + (1− u) exp

(
−1

2
b2
)
cosh(bx)

}
dx (38)

The conditional mutual information is:

Im;µ|x(w, π) =
u

2
{rw(−a; π) + rw(a;π)}+

1− u

2
{rw(−b;π) + rw(b;π)}

=urw(a;π) + (1− u)rw(b;π) (39)

From Equations (38) and (39), we obtain the desired result.

c⃝ 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


