
Entropy 2013, 15, 4188-4198; doi:10.3390/e15104188

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

The Fractional Differential Polynomial Neural Network for
Approximation of Functions

Rabha W. Ibrahim

Institute of Mathematical Sciences, University Malaya, Kuala Lumpur 50603, Malaysia;

E-Mail: rabhaibrahim@yahoo.com; Fax: +60 3-7967 3535

Received: 26 August 2013; in revised form: 5 September 2013 / Accepted: 24 September 2013 /

Published: 29 September 2013

Abstract: In this work, we introduce a generalization of the differential polynomial neural

network utilizing fractional calculus. Fractional calculus is taken in the sense of the Caputo

differential operator. It approximates a multi-parametric function with particular polynomials

characterizing its functional output as a generalization of input patterns. This method can

be employed on data to describe modelling of complex systems. Furthermore, the total

information is calculated by using the fractional Poisson process.

Keywords: fractional calculus; fractional differential equations; fractional polynomial

neural network

1. Introduction

The Polynomial Neural Network (PNN) algorithm is one of the most important methods for

extracting knowledge from experimental data and to locate its best mathematical characterization. The

proposed algorithm can be utilized to analyze complex data sets with the objective to conclude internal

data relationships and to impose knowledge about these relationships in the form of mathematical

formulations (polynomial regressions). One of the most common types of PNN is the Group Method of

Data Handling (GMDH) polynomial neural network created in 1968 by Professor Ivakhnenko at the

Institute of Cybernetics in Kyiv (Ukraine).

Based on GMDH, Zjavka developed a new type of neural network called Differential Polynomial

Neural Network (D-PNN) [1–4]. It organizes and designs some special partial differential equations,

performing a complex system model of dependent variables. It makes a sum of fractional polynomial

formulas, determining partial mutual derivative alterations of input variable combinations. This kind of

OPEN ACCESS

Entropy 2013, 15 4189

retreatment is based on learning generalized data connections. Furthermore, it offers dynamic system

models a standard time-series prediction, as the character of relative data allow it to employ a wider

range of input interval values than defined by the trained data. In addition, the advantages of

differential equation solutions facilitate a major variety of model styles. The principle of this type is

similar to the artificial neural network (ANN) construction [5,6].

Fractional calculus is a section of mathematical analysis that deals with considering real number powers

or complex number powers of the differentiation and integration operators. The integrals are of convoluted

form and exhibit power-law type kernels. It can be viewed as an experimenter for special functions and

integral transforms [7–12]. It is well known that the physical interview of the fractional derivative is an

open problem today. In [13], the author utilized fractional operators, in the sense of the Caputo differential

operator, to define and study the stability of recurrent neural network (NN). In [14], Gardner employed a

discrete fractional calculus to study Artificial Neural Network Augmentation. In [15], Almarashi used

neural networks with a radial basis function method to solve a class of initial boundary values of fractional

partial differential equations. Recently, Jalab et al., applied the neural network method for finding the

numerical solution for some special fractional differential equations [16]. Zhou et al. propoced a fractional

time-domain identification algorithm based on a genetic algorithm [17], while Chen et al. studied the

synchronization problem for a class of fractional-order chaotic neural networks [18].

Here, our aim is to introduce a generalization of the differential polynomial neural network utilizing

fractional calculus. The fractional calculus is assumed in the sense of the Caputo differential operator.

It approximates a multi-parametric function with particular polynomials characterizing its functional

output as a generalization of input patterns. This method can be employed on data to describe modelling of

complex systems [19].

2. Preliminaries

This section concerns with some basic preliminaries and notations regarding the fractional calculus.

One of the most considerably utilized instruments in the theory of fractional calculus is provided by

the Caputo differential operator.

Definition 2.1 The fractional (arbitrary) order integral of the function ݄ of order ߚ ൐ 0 is defined by:

௔ܫ
ఉ݄ሺݐሻ ൌ න

௧

௔

ሺݐ െ ߬ሻఉିଵ

Γሺߚሻ
݄ሺ߬ሻ݀߬. (1)

When ܽ ൌ 0, we write ܫ௔
ఉ݄ሺݐሻ ൌ ݄ሺݐሻ כ ߯ఉሺݐሻ, where ሺכሻ denoted the convolution product (see [7]),

߯ఉሺݐሻ ൌ ௧ഁషభ

୻ሺఉሻ
, ݐ ൐ 0 and ߯ఉሺݐሻ ൌ 0, ݐ ൑ 0 and ߯ఉ ՜ Եሺݐሻ as ߚ ՜ 0 where Եሺݐሻ is the delta function.

Definition 2.2 The Riemann-Liouville fractional derivative of the function ݄ of order 0 ൑ ߚ ൏ 1

is defined by:

௔ܦ
ఉhሺݐሻ ൌ

݀
ݐ݀

න
௧

௔

ሺݐ െ ߬ሻିఉ

Γሺ1 െ ሻߚ
hሺ߬ሻ݀߬ ൌ

݀
ݐ݀

௔ܫ
ଵିఉhሺݐሻ. (2)

Remark 2.1 [7]

ఓݐఉܦ ൌ
Γሺߤ ൅ 1ሻ

Γሺߤ െ ߚ ൅ 1ሻ
,ఓିఉݐ ߤ ൐ െ1; 0 ൏ ߚ ൏ 1 (3)

Entropy 2013, 15 4190

and:

ఓݐఉܫ ൌ
Γሺߤ ൅ 1ሻ

Γሺߤ ൅ ߚ ൅ 1ሻ
,ఓାఉݐ ߤ ൐ െ1; ߚ ൐ 0. (4)

The Leibniz rule is:

௔ܦ
ఉሾ݂ሺݐሻ݃ሺݐሻሿ ൌ ෍

ஶ

௞ୀ଴

൭
ߚ

݇
൱ ௔ܦ

ఉି௞݂ሺݐሻܦ௔
௞݃ሺݐሻ

ൌ ෍

ஶ

௞ୀ଴

൭
ߚ

݇
൱ ௔ܦ

ఉି௞݃ሺݐሻܦ௔
௞݂ሺݐሻ.

 (5)

Definition 2.3. The Caputo fractional derivative fractional derivative of order β>0 is defined, for a

smooth function f by:

 (6)

The local fractional Taylor formula has been generalized by many authors [20–22]. This

generalization admits the following formula:

݂ሺݔ ൅ Δݔሻ ൌ ݂ሺݔሻ ൅
ሺΔݔሻఉ

Γሺߚ ൅ 1ሻ
൅ ݂ሺݔሻ

ሺΔݔሻଶఉ

Γሺ2ߚ ൅ 1ሻ
൅ ڮ

൅ ݂ሺݔሻ
ሺΔݔሻ௡ఉ

Γሺ݊ߚ ൅ 1ሻ
,

(7)

where c
xD is the Caputo differential operator and:

...c n c c c
x x x x

n times

D D D D   



 (8)

3. Results

3.1. Proposed Method

The fractional differential polynomial neural network (FD-PNN) is based on an equation of the form:

ܽ ൅ ෍

௡

௜ୀଵ

ܾ௜
∂ఉݑ

௜ݔ∂
ఉ ൅ ෍

௡

௜ୀଵ

෍

௡

௝ୀଵ

ܿ௜௝
∂ఉݑ

௜ݔ∂
ఉ

∂ఉݑ

௝ݔ∂
ఉ ൅ ෍

௡

௜ୀଵ

෍

௡

௝ୀଵ

෍

௡

௞ୀଵ

݀௜௝௞
∂ఉݑ

௜ݔ∂
ఉ

∂ఉݑ

௝ݔ∂
ఉ

∂ఉݑ

௞ݔ∂
ఉ ൅. . . ൌ 0, (9)

where ݑ: ൌ ݂ሺݔଵ, ,ଶݔ . . . , ௡ሻݔ is a function of all input variables, ܽ, ܾ௜, ܿ௜௝, ݀௜௝௞ are the polynomial

coefficients. Solutions of fractional differential equations can be expressed in term of the Mittag-

Leffler function:

.
)(

)(

)(

1
=

)(::)(

1

)(

0

)(





 







d
x

f

n

xfD
x

f
xf

n

nx

x
c











)(xfDx
c  

x
c D 

x
c D

n
x

c D

Entropy 2013, 15 4191

ሻݖఈሺܧ ൌ ෍

ஶ

௡ୀ଴

௡ݖ

Γሺ1 ൅ ሻߙ݊
 (10)

Recently, numerical routines for Mittag-Leffler functions have been developed, e.g., by Freed et al. [23],

Gorenflo et al. [24] (with MATHEMATICA), Podlubny [25] (with MATLAB), Seybold and Hilfer [26].

We proceed to form sum derivative terms changing the fractional partial differential equation (9) by

applying different math techniques, e.g. fractional wave series, [27]:

௜ݕ
ఉ ൌ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ൅. . . ൅ܽ௡ݔ௡ ൅ ܽ௡ାଵݔଵݔଶ൅. . . ሻ
௠ାఉ

௡

ܾ଴ ൅ ܾଵݔଵ൅. . .

ൌ
∂௠ఉ݂ሺݔଵ, ,ଶݔ . . . , ௡ሻݔ

ଵݔ∂
ఉ ଶݔ∂

ఉ. . . ௠ݔ∂
ఉ ,

 (11)

where ݊ refers to the combined degree of ݊ െ input variable polynomial of numerator; while ݉

indicates to the combined degree of denominator ݓ௧ – weights of terms and ݕ௜
ఉ is the output neuron.

Note that when ߚ ՜ 1, Equation (11) reduces to Equation (4) in [4]. The fractional polynomials of

fractional power (11), determining relations of ݊-input variables, appear summation derivative terms

(neurons) of a fractional differential equation. The numerator of Equation (11) is a complete ݊-variable

polynomial, which recognizes a new partial function ݑ of Equation (9). The denominator of Equation (11)

is a fractional derivative part, which implies a fractional partial change of some input variables

combination. Equation (11) indicates a aingle output for fixed fractional power. Each layer of the FD-PNN

contains blocks. These blocks stress fractional derivative neurons. For each fractional polynomial of

fractional order formulates the fractional partial derivative depending on the change of some input

variables. Each block implicates a unique fractional polynomial which forms its output access into the next

hidden layer (Figure 1). For example of a system of the form : input layer, first hidden layer, second hidden

layer and output layer; we may use y1
1/4 to perform its output to the first layer; y2

1/2 to execute its output to

the second hidden layer and y3
3/4 to carry out the last y of the system in the output layer.

Figure 1. GMDH-PNN.

Let there be a network with two inputs, formulating one functional output value ݕఉ, then, for

special values of ߚ, the sum derivative terms is:

Entropy 2013, 15 4192

ଵݕ ൌ ଵݓ
ܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶ

ܾ଴ ൅ ܾଵݔଵ
൅ ଶݓ

ܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶ

ܾ଴ ൅ ܾଵݔଶ
, ሺ݁݁ݏ ሾ4ሿሻ

ଷ/ସݕ ൌ ଵݓ
ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶሻ଻/଼

ܾ଴ ൅ ܾଵݔଵ
൅ ଶݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶሻ଻/଼

ܾ଴ ൅ ܾଵݔଶ

ଵ/ଶݕ ൌ ଵݓ
ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶሻଷ/ସ

ܾ଴ ൅ ܾଵݔଵ
൅ ଶݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶሻଷ/ସ

ܾ଴ ൅ ܾଵݔଶ

ଵ/ସݕ ൌ ଵݓ
ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶሻହ/଼

ܾ଴ ൅ ܾଵݔଵ
൅ ଶݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵݔଶሻହ/଼

ܾ଴ ൅ ܾଵݔଶ
;

 (12)

we realize that ݕఉ includes only one block of two neurons, terms of both fractional derivative variables

 ଶ. Table 1 shows approximation errors (y-axis) of the trained network, i.e. differences of theݔ ଵ andݔ

true and estimated function, to random input vectors with dependent variables.

Table 1. Approximation values of ݂ሺݔଵ, ଶሻݔ ൌ ଵݔ ൅ .ଶݔ

Data Actual Value Approximate Value Absolute Error

ଵݕ 1 (1,0) ൌ ଷ/ସݕ ൌ
3
4

 0.25

ଵ/ଶݕ ൌ ଵ/ସݕ ൌ
3
4

 0.25

ଵݕ 1 (0,1) ൌ ଷ/ସݕ ൌ
3
4

 0.25

ଵ/ଶݕ ൌ ଵ/ସݕ ൌ
3
4

 0.25

ଵݕ 1 (1,1) ൌ 1.5 0.5
ଷ/ସݕ ൌ 1.3 0.3
ଵ/ଶݕ ൌ 1.1 0.1
ଵ/ସݕ ൌ 0.99 0.01

ଵݕ 1 (1/2,1/2) ൌ 1.66 0.66
ଷ/ସݕ ൌ 1.6 0.6
ଵ/ଶݕ ൌ 1.57 0.57
ଵ/ସݕ ൌ 1.53 0.53
଴.ଵݕ ൌ 1.4 0.4

The 3-variable FD-PNN (Table 2) for linear true function approximation (e.g., ݂ሺݔଵ, ,ଶݔ ଷሻݔ ൌ ଵݔ ൅
ଶݔ ൅ ଷ) may involve one block of six neurons, FDE terms of all 1 and 2-combination derivativeݔ

variables of the complete FDE, e.g.:

ଵݕ
ଵ ൌ ଵݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷሻଶ/ଷ

ܾ଴ ൅ ܾଵݔଵ
, ሺ݁݁ݏ ሾ4ሿሻ

ଵݕ
ଷ/ସ ൌ ଵݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷሻ଻/ଵଶ

ܾ଴ ൅ ܾଵݔଵ

ଵݕ
ଵ/ଶ ൌ ଵݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷሻଵ/ଶ

ܾ଴ ൅ ܾଵݔଵ

ଵݕ
ଵ/ସ ൌ ଵݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷሻହ/ଵଶ

ܾ଴ ൅ ܾଵݔଵ
;

 (13)

Entropy 2013, 15 4193

and:

ସݕ
ଵ ൌ ଶݓ

ܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷ

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଶ ൅ ܾଷݔଵݔଶ
, ሺ݁݁ݏ ሾ4ሿሻ

ସݕ
ଷ/ସ ൌ ଶݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷሻଵଵ/ଵଶ

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଶ ൅ ܾଷݔଵݔଶ

ସݕ
ଵ/ଶ ൌ ଶݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷሻହ/଺

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଶ ൅ ܾଷݔଵݔଶ

ସݕ
ଵ/ସ ൌ ଶݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଷ ൅ ܽସݔଵݔଶ ൅ ܽହݔଵݔଷ ൅ ܽ଺ݔଶݔଷ ൅ ܽ଻ݔଵݔଶݔଷሻଷ/ସ

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଶ ൅ ܾଷݔଵݔଶ
;

 (14)

Table 2. Approximation values of ݂ሺݔଵ, ,ଶݔ ଷሻݔ ൌ ଵݔ ൅ ଶݔ ൅ .ଷݔ

Data Actual Value Approximate Value Absolute Error

ସݕ 1 (1,0,0)
ଵ ൌ ସݕ

ଷ/ସ ൌ
1
2

 0.5

ସݕ
ଵ/ଶ ൌ ସݕ

ଵ/ସ ൌ
1
2

 0.5

ସݕ 1 (0,1,0)
ଵ ൌ ସݕ

ଷ/ସ ൌ
1
2

 0.5

ସݕ
ଵ/ଶ ൌ ସݕ

ଵ/ସ ൌ
1
2

 0.5

ସݕ 1 (0,0,1)
ଵ ൌ ସݕ

ଷ/ସ ൌ 1 0

ସݕ
ଵ/ଶ ൌ ସݕ

ଵ/ସ ൌ 1
ସݕ 1 (1,1,0)

ଵ ൌ 1.125 0.125
ସݕ

ଷ/ସ=1.025 0.025

ସݕ
ଵ/ଶ ൌ 1.873 0.12

ସݕ
ଵ/ସ ൌ 0.936 0.063

ସݕ 1 (1,0,1)
ଵ ൌ 1.5 0.5

ସݕ
ଷ/ସ=1.368 0.368

ସݕ
ଵ/ଶ ൌ 1.249 0.249

ସݕ
ଵ/ସ ൌ 1.1 0.1

ସݕ 1 (1,1,1)
ଵ ൌ 1.6 0.6

ସݕ
ଷ/ସ=1.488 0.488

ସݕ
ଵ/ଶ ൌ 1.26 0.26

ସݕ
ଵ/ସ ൌ 1.0755 0.0755

We proceed to compute approximations for non-linear functions. We let ݑ: ൌ ݂ሺݔଵ, ଶሻݔ be a

function with square power variables, then we have:

,ଵݔሺܨ ,ଶݔ ,ݑ
∂ఉݑ

ଵݔ∂
ఉ ,

∂ఉݑ

ଶݔ∂
ఉ ,

∂ଶఉݑ

ଵݔ∂
ଶఉ ,

∂ଶఉݑ

ଶݔ∂
ଶఉ ,

∂ଶఉݑ

ଵݔ∂
ఉ ଶݔ∂

ఉሻ ൌ 0. (15)

For example, for ߚ ൌ 1, we get [4]:

Entropy 2013, 15 4194

ଵ଴ݕ
ଵ ൌ ଵ଴ݓ

ܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵ
ଶ ൅ ܽସݔଶ

ଶ ൅ ܽହݔଵݔଶ

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଵ
ଶ

ൌ
∂ଶ݂ሺݔଵ, ଶሻݔ

ଵݔ∂
ଶ

଴ଵݕ
ଵ ൌ ଴ଵݓ

ܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵ
ଶ ൅ ܽସݔଶ

ଶ ൅ ܽହݔଵݔଶ

ܾ଴ ൅ ܾଵݔଶ ൅ ܾଶݔଶ
ଶ

ൌ
∂ଶ݂ሺݔଵ, ଶሻݔ

ଶݔ∂
ଶ .

 (16)

In general, for fractional power ߚ, we have:

ଵ଴ݕ
ఉ ൌ ଵ଴ݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵ
ଶ ൅ ܽସݔଶ

ଶ ൅ ܽହݔଵݔଶሻ
ଵାఉ

ଶ

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଵ
ଶ

ൌ
∂ଶఉ݂ሺݔଵ, ଶሻݔ

ଵݔ∂
ଶఉ

଴ଵݕ
ఉ ൌ ଴ଵݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵ
ଶ ൅ ܽସݔଶ

ଶ ൅ ܽହݔଵݔଶሻ
ଵାఉ

ଶ

ܾ଴ ൅ ܾଵݔଶ ൅ ܾଶݔଶ
ଶ

ൌ
∂ଶఉ݂ሺݔଵ, ଶሻݔ

ଶݔ∂
ଶఉ .

 (17)

For example:

ଵ଴ݕ
ଷ/ସ ൌ ଵ଴ݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵ
ଶ ൅ ܽସݔଶ

ଶ ൅ ܽହݔଵݔଶሻ
଻
଼

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଵ
ଶ

ଵ଴ݕ
ଵ/ଶ ൌ ଵ଴ݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵ
ଶ ൅ ܽସݔଶ

ଶ ൅ ܽହݔଵݔଶሻ
ଷ
ସ

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଵ
ଶ

ଵ଴ݕ
ଵ/ସ ൌ ଵ଴ݓ

ሺܽ଴ ൅ ܽଵݔଵ ൅ ܽଶݔଶ ൅ ܽଷݔଵ
ଶ ൅ ܽସݔଶ

ଶ ൅ ܽହݔଵݔଶሻ
ହ
଼

ܾ଴ ൅ ܾଵݔଵ ൅ ܾଶݔଵ
ଶ .

 (18)

3.2. Modified Information Theory

In this section, we try to measure the learning of the neuron of the system in Figure 1. We wish to

improve a applicable measure of the information we get from observing the appearance of an event

having probability p. The approach depends on the probability of extinction, which describes by the

fractional Poisson process as follows [28]:

ఉܲ ሺܰ, ሻݕ ൌ
ሺݕߪሻே

ܰ!
෍

ሺ݊ ൅ ܰሻ!
݊!

ஶ

௡ୀ଴

ሺെݕߪఉሻ௡

Γሺߚሺ݊ ൅ ܰሻ ൅ 1ሻ
, (19)

where σ� R is a physical coefficient, β � (0,1]. Let N be the number of neurons, I be the average

information and further that the source emits the symbols with probabilities P1, P2, ... , PN, respectively

such that Pi=Pβ (i,y). Thus we may compute the total information as follows:

Entropy 2013, 15 4195

ܫ ൌ ෍ሺܰ ௜ܲ ሻ log ൬
1

௜ܲ
൰ .

ே

௜ୀଵ

 (20)

The last assertion is modified work due to Shannon [29]. For example, to compute the average

information of the system with N=3, for the last fractional derivative in Table 3, we have:

ܫ ൌ ෍ሺܰ ௜ܲ ሻ log ൬
1

௜ܲ
൰ ൌ 3 ଵܲ log ൬

1

ଵܲ
൰ ൅ 3 ଶܲ log ൬

1

ଶܲ
൰ ൅ 3 ଷܲ

ଷ

௜ୀଵ

log ൬
1

ଷܲ
൰

؄ 0.2408 െ 0.09 െ 0.051 ൌ 0.051,

(21)

where Pi converged to a hypergeometric function, which computed with the help of Maple.

Table 3. The approximation errors for ݂ሺݔଵ, ଶሻݔ ൌ ሺݔଵ ൅ .ଶሻଶݔ

Data Actual Value Approximate Value Absolute Error

ଵ଴ݕ 2 (1,0)
ଵ ൌ 2 0

ଵ଴ݕ
ଷ/ସ ൌ 1.834 0.166

ଵ଴ݕ
ଵ/ଶ ൌ 1.681 0.319

ଵ଴ݕ
ଵ/ସ ൌ 1.5422 0.4577

ଵ଴ݕ 2 (0,1)
ଵ ൌ 2 0

ଵ଴ݕ
ଷ/ସ ൌ 1.834 0.166

ଵ଴ݕ
ଵ/ଶ ൌ 1.681 0.319

ଵ଴ݕ
ଵ/ସ ൌ 1.5422 0.4577

ଵ଴ݕ 2 (1,1)
ଵ ൌ 2.49 0.49

ଵ଴ݕ
ଷ/ସ ൌ 2.04 0.04

ଵ଴ݕ
ଵ/ଶ ൌ 1.665 0.335

ଵ଴ݕ
ଵ/ସ ൌ 1.336 0.633

4. Discussion

The presented 2-variable FD-PNN (Table 1) is able to approximate any linear function, e.g., the

simple sum ݂ሺݔଵ, ଶሻݔ ൌ ଵݔ ൅ .ଶݔ The comparison processes with respect to D-PNN (normal case)

showed that the proposed method converged to the exact values rapidly. For example, the case (1,1)

implied ABE=0.01 at ݕଵ/ସ. In this experiment, we let ܾ଴ ൌ 1, ଵݓ ൌ ଶݓ ൌ 1. Figure 2 shows the

approximation of the fractional derivative for the function ݂ሺݔଵ, ଶሻݔ ൌ ଵݔ ൅ ଶ. The x-axis representsݔ

to the values when ݔଵ ൌ .ଶݔ It is clear that the interval of convergence is ሾ0.2,1ሿ. The endowed

3-variable FD-PNN (Table 2) is qualified to approximate any linear function e.g. simple sum

݂ሺݔଵ, ,ଶݔ ଷሻݔ ൌ ଵݔ ൅ ଶݔ ൅ ଷ. The comparison procedure with respect to D-PNN displayed that theݔ

proposed method, of 3-variables, is converged swiftly to the exact values. For example, the case

(1,1,0), with ݓଶ ൌ 3/2 and (1,1,1), with ݓଶ ൌ 1 yield ABE=0.063 and 0.0755 respectively at ݕଵ/ସ.
Furthermore, Figure 3 shows the interval of convergence at ሾ0.3,1ሿ. Here, we let x1 = x2 = x3.

Comparable argument can be concluded from the non-linear case, where Table 3 computes

approximation values, by utilizing FD-PNN. For example, the data (1,1) give the best approximation at

Entropy 2013, 15 4196

ଷ/ସݕ when ݓଵ଴ ൌ 1.5. In Figure 4, the x-axis performs to the value when ݔଵ ൌ ଶ. Obviously, theݔ

interval of convergence is [0.4,2].

Figure 2. Selected fractional approximation derivative of f(x1,x2) = x1 + x2.

Figure 3. The fractional approximation y4 of the function f(x1,x2,x3) = x1 + x2 + x3.

Figure 4.The fractional approximation y10 of the function f(x1,x2) = (x1 + x2)
2.

Entropy 2013, 15 4197

5. Conclusions

Based on GMDH-PNN (Figure 1) and modifying the work described in [4], we suggested a

generalized D-PNN, called FD-PNN. The experimental results showed that the proposed method

satisfies a quick approximation to the exact value comparison with the normal method. The

generalization depended on the Riemann-Liouville differential operator. This method can be employed

on data to describe modelling of complex systems. Next step, our aim is to modify this work by

utilizing mixed D-PNN and FD-PNN, e.g. one can consider a function of the form:

,ଵݔሺܨ ,ଶݔ ,ݑ
ݑ∂
ଵݔ∂

,
ݑ∂
ଶݔ∂

, . . .
∂ఉݑ

ଵݔ∂
ఉ ,

∂ఉݑ

ଶݔ∂
ఉ ,

∂ଶఉݑ

ଵݔ∂
ଶఉ ,

∂ଶఉݑ

ଶݔ∂
ଶఉ ,

∂ଶఉݑ

ଵݔ∂
ఉ ଶݔ∂

ఉ , . . . ሻ ൌ 0 (22)

Acknowledgments

The author would like to thank the reviewers for their comments on earlier versions of this paper.

This research has been funded by the University of Malaya, under Grant No. RG208-11AFR.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Zjavka, L. Generalization of patterns by identification with polynomial neural network. J. Elec. Eng.

2010, 61, 120–124.

2. Zjavka, L. Construction and adjustment of differential polynomial neural network. J. Eng. Comp. Inn.

2011, 2, 40–50.

3. Zjavka, L. Recognition of generalized patterns by a differential polynomial neural network.

Eng. Tech. Appl. Sci. Res. 2012, 2, 167–172.

4. Zjavka, L. Approximation of multi-parametric functions using the differential polynomial neural

network. Math. Sci. 2013, 7, 1–7.

5. Giles, C.L. Noisy time series prediction using recurrent neural networks and grammatical

inference. Machine Learning 2001, 44, 161–183.

6. Tsoulos, I.;. Gavrilis, D.; Glavas, E. Solving differential equations with constructed neural

networks. Neurocomputing 2009, 72, 2385–2391.

7. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.

8. Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000.

9. West, B.J.; Bologna, M.; Grigolini, P. Physics of Fractal Operators; Academic Press: New York,

NY, USA, 2003.

10. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential

Equations; Elsevier: Amsterdam, The Netherland, 2006.

11. Sabatier, J.; Agrawal, O.P.; Machado, T. Advance in Fractional Calculus: Theoretical

Developments and Applications in Physics and Engineering; Springer: London, UK, 2007.

Entropy 2013, 15 4198

12. Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge

Scientific Pub.: Cambridge, UK, 2009.

13. Jalab, J.A.; Ibrahim R.W. Stability of recurrent neural networks. Int. J. Comp. Sci. Net. Sec. 2006,

6, 159–164.

14. Gardner, S. Exploring fractional order calculus as an artifficial neural network augmentation.

Master’s Thesis, Montana State University, Bozeman, Montana, April 2009.

15. Almarashi, A. Approximation solution of fractional partial differential equations by neural

networks. Adv. Numer. Anal. 2012, 2012, 912810.

16. Jalab, H.A.; Ibrahim, R.W.; Murad, S.A.; Hadid, S.B. Exact and numerical solution for fractional

differential equation based on neural network. Proc. Pakistan Aca. Sci. 2012, 49, 199–208.

17. Zhou, S.; Cao, J.; Chen, Y. Genetic algorithm-based identification of fractional-order systems.

Entropy 2013, 15, 1624–1642.

18. Chen, L.; Qu, J.; Chai Y.; Wu, R.; Qi, G. Synchronization of a class of fractional-order chaotic

neural networks. Entropy 2013, 15, 3265–3276.

19. Ivachnenko, A.G. Polynomial Theory of Complex Systems. IEEE Trans. Sys. Man Cyb. 1971, 4,

364–378.

20. Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions

and dimensions. Chaos, 1996, 6, 505–513.

21. Adda, F.B.; Cresson, J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263, 721–737.

22. Odibat, Z.M.; Shawagfeh, N.T. Generalized Taylor’s formula. Appl. Math. Comp. 2007, 186,

286–293.

23. Freed, A.; Diethelm, K.; Luchko, Y. Fractional-order viscoelasticity (FOV): Constitutive

development using the fractional calculus. In First Annual Report NASA/TM-2002-211914;

NASA's Glenn Research Center: Cleveland, OH, USA, 2002.
24. Gorenflo, R.; Loutchko, J.; Luchko, Y. Computation of the Mittag-Leffler function ܧఈ,ఉሺݖሻ and

its derivative. Frac. Calc. Appl. Anal. 2002, 5, 491–518.

25. Podlubny, I. Mittag-Leffler function, The MATLAB routine. http://www.mathworks.com/

matlabcentral/fileexchange (accessed on 25 March 2009).

26. Seybold, H.J.; Hilfer, R. Numerical results for the generalized Mittag-Leffler function. Frac. Calc.

Appl. Anal. 2005, 8, 127–139.

27. Ibrahim, R.W. Fractional complex transforms for fractional differential equations. Adv. Diff. Equ.

2012, 192, 1–11.

28. Casasanta, G.; Ciani, D.; Garra, R. Non-exponential extinction of radiation by fractional calculus

modelling. J. Quan. Spec. Radi. Trans. 2012, 113, 194–197.

29. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, Volume, 379–423.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

