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Abstract: The problem of fractional heat conduction in a composite medium consisting of 
a spherical inclusion )0( Rr   and a matrix )(  rR  being in perfect thermal contact 

at Rr   is considered. The heat conduction in each region is described by the time-fractional 

heat conduction equation with the Caputo derivative of fractional order 20   and 

,20    respectively. The Laplace transform with respect to time is used. The approximate 

solution valid for small values of time is obtained in terms of the Mittag-Leffler, Wright, and 

Mainardi functions.  
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1. Introduction 

The standard heat conduction (diffusion) equation for temperature T 

Ta
t

T





 (1)

is obtained from the balance equation for energy 
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T
C  (2)

where ρ is the mass density, C is the specific heat capacity, q is the heat flux vector, and the classical 

Fourier law which states the linear dependence between the heat flux vector q and the temperature gradient 

Tk gradq  (3)

with k being the thermal conductivity. In the heat conduction Equation (1) )/( Cka  is the heat 

diffusivity coefficient.  

To describe heat conduction in media with complex internal structure, the standard parabolic 

Equation (1) is no longer accurate enough. In nonclassical theories, the Fourier law Equation (3) and 

the parabolic heat conduction Equation (1) are replaced by more general equations (see [1–6]). The  

time-nonlocal dependence between the heat flux vector q and the temperature gradient [7,8]  

     dTtKkt
t

grad)(
0
 q  (4)

results in the heat conduction with memory [7,8] 

  .)(
0

 dTtKa
t

T
t





  (5)

Several particular cases of choice of the memory kernel  tK were analyzed in [9–12]. The time-

nonlocal dependence between the heat flux vector q and the temperature gradient with the long-tail 

power kernel [9–12]  

        ,10,grad
0
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q  (6)

        ,21,grad
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
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
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k
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t
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where    is the gamma function, can be interpreted in terms of fractional calculus: 

  ,10,grad1    TkDt RLq  (8)

  ,21,grad1    TIktq  (9)

where  tfI   and  tfDRL
  are the Riemann–Liouville fractional integral and derivative of the order ,  

respectively [13–16]: 

        ,0,
1
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 (10)
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

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  (11)

The balance Equation (2) and the constitutive Equations (8) and (9) yield the time-fractional equation  
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with the Caputo fractional derivative 
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The details of obtaining the time-fractional heat conduction Equation (12) from the balance Equation (2) 

and the constitutive Equations (8) and (9) can be found in [17]. 

Equations with fractional derivatives, in particular the time-fractional heat conduction equation 

(diffusion-wave equation), describe many important physical phenomena in different media (see [9,18–32], 

among many others). Fractional calculus plays a significant part in studies of entropy [33–38]. It 

should be noted that entropy is also used in analysis of anomalous diffusion processes and fractional 

diffusion equation [39–45]. 

Different kinds of boundary conditions for Equation (12) in a bounded domain were analyzed  

in [46,47]. It should be emphasized that due to the generalized constitutive equations for the heat flux 

(8) and (9) the boundary conditions for the time-fractional heat conduction equation have their traits in 

comparison with those for the standard heat conduction equation. The Dirichlet boundary condition 

specifies the temperature over the surface of a body 

 ., tgT SS x  (14)

For time-fractional heat conduction Equation (12) two types of Neumann boundary condition can be 

considered: the mathematical condition with the prescribed boundary value of the normal derivative  

of temperature 

 tg
sn

T
S ,x




 (15)

and the physical condition with the prescribed boundary value of the heat flux 

  ,10,,1 

  tg

sn

T
D SRL x  (16)

  .21,,1 

  tg

sn

T
I Sx  (17)

Here n is the outer unit normal the boundary surface. Similarly, the mathematical Robin boundary 

condition is a specification of a linear combination of the values of temperature and the values of its 

normal derivative at the boundary of the domain 

 tg
sn

T
cTc S ,21 x











  (18)

with some nonzero constants 1c and 2c , while the physical Robin boundary condition specifies a linear 

combination of the values of temperature and the values of the heat flux at the boundary of the domain. 
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For example, the Newton condition of convective heat exchange between a body and the environment 
with the temperature ET  

 ,ESS TTh nq  (19)

where h is the convective heat transfer coefficient, leads to 

  ,10,,1 










   thT
sn

T
kDhT sERL x  (20)

  .21,,1 




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




   thT
sn

T
kIhT sE x  (21)

If the surfaces of two solids are in perfect thermal contact, the temperatures on the contact surface and 

the heat fluxes through the contact surface are the same for both solids, and the boundary conditions of 

the fourth kind are obtained: 

,21 SS TT   (22)

,20,20,21
2

11
1 






  

sn

T
Dk

sn

T
Dk RLRL  (23)

where subscripts 1 and 2 refer to the first and second solid, respectively, and n  is the common unit 

normal at the contact surface. In fractional calculus, where integrals and derivatives of arbitrary (not 

only integer) order are considered, there is no sharp boundary between integration and differentiation. 
For this reason, some authors [15,25] do not use a separate notation for the fractional integral  tfI  . 

The fractional integral of the order 0  is denoted as  tfDRL
 . In the equation of perfect thermal 

contact (23)   ,20,1   tfDRL  and   ,20,1   tfDRL  are understood in this sense.  

Starting from the pioneering papers [48–52], considerable interest has been shown in solutions to 

time-fractional heat conduction equation. In the literature, there are only a few papers in which the 

fractional heat conduction equation (fractional diffusion-wave equation) is studied in composite 

medium [47,53,54]. In the present paper, the problem of fractional heat conduction in a composite 
medium consisting of a spherical inclusion )0( Rr   and a matrix )(  rR  being in perfect 

thermal contact at Rr   is considered. The heat conduction in each region is described by the time-

fractional heat conduction equation with the Caputo derivative of fractional order 20   

and ,20    respectively.   

2. Statement of the Problem 

Consider the time-fractional heat conduction equations in a spherical inclusion 
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(24)

and in a matrix 
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under the initial conditions 

  ,20,0,:0 11  RrrfTt  (26)

  ,21,0,:0 1
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


 RrrF
t

T
t  (27)

  ,20,,:0 22  rRrfTt  (28)

  ,21,,:0 2
2 




 rRrF
t

T
t  (29)

and the boundary condition of perfect thermal contact  

   ,,,: 21 trTtrTRr   (30)
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The boundedness condition at the origin and the zero condition at infinity are also assumed:  

    .0,lim,,lim 21
0




trTtrT
rr

 (32)

The limitations on   and   in Equations (26–29) express the fact that if 21    or ,21   then 

the additional condition on the first time derivative should be also imposed. 

In what follows we restrict ourselves to the particular case when a sphere Rr 0  is at initial 
uniform temperature 0T  and the matrix  rR  is at initial zero temperature  

,20,0,:0 01  RrTTt  (33)
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
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t

T
t  (36)

The Laplace transform with respect to time t  applied to Equations (24) and (25) leads to two ordinary 

differential equations 
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having the solutions 
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It follows from conditions at the origin and at infinity Equation (32) that 

.0,0 21  AA  (41)

The integration constants 1B  and 2B  are obtained from the perfect thermal contact boundary 

conditions Equations (30) and (31)  

Hence, the solution is written as 
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Now we will investigate the approximate solution of the considered problem for small values of time. 

In the case of classical heat conduction this method was described in [55,56]. Based on Tauberian 

theorems for the Laplace transform (see, for example [57]), for small values of time t  (the large values 

of the transform variable s ) we can neglect the exponential term in comparison with 1, 
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In the following particular cases ;3/4,3/2    ;2,1   1,2    the denominator 

in Equations (47) and (48) can be treated as a cubic equation and the decomposition into the sum of 

partial fractions can be obtained similar to that used in [58].  
Now we will consider another particular case when .   

To invert the Laplace transform the following formula will be used [14–16] 

  ,,
11 








ctEt
cs

s
L 













  (49)

where  zE  ,  is the generalized Mittag-Leffler function in two parameters 
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Additionally [51,52,59–61] 
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Here  zW ;,  is the Wright function [1,51,52,62] 

    ,,1,
!

;,
0

Cz
kk

z
zW

k

k




 







  (54)

whereas  zM ;  is the Mainardi function [15,51,52] 
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From Equations (47) and (48) we get: 
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where  
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It should be emphasized that the solution is expressed in terms of the Mainardi function  zM ;2/  

and the Wright function  zW ;,2/  . The limitation 10    in Equations (51–53) means that 

20   in Equations (56) and (57).  

4. Conclusions 

We have obtained the approximate solution to the time-fractional heat conduction equations in a 

composite body consisting of a matrix and spherical inclusion with different thermophysical 

properties. The conditions of perfect thermal contact have been assumed: the temperatures at the 

boundary surface are equal and the heat fluxes through the contact surface are the same. The Laplace 

integral transform allows us to obtain the ordinary differential equations for temperatures. Inversion of 

the Laplace transform has been carried out analytically for small values of time. 
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