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Abstract: We investigate cosmological consequences of nonlinear sigma model coupled
with a cosmological fluid which satisfies the continuity equation. The target space action is
of the de Sitter type and is composed of four scalar fields. The potential which is a function of
only one of the scalar fields is also introduced. We perform a general analysis of the ensuing
cosmological equations and give various critical points and their properties. Then, we show
that the model exhibits an exact cosmological solution which yields a transition from matter
domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we
calculate the age of the Universe and show that it is consistent with the observational value if
the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22.

Some implication of this result is also discussed.
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1. Introduction

The recent astronomical measurements revealed that the current Universe is accelerating [1,2]. It is
believed that the acceleration is caused by an unknown energy, i.e., dark energy, and grasping the identity
of dark energy is one of most fundamental problems in the modern cosmology [3]. Many theoretical
models for dark energy have been proposed ever since. Among them, the standard approach is to
introduce a cosmological constant [4–9]. In spite of its simplicity and theoretical diversities, it confronts
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the extreme fine tuning problem. An attractive alternative is to consider that the acceleration is driven
by a scalar field. The well known models include quintessence [10,11] phantom [12], k-essence [13–15]
with the non-canonical kinetic term for the scalar field, and quintom [16] models. In these models various
aspects of dark energy can be well described in terms of dynamics of the scalar field and especially, the
smallness of the cosmological constant is attributed to the decaying scalar energy density [17].

On the other hand, dark matter plays a central role in the early Universe in the process of structure
formation [3]. Most of the dark matter is the cold dark matter (CDM) which is non-relativistic and
non-baryonic. In particular, the CDM model with the cosmological constant Λ is established as
a standard cosmological model, Λ-CDM [3]. This model is in good agreements with the CMBR
data [18–20] as well as SN Ia data [1,2]. The special feature of Λ-CDM model is that it assumes the
Universe with a zero spatial curvature.

Recently, the dark energy model based on a nonlinear sigma model [21] with or without a
cosmological constant was investigated. In this model the target space is noncompact four-dimensional
de Sitter manifold and four scalar fields are introduced to account for this. It was found that an
exponentially accelerating solution is possible even without the cosmological constant and that the model
could describe dark energy interacting with stiff matter even without any matter present. The possibility
of other kind of dark matter should be also addressed and it motivates to extend to the more general
situation where matter is introduced separately. Therefore, in this paper, we consider more general
case of the de Sitter nonlinear sigma model where the matter with the equation of state ωf and also an
exponential potential term for the nonlinear sigma model are added to the action, and we investigate the
cosmological consequences.

Recall that in spite of the dynamical explanation of the smallness of the current dark energy density
contrary to the cosmological constant, the approaches of [10–15] have their own shortcomings. For
quintessence model, it has the nice properties of tracking solution and scaling behavior, but it is
somewhat difficult to match the equation of state to be close to −1, and has its own fine-tuning
problem [22]. The phantom model gives favorable result with the equation of state, but it has the issue
of quantum instability, even though it is classically stable. The k-essence model has the ghost problem
coming from the higher derivative nature of the theory. We do not attempt to address these difficult issues
with the introduction of the four scalar fields, but one advantage is the existence of the exact solution,
which makes comparisons with Λ-CDM more direct. ( See Equations (11) and (44).)

Let us mention other salient features of our investigation. The field content consists of a phantom
and the triplet fields which are canonical scalar fields. Unlike the ordinary phantom model where Big
Rip singularity is known to exist, we have an explicit solution which does not show such a behavior.
As far as the exact cosmic solution is concerned, the potential is of a negative exponential form of the
scalar field ϕ. This solution prolongs from the matter-dominated epoch to the dark energy epoch. Recall
that in the pure phantom model, the negative kinetic energy prohibits the potential to assume a negative
value. In our approach, the triplet of scalar fields provides enough compensating positive energy density
such that the weak energy condition is not violated. This exact solution can be exploited to extract
some numerical values that can be compared with current observations. In particular, we calculate the
age of the Universe and compare with the observations. We find that with a fine-tuning of a couple of
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parameters, 0.13 < ωf < 0.22 is consistent with the observation. This matter corresponds to an exotic
cosmological fluid.

The paper is organized as follows. In Section II, we present a basic analysis of Λ−CDM model
paying attention to the exact cosmological solution and its stability analysis. In Section III, we consider
the Einstein gravity coupled with the de Sitter nonlinear sigma model including an exponential potential
and cosmological fluid with the equation of state ωf , and discuss the cosmological evolution equations.
In Section IV, the stability analysis is performed and various critical points are identified. In Section V,
we present the exact cosmological solution for a negative exponential potential and calculate the current
age of the Universe. We compare it with the observational data and Λ−CDM model. Section VI includes
conclusion and discussion.

2. ΛCDM Model

Let us first consider an action in which the Einstein gravity has a cosmological constant (c.c.) term
with a matter term:

S =

∫
d4x

√
−g

[ 1

2κ2
(R− Λ) + Lmatter

]
(1)

where κ2 = 8πG. Introducing the standard space-time metric via

ds2 = −dt2 + a2(t)dxidx
i (2)

leads to the following equations:

H2 =
κ2ρm
3

+
Λ

3
(3)

Ḣ = −κ2

2
(1 + ωm)ρm (4)

ρ̇m + 3(1 + ωm)Hρm = 0 (5)

In these expressions, ωm is the equation of state parameter for the matter term, which satisfies
pm = ωmρm when T µ

ν = (−ρm, pm, pm, pm) are assumed.
In order to check the stability, we introduce the following dimensionless quantities (for ρm, Λ > 0)

x =
κ
√
ρm√
3H

, y =

√
Λ√
3H

(6)

From the above quantities, one obtains x′ and y′ as (N ≡ ln a)

x′ =
dx

dN
=

3

2
(1 + ωm)x(x

2 − 1) (7)

y′ =
dy

dN
=

3

2
(1 + ωm)yx

2 (8)

The critical points, i.e., the solutions corresponding to x′ = 0, y′ = 0 and the eigenvalues for the critical
points [23] are given by

xc = 0, yc = 1 (c.c. dominant), µ1 = 0, µ2 = −3

2
(1 + ωm) (9)

xc = 1, yc = 0 (matter dominant), µ1 = 3(1 + ωm), µ2 =
3

2
(1 + ωm) (10)
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From these eigenvalues we see that the matter dominant phase is unstable for ωm > −1 while c.c.
dominant phase has a decaying mode, i.e., µ2 < 0 being stable. (The existence of a zero eigenvalue
(µ1 = 0) in Equation (9) is originated from the fact that two variables x and y are connected by the
relation x2 + y2 = 1. Therefore in this case one can reduce to one−dimensional space [24].) It is
well-known that there exists the non-perturbative solution of Equations (3)–(5) which connects these
two critical points as

a(t) = a∗(sinh[At])
2/3(1+ωm), H(t) =

√
Λ

3
coth[At], ρm =

Λ

κ2
(sinh[At])−2 (11)

where A = (1 + ωm)
√
3Λ/2. This solution describes a smooth transition from matter-dominated power

law expansion at early times into cosmological constant-dominated exponential acceleration at late times.
To check the stability of the above solutions Equation (11), we consider the variation of

Equations (3)–(5), which yields

2HδH =
κ2

3
δρm (12)

δḢ = −κ2

2
(1 + ωm)δρm (13)

δρ̇m + 3(1 + ωm)ρmδH + 3(1 + ωm)Hδρm = 0 (14)

Then we find the solution for the above Equations (12)– (14) as

δH = BC tanh[At]e−f(t)/κ2, δρm = Ce−f(t)/κ4 (15)

where B = (1+ωm)/4A, C is an arbitrary constant and f(t) = −2At+ ln[−1+ e4At] + 2 ln[tanh[At]].
Note that f(t) approaches 2At as t → ∞ and both δH and δρm decay, which implies that the
solution (11) is stable.

Introducing the dimensionless density parameters Ωm = κ2ρm/3H
2 and ΩΛ = Λ/3H2, Equation (3)

becomes

Ωm + ΩΛ = 1 (16)

Particularly for the solution (11), Ωm and ΩΛ are given by

Ωm =
1

(cosh[At])2
, ΩΛ = 1− 1

(cosh[At])2
(17)

By using the experimental data, i.e., ρΛ = Λc2

8πG
∼ (10−12Gev)4 ∼ 10−8erg/cm3, H0 ∼ 2.28× 10−18s−1

and the solution H0 =
√
3Λ coth[At0]/3, we can evaluate the value At0 = 1.27. From these values we

find ΩΛ and t0 for the dust-like matter (ωm = 0) as

ΩΛ ≈ 0.73, t0 ≈ 4.34× 1017s (18)

which are in agreement with the observational data [25].
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3. de Sitter Nonlinear Sigma Model with Potential

In this section, we extend the analysis performed in the case of Λ−CDM to the de Sitter nonlinear
sigma model [21] with a potential term. The cosmological fluid with the equation of state ωf is also
added. The starting action is

S =

∫
d4x

√
−g [

1

2κ2
R− gµν

λ2
Gαβ(Φ)∂µΦ

α∂νΦ
β − ϵV (ϕ) + Lfluid ] (19)

where Φα = (ϕ, σi) (i = 1, 2, 3), λ is a dimensionless coupling constant and ϵ = ±1. Here Gαβ is the
metric of the de Sitter target space,

Gαβ = (−1, + e2κξϕ, + e2κξϕ, + e2κξϕ ) (20)

where ξ is an arbitrary positive constant and V (ϕ) is the potential given by

V (ϕ) = V0 exp(−κγϕ) (21)

with an arbitrary constant γ and V0 > 0. Among diverse possibilities, we have chosen exponential
potential. A couple of reasons could be cited. The first one is that this potential is the prototype which
gives rise to accelerating Universe and has interesting properties like scaling solution and attractor in the
quintessence [26] or phantom model [23]. The second one is that it can yield non-perturbative solution
of the type discussed in the previous section in our case for the negative potential with ϵ = −1. We
regard the second and third terms of Equation (19) as representing the dark energy sector. For the matter
part, we assume a cosmological fluid of the perfect fluid form, T µ

ν = (−ρf , pf , pf , pf ), which satisfies
the continuity equation, ∇µT

µν = 0.

We first note that the following ansatz

σi = xi (22)

solves the σi field equations. The above ansatz first appeared in higher dimensional gravity theory
in association with spontaneous compactification of the extra dimensions [27–30]. It was revived in
four dimensions recently in describing the accelerating Universe with the de Sitter nonlinear sigma
model [21]. Note that it does not break the isotropy and homogeneity of the universe as long as we do
not introduce the potential for the σ fields. With this ansatz, the standard space-time metric Equation (2),
and ϕ = ϕ(t), the evolution equations, are given by

H2 =
2κ2

3λ2

[
− 1

2
ϕ̇2 +

3

2κ4a2
e2κξϕ +

ϵλ2

2
V (ϕ)

]
+

κ2

3
ρf (23)

Ḣ = −κ2

λ2

[
− ϕ̇2 +

1

κ4a2
e2κξϕ

]
− κ2

2
(1 + ωf )ρf (24)

0 = ϕ̈+ 3Hϕ̇− 3ξ
e2κξϕ

κ3a2
+

ϵκγλ2

2
V0e

−κγϕ (25)

and the continuity equation implies ρf = ρ(0)[a(t)/a(0)]−3(1+ωf ), where ωf is a barotropic equation of
state with 0 < ωf < 1. We mention a couple of properties of the above evolution equations. The first
one is that in spite of the ϕ being a phantom, the presence of the second term in Equation (24) that comes
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from the spatial variations of σi fields could prevent the Big Rip singularity from being developed; it is
not guaranteed that Ḣ will stay always positive at late times when ρf is ignored. The other is that even in
the ϵ = −1 case, the weak energy condition could not be violated (in the ordinary phantom model with
a negative potential, the weak energy condition is always violated because of ρϕ = −ϕ̇2/2− V (ϕ) < 0).
This again is due to the the second terms in Equations (23) and (24) coming from the spatial variations.
In fact, we will show that for ϵ = −1 there exists an exact cosmological solution of the type discussed
in Λ−CDM case, which interpolates between matter-dominated and dark energy-dominated epochs.

4. Stability

To perform the stability analysis and figure out the energy dominance of the kinetic (x), spatial (y)
and potential (z) parts in Equation (23), we first introduce the following dimensionless quantities,

x ≡ κϕ̇√
3λH

, y ≡ eκξϕ

κλHa
, z ≡ κ

√
V√

3H
(26)

Then the constraint Equation (23) is given by

− x2 + y2 + ϵz2 +
κ2ρf
3H2

= 1 (27)

With N = ln a, we obtain

x′ ≡ dx

dN
=
x

2
[−3(1−ωf )x

2 − (1 + 3ωf )y
2+3(−1+ωf )− 3ϵ(1+ωf )z

2]− 3ϵγ̄√
6
z2+ξ̄

√
6y2 (28)

y′ ≡ dy

dN
=

y

2
[−3(1− ωf )x

2 − (1 + 3ωf )y
2+ (1 + 3ωf )− 3ϵ(1 + ωf )z

2 + 2ξ̄
√
6x] (29)

z′ ≡ dy

dN
=

z

2
[−3(1− ωf )x

2 − (1 + 3ωf )y
2 + 3(1 + ωf )− 3ϵ(1 + ωf )z

2 −
√
6γ̄x] (30)

where γ̄ = λγ/
√
2, ξ̄ = λξ/

√
2. The various critical points and their properties including the stabilities

of the above equations are summarized in Table 1 with their eigenvalues being given as follows:

• point A

µ1 =
3

2
(ωf − 1), µ2 =

1 + 3ωf

2
, µ3 =

3(ωf + 1)

2
(31)

• point B

µ1,2 = −3(1− ωf )

4
±

√
γ̄2(−1 + ωf )(24 + 24ωf

2 + 7γ̄2 + ωf (48 + 9γ̄2))

4γ̄2
(32)

µ3 =
γ̄ + 3ωf γ̄ + 6(1 + ωf )ξ̄

2γ̄
(33)

• point C

µ1,2 = −3(1− ωf )

4
±

√
ξ̄2(−1 + ωf )(4(1 + 3ωf )2 + 3(5 + 27ωf )ξ̄2)

4ξ̄2
(34)

µ3 =
γ̄ + 3ωf γ̄ + 6(1 + ωf )ξ̄

4ξ̄
(35)



Entropy 2012, 14 1777

• point D

µ1 = −6 + γ̄2

2
, µ2 = −3− 3ωf − γ̄2, µ3 = −2 + γ̄2 + 2γ̄ξ̄

2
(36)

• point E

µ1 = −1− 3ωf − 6ξ̄2, µ2 = 1− 3ξ̄2 − 3γ̄ξ̄

2
, µ3 = −2− 3ξ̄2 (37)

• point F

µ1,2 = − γ̄ + 3ξ̄

γ̄ + 2ξ̄
±

√
−(8− 6γ̄ξ̄(γ̄ + 2ξ̄)2)− 3γ̄2 + 10γ̄ξ̄ + 33ξ̄2

γ̄ + 2ξ̄
(38)

µ3 = − γ̄ + 3ωf γ̄ + 6(1 + ωf )ξ̄

γ̄ + 2ξ̄
(39)

Note that all of the above eigenvalues of the critical points do not have any ϵ-dependence even though
the various critical points themselves carry its dependence.

Table 1. The classification and the properties of the critical points.

In Table 1, the second to fourth columns denote energy contents of the dark energy sector, the fifth
column shows the conditions for the existence of the solutions of the critical Equations (28)–(30). The
critical points B and F are further divided for ϵ = ±1. The sixth column is about the stability condition
for each eigenvalue. In the seventh column, Ωϕ = −x2 + y2 + ϵz2 is the density parameter for the
dark energy, and the last column displays the equation of state for the dark energy. First, we note
that the results of phases A, B2, D with ϵ = +1 and y = 0 agree with those in the literature [23],
which correspond to the phantom with a positive potential. In particular, the system approaches the
scalar-dominated solution D with non-relativistic dark matter (ωf = 0). The point F2 also corresponds
to scalar-dominated solution but with a non-zero value of y.

Let us focus on the ϵ = −1 case from here on. Then, points E and F1 both give scalar-dominated
solutions. Which solution will the system choose depends on the allowed parameters for the existence
and stability conditions and on the initial conditions. For solution E, z = 0 and ωϕ approaches to −1
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when ξ̄2 → 1/3. On the other hand, for solution F, all x, y and z contribute to the dark energy and
ωϕ converges to −1 when ξ̄ goes to infinity. In the next section, we present an explicit solution of
Equations (23)–(25), which prolongs from B1 at early times to E at late times.

5. Exact Cosmological Solution

In order to investigate the exact solution for Equations (23)–(25), we first assume that a = eκξϕ/
√
f ,

which corresponds to H = κξϕ̇. Here f is an arbitrary constant at this stage. In the case of ϵ = −1,
from the above ansatz one can find an exact solution as follows:

ϕ(t) = ϕ(0) +

√
f

κ2
t+

2

3κξ(1 + ωf )
ln

[
1 + Ce−3ξ(1+ωf )t/κ

1 + C

]
(40)

where C is an arbitrary constant and V0 and ρ0 are given by

V0 =
f(1− ωf )

κ4λ2(1 + ωf )
e3(1+ωf )κξϕ(0)

{
(1 + C)2

−4C

}
(41)

ρ0 =
−4Cf

κ4(1 + C)2

{
3ξ2 + 2

1

(1 + ωf )λ2

}
(42)

with ξ2 = 2/3λ2, γ = 3(1 + ωf )ξ. It is to be noticed that C should be a negative value to preserve
the weak energy condition. In this case, introducing a time scale defined by |C| = e−3 ξ

κ
(1+ωf )

√
ft∗ ,

Equation (40) and a = eκξϕ/
√
f reduce to

ϕ(t) =
2

3κξ(1 + ωf )
ln

(
sinh

[
3(1 + ωf )

2

ξ

κ

√
f(t+ t∗)

])
+ ϕ̃(0) (43)

a(t) = ã sinh

[
3(1 + ωf )

2

ξ

κ

√
f(t+ t∗)

] 2
3(1+ωf )

(44)

where ϕ̃(0) = ϕ(0)− 2 ln
[
sinh(

3(1+ωf )

2
ξ
κ

√
ft∗)

]
/(3(1 + ωf )κξ) and ã = eκξϕ̃(0)/

√
f

We note that for t → −t∗ the solution (44) behaves as a ∼ t2/(3(1+ωf )), which shows that it represents
an expanding Universe with cosmological fluid ωf , whereas at late times, it represents an accelerating
Universe with a(t) ∼ eξ

√
ft/κ. Now, let us check that the above solution indeed corresponds to the one

that prolongs from B1 at early times to E at late times, as was mentioned in the previous section. To this
end we first substitute the solutions (41)–(44) into the dimensionless quantities x, y, z of Equation (26).
Then one can find

x =
1√
3λξ

(45)

y =
1

λξ

sinh[
3(1+ωf )

2
ξ
κ

√
f(t+ t∗)]

cosh[
3(1+ωf )

2
ξ
κ

√
f(t+ t∗)]

(46)

z =
1√
3λξ

(
1−ωf

1+ωf
)
1
2

cosh[
3(1+ωf )

2
ξ
κ

√
f(t+ t∗)]

(47)

When choosing ξ =
√
2/
√
3λ(ξ̄ = 1/

√
3), we see that at early times, i.e., t → −t∗, the quantities

x, y, z of Equations (45)–(47) are given by

x =
1√
2
, y = 0, z =

√
1− ωf

2(1 + ωf )
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and at late times (t → ∞) they become

x =
1√
2
, y =

√
3

2
, z = 0

If we identify γ̄ = (1 + ωf )
√
3, and substituting ξ̄ = 1/

√
3 into B1 and E of Table 1, we exactly find

the above values of x, y and z. Therefore, we conclude that our solution corresponds to the phase B1 at
early times and to the phase E at late times.

We now determine the allowed range of ωf for this exact solution by comparing with the current
observational data. It turns out that the non-relativistic dark matter with ωf = 0 is not consistent with the
current value of t0. To carry out this in detail, we recall the density parameter of the scalar field given by
(we set t∗ ∼ 0)

Ωϕ = −x2 + y2 − z2

= (tanh[Bt])2 − 1

(1 + ωf )(cosh[Bt])2
(48)

where B = 3(1 + ωf )ξ
√
f/2κ with ξ =

√
2/
√
3λ and the Hubble parameter

H =
2B

3(1 + ωf )
coth[Bt] (49)

We first comment on the dependence of Ωϕ, and H of Equations (48) and (49) on the initial conditions.
The exact solutions, Equations (43) and (44), show the dependence of ϕ and a on the initial conditions.
However, the dependence of the quantities x, y, and z on the initial conditions are absent as can be
seen in the expressions of Equations (45)–(47). This may be due to the fact that our exact cosmological
solution satisfies the condition a = ee

κξϕ
/
√
f and is of a non-perturbative nature. The only remaining

dependence is through the variable t∗, which we have set to zero without loss of generality. Therefore,
Ωϕ and H of Equations (48) and (49) are insensitive to the initial conditions as far as the non-perturbative
solutions (43) and (44) are concerned. This aspect is rather unexpected because there is a priori no reason
why the quantities x, y and z defined in Equation (26) should not depend on the initial conditions of ϕ
and a.

In the above two Equations (48) and (49), we treat Ωϕ,0, H0 at t = t0 as input parameters to
determine ξ

√
f and especially ωf . Since the observational data [25] Ωϕ,0 ≃ 0.726 ± 0.015, H0 ≃

2.28 ± 0.04 × 10−18s−1 and t0 ≃ 4.33 ± 0.04 × 1017s are given with experimental uncertainty, these
equations give permitted range of ωf . We use the strategy that we first pick up a specific value of ωf .
Then, Equations (48) and (49) will give allowed ranges of B for Ωϕ,0 and H0 respectively. We can plot
these quantities in (B, t)-plane. If there exist intersecting region, then, this value of ωf is allowed. The
results are displayed in Figure 1. We find that for values of ωf < 0.13 and ωf > 0.22, there does not
exist a region intersected by the bands of Ωϕ,0, H0 and t0. Therefore, we conclude that the allowed value
ωf consistent with the current observational data is given by 0.13 < ωf < 0.22, which corresponds to an
exotic cosmological fluid with non-vanishing pressure.
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Figure 1. The plot of ΩΛ,0(blue) ≃ 0.726 ± 0.015, H0(green) ≃ 2.28 ± 0.04 × 10−18s−1

on the (B, t)-plane for ωf = 0.13(left), ωf = 0.18(right), ωf = 0.22(lower). The red band
is the current age with uncertainty t0 ≃ 4.33± 0.04× 1017s.
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6. Conclusion

In this paper, we have investigated various cosmological consequences of the de Sitter nonlinear sigma
model with the exponential potential and cosmological fluid term. It consists of a phantom and triplet
scalar fields. We have displayed that the presence of the triplet σ fields with isotropic spatial dependence
provides contrasting features to the phantom model without such fields. For example, the energy and
pressure coming from the spatial variations could prevent the Big Rip singularity from being developed.
In particular, we found an exact cosmological solution in the case of a negative potential. In this solution,
the Universe undergoes a power law expansion at early times as in Λ−CDM. But the difference is that
unlike the Λ−CDM we have a non-vanishing scalar energy contribution (x ̸= 0, z ̸= 0 of B1 phase)
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even in the matter dominated epoch. At late times, a complete dark energy-dominance is achieved with
Ωϕ = 1 and ωϕ = −1 with a suitable choice of the parameter.

The Hubble parameter Equation (49) is exactly the same as H of Λ−CDM in Equation (11) when
we identify the parameter as ξ

√
3f/κ =

√
Λ. However, with this choice, one can check that the energy

density ρf of cosmological fluid is different from the matter density ρm of Equation (11) in Λ−CDM,
and is given by ρf/ρm = 1 + 1/(ωf + 1). Note that for 0 ≤ ωf ≤ 1, ρf is always greater than ρm. Also,
the dark energy density from Equation (48) approaches Λ/κ2 asymptotically from below. These show
that even if the scale factors in both cases behave exactly the same, there exist qualitative differences
between the two approaches.

We also have shown that to be consistent with the observational data, the equation of state for the
cosmological fluid has to be within the range 0.13 < ωf < 0.22 unlike Λ−CDM with a dust like matter.
This range of ωf appears in the literature [31,32] corresponding to cosmic strings with −1/3 < ωf < 1/3

or domain walls with −2/3 < ωf < 1/3. We notice that in Λ−CDM model, the dark matter has the
perfect fluid form and admits a barotropic equation of state. In this case, the dark matter should be
pressureless in order to be in accordance with the observational data. However, it is known [33,34] that
the dark matter can also be described by an anisotropic fluid but only in the case of non-zero effective
pressure or a polytropic equation of state [35]. On the other hand, our exotic cosmological fluid not only
satisfies a barotropic equation of state but also takes a perfect fluid form. In spite of this, it should have
non-zero pressure to be in agreement with the observational data.

We conclude with the following remark. We found that with ωf = 0 the evolution is exactly that of
Λ-CDM. But this does not fit the observational data as was discussed, e.g., ωf has to be in the range of
0.13 and 0.22 to give the observed age of the universe. We speculate that this feature of deviation from
the Λ-CDM for general time-varying dark energy density holds in general. That is, in models where dark
energy density varies, the dark matter with ωm = 0 might have some difficulty in fitting the observations.
Nevertheless, this does not imply that the dynamical dark energy models with non-zero equation of state
dark matter must be excluded, and it remains to be seen whether the exotic cosmological fluid considered
in this work could be related to the realistic dark matter candidates.
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