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Abstract: In this paper we undertake the theoretical analysis of a two-stage semiconductor
thermoelectric module (TEM) which contains an arbitrary and different number of
thermocouples, n1 and n2, in each stage (pyramid-styled TEM). The analysis is based on
a dimensionless entropy balance set of equations. We study the effects of n1 and n2, the
flowing electric currents through each stage, the applied temperatures and the thermoelectric
properties of the semiconductor materials on the exergetic efficiency. Our main result implies
that the electric currents flowing in each stage must necessarily be different with a ratio about
4.3 if the best thermal performance and the highest temperature difference possible between
the cold and hot side of the device are pursued. This fact had not been pointed out before for
pyramid-styled two stage TEM. The ratio n1/n2 should be about 8.
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1. Introduction

Thermoelectric cooling systems (TEC) usually consist of a thermoelectric module (TEM) with one or
more stages and heat exchangers at the cold side and the hot side of the module. These kind of devices
are widely used to control the temperature of electronic components which have important applications
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in many fields such as thermoelectric refrigeration, aerospace applications, small instruments cooling,
dehumidification, food conservation, etc. [1]. There are several factors affecting the performance
of TECs, such as the properties of the semiconductor materials [2], the size of thermocouples, the
junction temperature, the electrical current [3], etc. The methods used to study this problem include
optimal control theory [4], nonequilibrium thermodynamics [5], finite time thermodynamics [6], among
others. An interesting series of applications of two stage thermoelectric modules has been reported
in [7–13]. The optimization of the devices yields an improved performance. Yamanashi [3] used
heat balance equations to analyze the coefficient of performance (COP) of a thermoelectric cooler
including heat exchangers at the cold and hot side of the device. The balance equations follow
from non-equilibrium thermodynamics and a deduction can be seen in [14]. In [15] the optimization
of two-stage thermoelectric coolers in two configurations was presented. Two arrangements were
considered, the so-called pyramid-styled by the authors and the cuboid-styled coolers. The study was
carried out by using the COP as the optimization criterion. In the case of the pyramid-styled cooler, it
was found that the ratio of the number of thermocouples between the stages must be 2.5–3. The same
conclusion was obtained for the ratio of the flowing electric currents in the stages for the cuboid-styled
one but a similar study is lacking in the case of pyramid-styled coolers. In [2] the authors considered
a two-stage thermoelectric cooler and studied the influence of the number of thermocouples and the
area of each one and the electric current in the first stage on the performance of the system measured
through the COP. The conclusion was that for a fixed current in the first stage, the increase of the area
of every thermocouple and the decrease of the number of them in the stage improved the COP. In the
present work an irreversible thermodynamic analysis is done about the performance of a two-stage TEM
(no exchangers included) by using dimensionless entropy balance equations [3] when the thermoelectric
properties of the p and n arms of thermocouples are independent of temperature. The performance
depends not only on the mentioned physical properties, but also on the configuration of the cooler,
i.e., the number of thermocouples in each stage, and the flowing electric current through each one. All
the above mentioned aspects of the thermodynamics of TECs will be considered here focusing on the
determination of the optimal configuration of the TEM measured by the exergetic efficiency. Special
emphasis will be put on the influence of the configuration of the TEM and the ratio of working electric
currents on the exergetic efficiency in the case of pyramid-styled TEMs. Multi-stage semiconductor
thermoelectric modules are often used for extending operating difference temperature range of the
semiconductor thermoelectric cooling by keeping a reasonable thermal efficiency. This has motivated
the theoretical and experimental research on improving the performance of two-stage semiconductor
thermoelectric coolers, which is why we choose the exergetic efficiency to measure the performance of
the system.

Section 2 is devoted to obtain the dimensionless heat rate balance equations for a two-stage TEM
which constitute the theoretical basis of our study. In Section 3 we examine the influence of the physical
parameters on the exergetic efficiency (ϕ). This section contains our main results on the optimization of
the configuration of the TEM. We close the paper with Section 4 where some discussion and conclusions
can be found.
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2. Heat Balance Equations

The TEM which is going to be analyzed here [2] consists of two stages denoted as 1 (which has n1

thermocouples) and 2 with n2 thermocouples (Figure 1). The thermocouples in each stage are electrically
connected in series and thermally in parallel. The two stages are thermally connected in series. Each
stage has its own working electric current I since a better performance can be achieved in this way as it
will be shown in Section 4.

Figure 1. Schematic diagram of a thermoelectric cooler system with two stages.

The performance of a stage is determined by the electrical resistivity ρ, the Seebeck coefficient α, and
the thermal conductivity κ of p and n arms. Though these three parameters depend in principle on the
temperature, for the sake of simplicity it is assumed here that they have constant values. Before deriving
the heat balance equations of the TEM system, the electrical resistance R, Seebeck coefficient A, and
thermal conductance K of a stage must be given as follows [2]

R = n(ρp + ρn)
l

S
(1)

A = n(αp + αn) (2)

K = n(κp + κn)
S

l
(3)

where l is the length of p and n semiconductor arms, S is the cross-sectional area of p and n arms, n is
the number of thermocouples in the stage, and subscripts p and n in Equations (1)–(3) designate p and
n-type semiconductor, respectively. Unless otherwise noted, the parameters R, A and K have different
values for each stage. Heat balance at each position from (a) to (c) in Figure 1 leads to [2]

QC2 =

(
A2I2TC2 −

1

2
I22R2 −K2(Tm − TC2)

)
n2 (4)

QH2 =

(
A2I2TH2 +

1

2
I22R2 −K2(Tm − TC2)

)
n2 (5)

QC1 =

(
A1I1TC1 −

1

2
I21R1 −K1(TH1 − Tm)

)
n1 (6)
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QH1 =

(
A1I1TH1 +

1

2
I21R1 −K1(TH1 − Tm)

)
n1 (7)

where QC is the heat rate that enters the thermoelectric module of each stage from the cold side and QH

the heat rate that goes out at the hot side. TC is the temperature of the cold side of the module, TH is the
temperature of the hot side, Tm is the contact temperature between the two stages of the TEM (note that
TH2 = TC1 = Tm) and I is the electrical current that flows through each one. The equations representing
the total heat which enters the system and the final heat rate going out are Equations (4) and (7) where
n2 = NT/(r + 1) and n1 = rNT/(r + 1), being NT the total number of thermocouples in the TEM,
NT = n1+n2, and r the ratio n1/n2. To make this paper self-contained and clarify their physical content,
Equations (4) and (7) have been obtained in the Appendix at the end.

We now rewrite Equations (4) and (7) in dimensionless form in order to have a valid set of equations
for any TEM. Following [3], we define the dimensionless variables

j1 =
A1I1
K1

, j2 =
A2I2
K2

(8)

qC1 =
QC1

NTK1TC1

, qC2 =
QC2

NTK2TC2

(9)

qH1 =
QH1

NTK1TH1

, qH2 =
QH2

NTK2TH2

(10)

θH1 =
TH1

Tm

(11)

θC2 =
TC2

Tm

(12)

θT =
TH1

TC2

=
θH1

θC2

(13)

ZTC2 =
A2

2TC2

R2K2

(14)

ZTm1 =
A2

1Tm

R1K1

, ZTm2 =
A2

2Tm

R2K2

(15)

ZTH1 =
A2

1TH1

R1K1

(16)

In this way, j1 and j2 are dimensionless electric currents flowing through each stage of the TEM.
qC2 and qH1 can be considered as the nondimensional entropy rate due to the presence of respective
temperatures in the denominator of their definitions. Nevertheless, we will continue naming them as
heat rates in the remaining of the paper. θT are the ratio of the hot side and cold side temperatures,
respectively. ZTC , ZTH and ZTm are dimensionless figures of merit associated with the temperatures
TC , TH and Tm, respectively. These temperatures would determine the values of the coefficients A, R
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and K in the case that they were dependent quantities on the temperature. Equations (4)–(7) can now be
rewritten in terms of the dimensionless quantities defined by Equations (8)–(16). The result is

qC2 =

(
j2 − θ−1

C2
+ 1− 1

2
j22

1

ZTC2

)
1

r + 1
(17)

qH2 =

(
j2 + θC2 − 1 +

1

2
j22

1

ZTm2

)
1

r + 1
(18)

qC1 =

(
j1 − θH1 + 1− 1

2
j21

1

ZTm1

)
r

r + 1
(19)

qH1 =

(
j1 + θ−1

H1
− 1 +

1

2
j21

1

ZTH1

)
r

r + 1
(20)

We mention that these equations also allow us to evaluate the effects of the thermoelectric properties of
the material semiconductors represented by the figures of merit ZTC , ZTH and ZTm on the performance
of the TEM. Note that given the two electric currents j1 and j2, the contact temperature Tm between the
two stages of the TEM can be calculated from the condition qH2 = qC1 in the following way

Tm =
TC2 + TH1r +

1
2
(R1K1j

2
1r/A

2
1 +R2K2j

2
2/A

2
2)

1− j2 + r(j1 + 1)
(21)

We define the dimensionless power p and the dimensionless voltage v as

p =
QH1 −QC2

K2TC2NT

= θT qH1 − qC2 (22)

and
v =

p

j
(23)

Another expression of v is

v =
V

ATC2NT

(24)

where V is the voltage of the thermoelectric cooler.

3. Exergy Flow and Exergetic Efficiency

In this section we obtain the exergetic efficiency which will be used as the optimization variable. We
begin by defining the exergy flow at the cold side of the TEM (a in Figure 1) as the work produced by
the Carnot’s cycle between the temperatures TH1 and TC2 . The flow of exergy is then given by

Et = QH1 −QC2 (25)

where QH1 is the heat rate going from a reservoir at temperature TH1 to the Carnot’s cycle and QC2 is
the heat rate going from the Carnot’s cycle to environment at temperature TC2 . Since in a Carnot’s cycle
there is no entropy generation we have

QH1

TH1

− QC2

TC2

= 0 (26)
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Eliminating QH1 in Equations (25) and (26), the exergy flow equation at the cold side is given by

Et = (TH1 − TC2)
QC2

TC2

(27)

The exergetic efficiency [16] Φ of the TEM is defined as

Φ =
Et

P
(28)

where P is the electrical power supplied to the system. Another expression for the efficiency reads

ϕ =
εt
p

(29)

being the dimensionless exergy flow εt defined as

εt =
Et

NTK2TC2

= (θT − 1) qC2 (30)

and p given by Equation (22).
We finally obtain the following expression for the exergetic efficiency ϕ by using Equation (17)

ϕ =
(θT − 1)(j2 − θ−1

C2
+ 1− 1

2
j22

1
ZTC2

)

∆
(31)

where

∆ = θT r(j1 − 1 + θ−1
H1

+
1

2
j21

1

ZTH1

)− j2 + θ−1
C2

− 1

+
1

2
j22

1

ZTC2

(32)

It has been discussed in the literature the usefulness of the exergetic efficiency given by Equation (31)
to analyze the performance of thermoelectric devices. In order to clarify the reason why we adopt it as
the performance criterion, it is first necessary to introduce the performance coefficient COP of the TEM,
which is given by

COP =
QC2

QH1 −QC2

=
qC2

θT qH1 − qC2

(33)

Substitution of Equations (13), (17) and (20) in Equation (33) yields:

COP =
j2 − θ−1

C2
+ 1− 1

2
j22

1
ZTC2

∆
(34)

In this way, the efficiency Φ can be also considered as the ratio of the TEM’s COP (QC2/P, see
Equation (33)) and that of the Carnot’s cycle (QC2/Et) [3]. It can be shown that the performance
coefficient increases when the difference temperature TH1 − TC1 decreases. This means that seeking a
larger value of the COP implies a reduction in the TEM’s ability to generate temperature difference. The
exergetic efficiency, on the other hand, has a maximum for certain values of TH1 and TC1 . It represents
a sort of compromise between a good performance and a significant temperature difference between the
cold and the hot side of the system. Figure 2 shows clearly the above mentioned. There we have plotted
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the exergetic efficiency and the performance coefficient, Equations (31) and (34) respectively, against
θT which is considered a measure of the temperature difference between the cold and the hot side of the
TEM. Small blue circles correspond to the COP and small red squares to ϕ. It is seen in Figure 2 that the
maximum of ϕ occurs at about θT = 1.18.

Figure 2. COP (Equation (34)) and ϕ (Equation (31)) vs. θT = TH1/TC2 . Blue circles
correspond to COP and red squares to ϕ. The difference TH1 −TC1 increases as θT increases.
j1 = 0.095 and j2 = 0.4141. COP-ϕ means COP or ϕ.
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Before analyzing expression (31) for the exergetic efficiency, we firstly specify the values of the
parameters involved in the calculations and secondly we define the ideal value of current for stage 2
(see Figure 1). The Seebeck coefficients of the p and n-type semiconductor are taken as αp = αn =

1.8 × 10−4 V
K

, the thermal conductivities as κp = κn = 1.4 × 10−2 W
Kcm

and the electrical resistivity as
ρp = ρn = 7.7× 10−4Ω cm. The temperature of the cold side of the TEM is taken as TC2 = 248 K. The
resulting hot side temperature from the maximum condition for the exergetic efficiency is TH1 = 308 K.
Since the parameters R and K always appear as a product in Equations (14)–(16) and (21), it is needless
to assign values to the cross section S and the length of the arm l (see Equations (1) and (3)).

Now we define the ideal current j2max as the value of j2 which corresponds to the maximum exergetic
efficiency. We derive Equation (31) with respect to j2 and by equating it to zero we get for j2 the simple
expression

j2max = ZTC2 (35)

This means that the maximum ϕ with respect the current flowing in the upper stage depends only
on the thermoelectric properties of its semiconductor material and the temperature TC2 of the cold side
of the TEM. The value of j2max is 0.4141 when the thermoelectric data above mentioned is used in
Equation (14). This value will be introduced in the further calculations.

In a 3D plot, Figure 3 shows the behavior of the ϕ as a function of the dimensionless currents j1 and
j2. Observe the maximum occurring at the ideal value 0.4141 of j2 and at j1max determined through
the condition dϕ/dj1 = 0, then solved for j1. The solution is a cumbersome function of j2 and the set
of thermoelectric parameters of the system and the temperatures TC2 and TH1 obtained with the aid of
Mathematica. It is not going to be shown here. When the value of j2max is substituted together with the
above data in the solution we get j1max = 0.095 when n1 = 10 and n2 = 1, i.e., when r = 10.
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Figure 3. ϕ (Equation (31)) vs. j1 and j2, the currents flowing through stages 1 and 2,
respectively. TC2 = 248 K, TH1 = 308 K. The maximum of ϕ is at j1 = 0.095 and
j2 = 0.4141, r = 10.
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In Figure 4 we display the dependence of the ϕ on the current j1 for three different numbers n1 of
thermocouples in the stage 1, always with n2 = 1. We take the ideal value for j2max = 0.4141. We
remark the following facts. First, it is seen that the maxima of the ϕ with respect to j1 are shifted to
the left as the value of n1 increases. Second, the ϕ decays faster with the current j1 when the value of
n1 increases. Third, the maximum value of the ϕ increases as n1 increases and soon reaches a kind of
saturation value. This last fact can not be seen in Figure 4 but we show it in Figure 5 where we plot the
behavior of the maximum ϕ as a function of the ratio r. For r < 1, Figure 5 was obtained with n1 = 1

and n2 = 5, 4, 3, 2. For r ≥ 1 we took n2 = 1 and n1 = 1, 2, 3, 4, 5, ..., 10. The value of saturation
is 0.06 which is reached for r = 8. It is worth noting the fact that for n1 = 8 and n2 = 1, not only the
bigger value of ϕ is obtained for j1 = j1max and j2 = j2max among the possible combinations (n1, n2),
but it also shows positive values throughout the range of values considered for j1. The effects of r on
j1max are not shown here but it must be mentioned that j1max decreases as r increases. Clearly, it is
preferable to design the TEM with the prescription that n1 > n2 but the ratio n1/n2 does not need to
be bigger than 8. Another interesting result is obtained by graphing the ϕ vs. the Seebeck coefficient of
semiconductor material in stage 1.
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Figure 4. ϕ (Equation (31)) vs. j1 for different structures of the TEM. Solid line: n1 = 5,
n2 = 1; dashed: n1 = 3, n2 = 1; dot-dashed: n1 = 1, n2 = 1. j2 = j2max = 0.4141,

TC2 = 248 K, TH1 = 308 K. The maximum of ϕ moves to the left when the number of
thermocouples in stage 1 increases.

0.0 0.5 1.0 1.5 2.0
j1

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Φ

Figure 5. ϕmax vs. r. j2 = j2max = 0.4141, TC2 = 248 K, TH1 = 308 K. The figure shows
the saturation value of ϕmax when the number of thermocouples in stage 1 increases.

æ

æ

æ
æ

æ æ æ æ

0 2 4 6 8 10
r0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Φmax

In Figure 6 the dependence of ϕ with respect to the Seebeck coefficient A of stage 1, Equation (2), is
shown for several temperature differences ∆T (= TH1 −TC2) between the cold and hot sides of the TEM
(see the details in the caption of Figure 6). Besides remarking that by increasing the Seebeck coefficient
we get better performances, we mention that the position of each curve can be understood in terms of
Figure 2. Solid line corresponds to θT = 1.24, i.e., to the right of the maximum of ϕ in Figure 2 and
dot-dashed line corresponds to θT = 1.08, i.e., to the left of the maximum. Finally, the electric resistance
R (Equation (1)) and the heat conductivity K (Equation (3)) should be decreased in order to get better
performances. We end this section by comparing the exergetic efficiency considered in this paper with
that obtained when the two flowing electric currents, j1 and j2 in stages 1 and 2 respectively, have the
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same value [15]. We have plotted in Figure 7 the maximum value of ϕ from our results (blue circles)
and the case when j1 = j2 (red circles). All the remaining parameters have been kept without change.
We remark that the efficiency in the first case is up to a factor of 2 bigger than the second one. In the
following section we make a discussion and get some conclusions.

Figure 6. ϕ (Equation (31)) vs. A1, the Seebeck coefficient of thermocouples in stage 1, for
different temperature differences. Solid line: ∆T = 60K, dashed: ∆T = 40K, dot-dashed:
∆T = 20K. j1 = 0.095, j2 = 0.4141.
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Figure 7. ϕmax vs. θT , for two cases. Red circles: j1 equal to j2 and blue circles: j1 and j2

have different values. All the remaining parameters are kept the same in the two cases. The
exergetic efficiency has higher values when the flowing currents have different values.

æ

æ

æ

æ

æ

æ

æ
æ æ æ

æ

æ

æ

æ
æà

à

à
à
à
à
à
à
à
à

à
à à à

à

1.05 1.10 1.15 1.20 1.25 1.30 1.35
ΘT

0.01

0.02

0.03

0.04

0.05

0.06

Φmax

4. Discussion and Conclusions

We have analyzed the exergetic efficiency of a two stage thermoelectric cooler. Four factors determine
the performance of the TEM measured by ϕ: (1) the structure defined by the ratio r which was defined
as the ratio of the number of thermocouples in stage 1 and stage 2; (2) the flowing electric currents in
stages 1 and 2; (3) the thermoelectric properties of the thermocouples of each stage A, R and K; and
(4) the difference of temperatures ∆T between the cold side and the hot side of the TEM. The existence
of an optimum ϕ as a function of the electric currents flowing in stages 1 and 2 was confirmed as may
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be verified in Figure 3 for given structure and thermoelectric properties of the semiconductor materials.
The optimal value of j2 does not depend on the structure nor the operating temperatures. It only depends
on the merit figure ZTC2 through the simple relation given by Equation (35); i.e., it depends only on the
thermoelectric properties of stage 2. It follows that j1 is a function of r (structure) and θT (operating
temperatures), if the thermoelectric properties of stage 2 are taken as fixed by the industrial available
TEM’s. This argument yields the important conclusion that all the maxima of the exergetic efficiency
are found in the j2 = j2max plane (see Figure 3). The behavior of ϕ with respect to j1 shown in Figure 4
and the fact (not shown here) that it does not have any extremum in the (r, θT ) space allowed us to
analyze the optimal functioning conditions of the two stage TE cooler in terms of the flowing electric
currents in each stage only. Our results made evident that once j2max and j1max have been determined, it
is recommended that the ratio be about 8 since no additional significant increment of ϕ can be obtained
for r > 8. In these conditions, the value j1 = j1max of the current flowing through the stage 1 is
the smallest value at which the module works at maximum performance (mention must be made that a
minimum in the temperature difference between the stages of the TEM is also reached for r ≥ 8). This
support our statement in the introduction in the sense that by allowing each stage to have its own working
electric current, a better performance can be achieved (see also Figure 7). The optimal ratio j2max/j1max

is about 4.3. Finally, the geometric parameters of the thermocouples, namely, the cross area S and the
length l of the p and n arms, do not influence the performance of the TEM.
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CONACYT (México) and PROMEP (México) for financial support.

References

1. Riffat, S.B.; Ma, X.L. Thermoelectrics: A review of present and potential applications.
Appl. Therm. Eng. 2003, 23, 913.

2. Li, K.; Liang, R.; Wei, Z. Analysis of performance and optimum configuration of two-stage
semiconductor thermoelectric module. Chin. Phys. B 2008, 17, 1349.

3. Yamanashi, M. A new approach to optimum design in thermoelectric cooling systems. J. Appl.
Phys. 1996, 80, 5494–5502.

4. Vikhor, L.N.; Anatychuk, L.I. Theoretical evaluation of maximum temperature difference in
segmented thermoelectric coolers. Appl. Therm. Eng. 2006, 26, 1692–1696.

5. Chen, J.; Zhou, Y.H.; Wang, H.J.; Wang, J.T. Comparison of the optimal performance of single-
and two-stage thermoelectric refrigeration systems. Appl. Energ. 2002, 73, 285–298.

6. Luo, J.; Chen, L.G.; Sun, F.R.; Wu, C.H. Optimum allocation of heat transfer surface area for
cooling load and COP optimization of a thermoelectric refrigerator. Energ. Convers. Manag.
2003, 44, 3197–3206.

7. Chen, L.; Li, J.; Sun, F.; Wu, C. Performance optimization for a two-stage thermoelectric
heat-pump with internal and external irreversibilities. Appl. Energ. 2008, 85, 641–649.



Entropy 2012, 14 1550

8. Meng, F.; Chen, L.; Sun, F. Performance optimization for two-stage thermoelectric refrigerator
system driven by two-stage thermoelectric generator. Cryogenics 2009, 49, 57–65.

9. Meng, F.; Chen, L.; Sun, F. Performance analysis for two-stage TEC system driven by two-stage
TEG obeying Newton’s heat transfer law. Math. Comput. Model. 2010, 52, 586–595.

10. Meng, F.; Chen, L.; Sun, F. Multivariable optimization of two-stage thermoelectric refrigerator
driven by two-stage thermoelectric generator with external heat transfer. Indian J. Pure Appl.
Phys. 2010, 48, 731–742.

11. Chen L; Gong, J.; Shen, L.; Sun, F.; Wu, C. Theoretical analysis and experimental confirmation
for the performance of thermoelectric refrigerator. J. Non-Equil. Thermodyn. 2001, 26, 85–92.

12. Xuan, X.C.; Ng, K.C.; Yap, C. The maximum temperature difference and polar characteristic of
two-stage thermoelectric coolers. Cryogenics 2002, 42, 273–278.

13. Chen, L.; Li, J.; Sun, F.; Wu, C. Effect of heat transfer on the performance of two-stage
semiconductor thermoelectric refrigerators. J. Appl. Phys. 2005, 98, 034507.

14. Chen, J.; Yan, Z.; Wu, L. Nonequilibrium thermodynamic analysis of a thermoelectric device.
Energy 1997, 22, 979–985.

15. Xuan, X.C.; Ng, K.C.; Yap, C.; Chua, H.T. Optimization of two-stage thermoelectric coolers with
two design configurations. Energ. Convers. Manag. 2002, 43, 2041–2052.

16. Bejan, A. Advanced Engineering Thermodynamics, 2nd ed.; Wiley: New York, NY, USA, 1997.
17. Goupil, C.; Seifert, W.; Zabrocki, K.; Mller, E.; Snyder, G.J. Thermodynamics of thermoelectric

phenomena and applications. Entropy 2011, 13, 1481–1517.
18. Seifert, W.; Ueltzen, M. Müller, E. One-dimensional modelling of thermoelectric cooling.

Phys. Status Solidi A 2002, 194, 277–290.

Appendix

In this Appendix we show in some detail how to obtain the heat balance equations (4)–(7) from
Section 2. See [14,17,18]. We consider just one of the arms of a thermocouple of one TE stage. An
electric current density is flowing through it. Its length is L and its cross sectional area A. First, it must
be reminded the coupling between charge transport and heat transport in thermoelectric phenomena. The
linear constitutive relations which include these crossing effects are [17]

jel = σE− σA∇T (36)

jq = AT jel − κ∇T (37)

where E is the electric field, jel the electric current density, T the temperature, jq the heat flux, σ the
electric conductivity, κ the thermal conductivity and S the Seebeck coefficient. The thermoelectric
parameters S, κ and σ are in general temperature dependent physical properties but here they will be
assumed as constant values. Equations (4)–(7) result from conservation of charge and energy, which read

∇ · jel = 0 (38)

∇ · jq = jel · E (39)
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The electric field can be obtained from Equation (36) as follows

E =
jel
σ

+ A∇T (40)

and the divergence of the heat flux, Equation (37), becomes

∇ · jq = ∇ · (AT jel − κ∇T )

= T jel · ∇A+ A∇T · jel + AT∇ · jel +∇ · (−κ∇T )
(41)

where the third term in the right hand side (r.h.s) vanishes since particle conservation, Equation (38).
Accordingly with the conservation equation (39) the divergence of the heat flux is equal to jel ·E which,
when Equation (41) is used, reads

jel · E = jel(jelσ + A∂T/∂x) (42)

where we have assumed a one dimension problem. Equating Equations (41) and (42) and simplifying,
one obtains

∂

∂x
(−κ∂T/∂x+ ATjel) =

jel
σ

+ Ajel∂T/∂x (43)

Recalling that thermoelectric properties are considered as constants, this last equation reduces to

∂2T

∂x2
= −jel

2

σκ
(44)

whose solution is the parabolic function

T (x) = − jel
2

2σκ
x2 + c1x+ c2 (45)

This equation describes the temperature distribution along the semiconductor material with suitable
boundary conditions (B.C.). Now, let us consider the following B.C. for the temperature

T (x = 0) = TC , T (x = l) = TH (46)

When applied on the solution (45) it results in the constants

c1 =
1

L
(TH − TC +

jel
2

2σκ
l2), c2 = TC , c3 = 0 (47)

The derivative of Equation (45) at x = 0 gives the heat flux absorbed in the cold side of the semiconductor
material. The expression is

jq(0) = −κc1 + jelATC (48)

By substituting the constant c1 from (47) in this last equation one arrives to

jq(0) = −κ
1

l
(TH − TC +

jel
2

2σκ
l2) + jelATC (49)

Finally, multiplying Equation (49) by the cross sectional area S and by using well known relations
between electric resistivity and electric resistance and thermal conductivity and thermal conductance,
expressions of the type of Equations (4)–(7) in Section 2 are obtained. For instance:

QC2 = A2I2TC2 −
1

2
I22R2 −K2(Tm − TC2) (50)
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To end this Appendix, it must be mentioned that the details to apply this kind of equation to a two stage
TEM are displayed in Section 2.
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