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Abstract: Discovering the mechanism that controls the three-dimensional structures of 

proteins, which are closely related to their biological functions, remains a challenge in 

modern biological science, even for small proteins. From a thermodynamic viewpoint, the 

native structure of a protein can be understood as the global minimum of the free energy 

landscape of the protein-water system. However, it is still difficult to describe the 

energetics of protein stability in an effective manner. Recently, our group developed a free 

energy function with an all-atomic description for a protein that focuses on hydration 

thermodynamics. The validity of the function was examined using structural decoy sets that 

provide numerous misfolded “non-native” structures. For all targeted sets, the function was 

able to identify the experimentally determined native structure as the best structure. The 

energy function can also be used to calculate the binding free energy of a protein with 

ligands. I review the physicochemical theories employed in the development of the free 

energy function and recent studies evaluating protein structure stability and protein-ligand 

binding affinities that use this function.  

Keywords: protein structure stability; binding free energy; hydration thermodynamics; 

hydration entropy 

 

1. Introduction 

Life at the molecular level is characterized by the self-assembly of biomolecules, e.g., protein, DNA 

and RNA. These molecules spontaneously fold into specific highly organized structures or bind each 

other to enable biological functions. If we accept the thermodynamic hypothesis known as Anfinsen’s 

dogma, a single protein structure lies at the global free energy minimum under physiological 
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conditions [1]. Clarifying the energetics behind three-dimensional structure would be the first step 

toward understanding the molecular mechanisms through which biological processes occur. However, 

describing energetics is one of the most difficult tasks in modern physical chemistry because the 

stability of protein structures has never been understood simply as the summation of all atomic 

interactions conceivable [2]. In fact, experimental reports contradict each other with regard to the 

physicochemical factors that stabilize protein structure [3–8]. A breakthrough is unlikely without a 

novel concept that is distinct from the conventional viewpoints. It is becoming widely recognized that 

water plays a significant role in most biological processes, including protein folding and binding [9]; it 

is far more than just an embedding medium and is particularly relevant for hydrophobic interactions. 

Nevertheless, our knowledge of how hydration evolves during folding and what the underlying 

thermodynamic contributions are is still sparse. 

The energetics of protein folding are a prime example of biological processes in water. A protein 

spontaneously folds into a unique structure from numerous unfolded conformations. A feature common 

to the native structures of proteins is a backbone and side chains that are tightly packed, with little 

interior space [10–13]. This means that protein folding results in a large loss of conformational entropy 

(CE) for the protein molecule. A primary question is what counteracts this CE loss upon protein 

folding. The formation of intramolecular hydrogen bonds, a previously suggested factor, is 

accompanied by a serious energetic penalty from dehydration [14–17]. This is also true for the 

formation of salt bridges (contacts of unlike-charged atoms) in the interior. The prevailing view is that 

water adjacent to a hydrophobic group is not entropically favored because water molecules must be 

ordered around it; rather, folding is thought to be driven mainly by the so-called hydrophobic effect 

through the burial of nonpolar side chains [2,18]. We note, however, that proteins are characterized by 

heterogeneity; hydrophobic and hydrophilic atoms and groups are irregularly distributed in the 

molecule. Hence, the burial of nonpolar side chains is unavoidably accompanied by the burial of polar 

and charged groups. Studies that mine structural databases of proteins [19] show that protein folding is 

distinct from the aggregation of surfactant molecules (e.g., formation of micelles) where the nonpolar 

groups are almost completely buried and the charged groups are all exposed [20]. The hydrophobic 

effect works much less effectively in protein folding than in micelle formation. Thus, none of the 

previously suggested factors is powerful enough to compete with the very large CE loss upon the 

protein folding. Experimental and theoretical results are quite inconsistent and controversial. For 

example, salt bridges act both as stabilizers [3] and as destabilizers [4], the exposed area of the 

hydrophobic surface is not always correlated with the conformational stability of a protein [5], and 

polar group burial contributes more to the stability of native structure than burial of nonpolar 

groups [6,7]. Charged side chains, thought to be on the surface, are readily buried in the hydrophobic 

interior of a protein without structural adaptations [8]. Thus, it is quite reasonable to think that there 

must be another powerful driving force for folding. 

In this article, I introduce a new thermodynamic concept for protein stability, which I have engaged 

in creating with my colleagues, and review studies on the validation of the free energy function based 

on that concept. This new paradigm can capture the essential physics of protein folding or ligand 

binding in an aqueous environment despite its simplicity. 
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2. Theoretical Background and Molecular Models of Protein and Water 

2.1. Major Driving Force of Protein Folding: Increase in Translational Entropy of Water  

Most discussions concerning protein folding focus on contributions to the free-energy change that 

arise from potential energies among the atoms in the system, including the solvent [21]. An element 

lacking in earlier studies is that the translational movement (thermal motion) of the solvent molecules 

should critically influence the folding process. We begin with the concept illustrated in Figure 1a, 

which was first presented by Asakura and Oosawa [22]. Suppose that large particles are immersed in a 

bath of small particles and that the small and large particles are hard spheres with diameter dS and 

diameter dL, respectively. In such a system, all allowed configurations have the same energy and the 

system behavior is purely entropic in origin. The presence of a large particle generates the volume 

from which the centers of the small particles are excluded. The excluded volume is the spherical 

volume with diameter (dL + dS) that is the sum of the volumes of the large particle and of the envelope 

colored in blue (Figure 1a). When two large particles contact each other, the excluded volumes overlap 

(the overlapped volume is shadowed), and the total volume available to the translational movement of 

the small particles increases by the same amount. This increase leads to a gain in the translational 

entropy (TE) of the small particles. Within the framework of the Asakura–Oosawa (AO) theory, the 

free-energy change is given as −(V/VS)SkBT = −3(dL/dS)SkBT/2 [22,23], where S is the packing 

fraction of the small particles, V the increase in the total volume available to the small particles 

defined above, VS is the volume (size) of a small particle, and kBT is Boltzmann’s constant times the 

absolute temperature. The gain in the TE of the solvent arising from contact is dependent not on the 

absolute value of the overlapped volume, but on the overlapped volume scaled by the size of the 

solvent molecules. In the isochoric process, the TE gain exactly equals the free-energy change divided 

by −T. In the isobaric process, there is a slight decrease in the system volume accompanying a 

corresponding decrease in the enthalpy. That is, part of the TE gain is converted into enthalpic gain. 

Irrespective of the process, the free-energy decrease originates purely from the TE effect in the model 

system considered [21,22]. In the original discussion by Asakura and Oosawa, the large particles are 

colloidal and the small particles are macromolecules. When the AO theory is applied to colloidal 

mixtures [23,24], the larger and smaller colloidal particles correspond to the large and small particles, 

respectively.  

An important element of the concept described above is that the large particles are driven to contact 

each other by an increase in the TE and a decrease in the free energy of the system. Besides the highly 

specific steric and chemical interactions, this entropic effect is omnipresent in processes occurring in a 

condensed phase. In this study, we apply the concept to protein folding in water molecules that move 

energetically. In our application, the small and large particles are water molecules and a protein, 

respectively. In Figure 1b, three side chains are illustrated as an example of intramolecular contacts in 

the protein interior. The excluded volume for the solvent molecules and the overlapped volume are 

represented in the same manner as in Figure 1a. The geometric features of the side chains lead to a 

much larger overlapped volume than in the case of simple spheres (compare Figure 1a,b). The solvent 

in the biological system at the molecular level is water, whose molecular size is exceptionally small. 

For these reasons, the TE gain occurring in this particular system is expected to be quite substantial.  
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Figure 1. (a) Illustration of the concept first presented by Asakura and Oosawa [22]. 

(b) Application of the concept to protein folding occurring in solvent. In this example, 

three side chains are illustrated.  

 
 

To investigate such TE effects in the protein/water system, we must employ a precise model and 

theory, rather than simply evaluating the change in excluded volume. For the first step, we can model 

solvent molecules and the protein molecule as hard sphere particles and a set of fused hard spheres, 

respectively, to account for the geometric features of the backbone and side chains at the atomic level. 

We employ three-dimensional (3D) integral equation theory [25,26], an elaborate statistical-mechanical 

approach that allows us to calculate the density structure of the solvent near a protein molecule in a 

prescribed conformation. These treatments enable us to exclusively investigate the TE by calculating 

the solvation free energy (SFE) because such a hard sphere system will not have an energy component 

arising from attractive inter-atomic interactions. Unlike AO theory, in which the free energy change is 

proportional to the excluded volume change, the TE obtained by our method reflects both the 

microscopic structure of the solvent density profile and the complex geometry of a solute molecule. It 

should be noted that the value of SFE, by definition, is irrespective of the thermodynamic process at 

work, i.e., isochoric or isobaric.  

The key quantity we analyze is the TE of the solvent water in which the peptide or protein molecule 

is immersed. As an example, two peptides—Met-enkephalin (PDB ID: 1PLX) and the C-peptide 

fragment consisting of the 1–13 residues of ribonuclease A (PDB ID: 2AAS)—and two proteins—

protein G (PDB ID: 2GB1) and barnase (PDB ID: 1BNR)—are considered. The TE gain upon folding 

is compared to CE loss. The CE change upon unfolding can roughly be estimated as the sum of 

(ln9)NRkB and 1.7 NRkB, which represent the contribution from the main chain and side chains of a 

protein, respectively [27]. We showed that when the number of residues is sufficiently large and the 

solvent is water (Figure 2), the TE gain is a powerful driving force and substantially competes against 

the very large CE loss [25,26].  

We tested the native structure for protein G as well as numerous other conformations. The unfolded 

structures were generated using a molecular dynamic simulation with the all-atomic potentials [28]. 

The largest TE was attained in the native structure (Figure 3); the translational movement of water 

molecules is quite effective in achieving tight packing in the interior of a natural protein. These  
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results are true only when the solvent is water, whose molecular size is among the smallest liquids in 

nature [25,26].  

Figure 2. Gain in translational entropy (TE) of water calculated under the reference 

condition, and loss of conformational entropy (CE) of the peptide or protein molecule. TE 

gain and CE loss upon folding are compared. Entropy values are scaled by kB.  

 

Figure 3. Solvation free energies obtained from 3D integral-equation theory for different 

structures of protein G (2GB1) as a function of the radius of gyration [28]. A total of 

600 structures obtained from a molecular dynamic simulation are plotted.  
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2.2. Free Energy Function Extracting the Physical Essence of Protein Stability  

A physical factor that drives proteins to fold as described in the previous section with relation to the 

AO theory becomes apparent only when a protein is immersed in a condensed phase such as liquid 

water. This factor should be incorporated to evaluate the free energy change of the biological processes 

at the molecular level. One way to evaluate the effect is to estimate the hydration entropy for a realistic 

system consisting of the protein and water, starting from the energetics of the system, where a protein 

with a single fixed structure is immersed in water at infinite dilution [29]. Unrealistic structures in 

terms of internal energy, such as those with numerous overlaps of constituent atoms, are excluded from 

our discussion. The free energy of the system W can be expressed as the sum of the protein 

intramolecular energy Eintra and the hydration free energy μ: W = Eintra + μ, where μ consists of the 

hydration energy Ehyd and the hydration entropy S: μ = Ehyd − TS. Then, W = Eintra + Ehyd − TS, where T 

is the absolute temperature and μ is the same irrespective of the protein insertion condition in its 

definition (isobaric or isochoric) [30,31]. Hereafter, we consider the isochoric condition, which is 

much more convenient in a theoretical treatment. 

The μ of several proteins, modeled with the all-atomic potential, were calculated by employing the 

three-dimensional reference interaction site model theory [32]. Their μ were decomposed into energetic 

and entropic components. The former comprises the protein-water interaction energy and the water 

reorganization energy arising from the structural changes of a solute. Each component was further 

decomposed into nonelectrostatic and electrostatic contributions, and it was shown that μ was 

governed by the nonelectrostatic component of S and the electrostatic component of Ehyd. The change 

in S was less than 5% even when protein-water electrostatic interactions, which are long-range and 

quite strong, are completely shut off. S asymptotically becomes proportional to the excluded volume 

for water molecules as the protein size increases. This result is consistent with the study using 

angle-dependent integral equation theory for hydration thermodynamics of a simple solute model, 

indicating that S for a larger solute is determined primarily by the translational component [33]. On the 

basis of the great advantage that S is not significantly influenced by interactions between protein and 

water, we can model a protein molecule as a set of fused hard spheres mimicking constituent atoms. 

However, it should be emphasized that an explicit molecular model for water (i.e., not a dielectric 

continuum model) must be employed in the calculation of S.  

Contrary to S, “Eintra + Ehyd” is quite sensitive to changes in interactions between protein and water. 

According to studies using an all-atomic molecular model [34], there is a tendency for ΔEintra and ΔEhyd 

to compensate for each other upon structural changes in a protein (i.e., their magnitudes are close to 

each other and their signs are opposite). Therefore, instead of accounting for all atomic interactions, 

“Eintra + Ehyd” is evaluated by comparing the energy difference due to structural changes in the solute 

molecule, which are accompanied by the change in hydration energy. Thus, we assume that hydrogen 

bonds will have a major contribution. A fully extended protein structure is chosen as the reference. 

Such a structure should possess the maximum number of hydrogen bonds with water molecules and no 

intramolecular hydrogen bonds in the protein. When a protein folds into a compact structure, some 

proton donors or acceptors (e.g., N and O, respectively) are buried in the interior after hydrogen bonds 

with water molecules (CO···W, NH···W, etc.) are broken. If the donors or acceptors cannot form 

hydrogen bonds in the protein interior, we can impose a dehydration penalty. Our basic concept is 
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illustrated with the thermodynamic cycle in Figure 4. Let Λ denote the total dehydration penalty 

(TDP). When compared with the fully extended structure (Λ = 0), a more compact structure has some 

donors and acceptors buried in its interior, leading to some positive value of Λ depending on the 

protein conformation. We can equate “Eintra + Ehyd” with the TDP occurring upon transition to a more 

compact structure if intramolecular hydrogen bonds are not completely formed. The free energy 

function F is given by: 

F = −TS + Λ (1)

Based on the thermodynamic treatments described above, we can construct an energy function for 

an all-atomic molecular model that captures the essential thermodynamics of protein folding despite its 

simplicity. It suggests that the native structure should be the fold with the lowest value of the energy 

function if it is constructed in a physically reasonable manner. One advantage is that our function is 

free from differences in van der Waals attraction or Coulombic force parameters. Moreover, it is 

calculated with minor computational effort, as described in the next subsection. 

Figure 4. The scheme for calculating the total dehydration penalty. “W” and “···” represent 

a water molecule and a hydrogen bond, respectively. An amide NH and CO are depicted as 

an example. The parameters ζ, λ, and ξ are changeable.  

   

2.3. Computational Methods & Molecular Models  

Because F must be evaluated for a great number of conformations, the calculation of F per structure 

should be performed with low computational cost and the essential role of water should be accounted 

for as well. We have developed a judicious method meeting both requirements.  

The hydration entropy, which strongly depends on the details of the protein polyatomic structure, is 

calculated using a hybrid of the angle-dependent integral equation theory [35–39], i.e., a statistical-

mechanical theory for molecular liquids, and the morphometric approach [28]. In the angle-dependent 

integral equation theory, the role of water as a molecular ensemble is fully considered. The water-water 

and solute-water orientational correlations are fully taken into account. Next, the multi-polar  

model [40] is employed to mimic water molecules. The solute-solvent (water) pair correlation function 

can be denoted by g(r, θ, φ, χ), where r is the distance from the center of the solute, (θ, φ) represents 

the orientation of the dipole moment of the vector water (θ is the angle between the vector and the 

solute-water axis), and χ describes the rotation around the dipole-moment vector. The Morita–Hiroike 

formula [41,42] for calculating the hydration free energy μ is written as:  
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where h(= g – 1) and c are the total and direct correlation functions, respectively. The integral range is 

[0, ∞] for r, [0, π] for θ, and [0, 2π] for φ and χ; kB and ρ are the Boltzmann constant and the number 

density of solvent water, respectively. As mentioned in the methods section, S is considered under an 

isochoric condition and calculated through the thermodynamic relation: 
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Temperature derivatives are numerically evaluated from: 
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where δT = 5 K is adopted. 

Although employing this theory is computationally expensive, the calculation of hydration entropy 

for a protein is quite rapid while still being in quantitative agreement with morphological 

thermodynamics [28]. This combined method requires minor computational time while retaining 

quantitative accuracy. The idea of our morphometric approach is to express a hydration quantity such 

as S using a linear combination of only four geometric measures of a solute molecule: 

1 2 3 4S c V +c A+c C +c X  (5)

where V, A, C and X correspond to the excluded volume, solvent accessible surface area, integrated 

mean and Gaussian curvature, respectively [28]. In our approach, the solute shape enters S only via the 

four geometric measures. Therefore, the four coefficients (c1 − c4) can be determined using a simple 

geometry: They are determined in advance from the values of S for hard-sphere solutes with various 

diameters (dsolute: 0≤ dsolute ≤10 dwater, where dwater denotes the diameter of a water molecule) immersed 

in our model water. Angle-dependent integral equation theory is employed in the calculation. The four 

coefficients are determined by a least-squares fit applied to the following equation for hard-sphere 

solutes: 

       3 2
1 2 3 44 3 4 4 4S c R c R c R c        (6)

where R = (dsolute + dwater)/2. The values of the four coefficients thus obtained are the following:  

C1= −0.1971 Å−3, C2 = 0.06119 Å−2, 4πC3 = 1.967 Å−1, and 4πC4 = −2.652. It should be noted that S 

determined by this procedure contains a rotational component even though, as stated above, it becomes 

minor for a large molecule. As explained in the text, we can model a protein structure as a set of fused 

hard spheres. Each diameter is the Lennard–Jones (LJ) σ-parameter corresponding atom, which is 

taken from the typical force field. Once determined for simple hard spheres, the four coefficients can 

be used to calculate S for a protein with any structure by calculating the four geometric measures for 

each protein structure using the Connolly algorithm [38]. The x-y-z coordinates of the protein atoms, 



Entropy 2012, 14  

 

1451

which characterize each structure on the atomic level, are used as part of the input data for calculating 

the four geometric measures. 

Our basic strategy for calculating the TDP is illustrated in Figure 4. When a donor and acceptor are 

buried in the interior after breakage of exterior hydrogen bonds with water molecules, we impose a 

penalty or gain of ζ if they form an intramolecular hydrogen bond. On the other hand, when a donor or 

an acceptor is buried with no intramolecular hydrogen bond formed, we only impose a penalty of λ. 

The formation of an intramolecular hydrogen bond exposed to water is assumed to accompany a 

penalty or gain of ξ. The formation of an intramolecular hydrogen bond within the interior leads to the 

gain of ζ − 2λ. The burial of an intramolecular hydrogen bond is accompanied by a penalty or gain  

of ζ − ξ. It should be noted that λ is positive and quite large. We examine whether each donor and 

acceptor in the backbone, backbone-and side chain can form intramolecular hydrogen bonds, and it is 

necessary to determine whether each donor or acceptor is buried. The water-accessible surface area is 

calculated for each of them using Connolly’s algorithm [43]. If it is smaller than the threshold value, 

the donor or acceptor is considered buried. The threshold is set at 0.001 Å2. To determine whether the 

hydrogen bond is formed, i.e., if the bond length and angle are within appropriate ranges, the criteria 

proposed by McDonald and Thornton [44] are used. 

In studying protein stability, we assume that (λ, ξ, ζ) can be set at (7kBT0, 0, 0) (T0 = 298 K) based 

on results from Brooks and coworkers [45], who performed a molecular dynamics simulation for 

hydrogen-bond formation between two formamide molecules in a nonpolar liquid and in water. In this 

setting, we impose no penalty when a donor and an acceptor are buried in the interior, if they form an 

intramolecular hydrogen bond. When a donor or an acceptor is buried with no intramolecular hydrogen 

bond formed, we impose a penalty of 7kBT0. The setting λ = 7kBT0 is also consistent with the estimation 

by Fleming and Rose [46] of 5–6 kcal/mol ( 10kBT0). However, it should be noted that the slight 

difference in these values concerning the TDP does not affect the overall profile of the energetics. The 

computation of Λ per protein structure is simply a count of the number of such donors or acceptors and 

is rapidly computed. It becomes apparent that no dehydration penalty is paid by the nonpolar groups of 

a protein. This can be justified because the breakage of hydrogen bonds with water molecules is more 

important and forms a principal component of the TDP when not compensated for by intramolecular 

hydrogen bonds. 

3. Validation of the Free Energy Function 

3.1. Discrimination of the Native Structures from Misfolded Decoys 

As a first step, we must validate the free energy function by comparing the experimentally 

determined “native” structure to a vast number of possible conformations. “Decoys” are protein 

conformations that are computationally generated and possess some characteristics of native proteins, 

but are not biologically real. The primary use of decoy structures is to test scoring or newly developed 

energy functions. If the function can discriminate the native structure as that with the lowest value, our 

treatment of energetics for protein hydration thermodynamics is validated [29,47,48]. We tested the 

discrimination ability with the decoy sets 4state_reduced [49], fisa, fisa_casp3 [50], Rosetta [51], 

lattice_ssfit [52,53], lmds [54], and Semfold [55], which are maintained in a database at [56]. We omit 
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the set of 1fc2 in fisa because the structure referred to as “the native fold” is only a fragment of the 

protein A complex in the experiment. The free-energy function should be evaluated not for the 

fragment but for the complex. However, the decoy set for this entry was generated only for the 

fragment. This aspect is discussed in the next subsection. 

Each decoy structure is slightly modified to eliminate unrealistic overlaps between constituent 

atoms. Metal ions such as calcium (Ca2+) or zinc (Zn2+) are entangled in the experimental structure. 

Although some proteins structures are heme-binding (i.e., have covalent linkages with heme), neither 

the ion nor heme is included in the decoy structures. The detailed procedures are described in the 

appendix of [48]. 

In this study, we exclude structures determined by nuclear magnetic resonance (NMR) due to their 

conformational ambiguity. NMR structures are usually deposited in the PDB as a collection of models 

that satisfy geometrical restrains. Typically, the models are composed of a structurally conserved core 

region and a variable region (loops and chain terminals). The variable region may have structural 

difference as large as 5 Å in Cα RMSD. Additionally, the final structures are computationally 

determined through energy optimization of the force fields, which define the distance constraints 

between constituent atoms [57]. Therefore, the results may largely depend on both the optimization 

procedure and the force fields. Because our goal is to compare the score of a native structure with a 

decoy structure, it is crucial to have one well-defined native structure with the least bias in favor of 

other force fields. The calculated F values for the candidates vary widely from model to model even 

though they are deposited as a native structure, so we also omitted some decoy sets from our 

discussion if the native structures were determined with NMR. 

The plot of F − FNative (the subscript “Native” denotes the value for the native structure) against the 

root mean square displacement (RMSD) for Cα atoms from the native structure is shown for the three 

representative decoy sets in Figure 5. The data for all of the protein species contained in each decoy set 

are collected in the figure. In Table 1, the number of decoy sets for which our energy function 

identifies the native structure as the lowest value is listed. As observed in the table, our function is 

successful in discriminating the native fold from misfolded decoys with 100% accuracy, except for 

lmds decoy sets (the lack of success in these decoy sets is justified in the next subsection). This success 

supports our arguments around hydration, described above, and the validity of the energy function.  

To compare the discrimination performance, the measure called the Z-score [58,59] is used, which 

is defined by: 

( ) /NativeZ F F F     (7)

where < F > is the energy function averaged over all structures and F the standard deviation. As easily 

recognized from the form of Equation (7), the larger the magnitude of the Z-score is, the more 

successful the result. 
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Figure 5. F − FNative plotted against Cα-RMSD from the native structure. Each figure 

collects data for all proteins in the decoy set of 4state_reduced (a), fisa (b), and fisa_casp3 

(c). Native structures are represented by the origin (0, 0) of the plots.  

 
 

The performance of our free-energy function is compared with that of the scoring functions 

previously proposed by other research groups in Table 1, in terms of the number of successful sets and 

the averaged Z-score for each decoy set. The Z score shows that our function gives the highest 

performance among scoring functions compared here. We note that the function of Lu et al. [60], a 

knowledge-based function, has been shown to give the best result among the functions available in the 

literature. In the scoring function of Lu et al., emphasis is placed on the side-chain packing. It is 

known that side chains are tightly packed in the native structure, with little space in its interior. As 

illustrated in Figure 1, such a feature leads to nearly the highest entropy of water. Tight packing is 

thought to be driven by van der Waals interactions among the protein atoms. We note, however, that 

burial or packing results in a loss of van der Waals interaction energy between the protein and solvent 

water and that burial and packing can be driven by water-entropy gain. In this sense, the scoring 

function of Lu et al. is closely related to our free-energy function, though it has its origin in a structural 

database. Judging by the almost equal success of the potential function of Lu et al. when compared 

with our free-energy function, the water-entropy effect is a crucially important factor in the energetics 

of protein stability. 
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Table 1. The performance of F in comparison with the scoring functions previously 

proposed. The number of successful decoy sets and the averaged Z-score for each decoy set. 

Scoring Function Top1/Total No. Mean Z 
4state_reduced 

F 7/7 −5.19 
Lu et al., 2008 [60] 7/7 −4.41 
Miyazawa and Jernigan, 2005 [61] 7/7 −4.44 
Lee and Duan, 2004 [62] 7/7 −4.95 
Zhang et al., 2004 [63] 6/7 −3.94 
Onizuka et al., 2002 [64] 7/7 −3.41 
Zhou and Zhou, 2002 [65] 6/7 −3.49 
Toby and Elber, 2000 [66] 3/6 −3.14 

Fisa 
F 3/3 −6.97 
Lu et al., 2008 [60] 3/3 −5.52 
Miyazawa and Jernigan, 2005 [61] 2/4 −2.55 
Lee and Duan, 2004 [62] 2/3 −3.73 
Zhang et al., 2004 [63] 3/4 −4.70 
Onizuka et al., 2002 [64] 1/3 −1.38 
Zhou and Zhou, 2002 [65] 3/3 −5.91 
Toby and Elber, 2000 [66] 2/3 −3.34 

Fisa_casp3 
F 5/5 −5.51 
Lu et al., 2008 [60] 5/5 −5.35 
Miyazawa and Jernigan, 2005 [61] 2/5 −3.61 
Lee and Duan, 2004 [62] 2/5 −3.19 
Zhang et al., 2004 [63] 3/3 −6.05 
Onizuka et al., 2002 [64] 1/3 −2.01 
Zhou and Zhou, 2002 [65] 3/3 −5.37 
Toby and Elber, 2000 [66] 1/3 −2.01 

Rosetta (X-ray) 
F 41/41 −7.12 
Lu et al., 2008 [60] 37/41 −6.56 

lattice_ssfit 
F 8/8 −7.54 
Miyazawa and Jernigan, 2005 [61] 8/8 −11.12 
Lu et al., 2008 [60] 8/8 −6.52 

Lmds 
F 9/10(10/10) −6.29 (−6.79) 
Miyazawa and Jernigan, 2005 [61] 8/10 −5.34 
Lu et al., 2008 [60] 8/10 −5.20 

Semfold 
F 8/8 −6.76 
Miyazawa and Jernigan, 2005 [61] 4/6 −3.86 

 

It is worthwhile to compare our free energy function with a representative physics-based function. 

Here, we employ CHARMM, one of the most widely used force fields, which includes the 

CHARMM22 [67] + CMAP [68] (MM) + Generalized-Born Approximation [69–71] (GBMV) 

+Accessible Surface Area method (SA). The GBMV is reportedly capable of reproducing the potential 

energy calculated by the Poisson–Boltzmann method and that from the molecular dynamics simulation 

combined with an explicit water model. The MM+GBMV/SA tested does not always successfully 
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discriminate the native structure from the decoys. We found a typical case in the decoy set for 1hdd-C. 

The relation between our function F and MM+GBMV/SA is shown for 1hdd-C in the fisa decoy set in 

Figure 6. The F generally gives much higher energy values for all the decoy structures than does 

MM+GBMV/SA. As observed in the figure, there are two decoy structures for which MM+GBMV/SA 

identifies lower energy values than the native. These two structures contain more α-helical structure 

than the native structure. In Figure 6, one of the two decoy structures is illustrated for comparison with 

the native structure. We explore the relation between the α-helix content and the energy value of our 

function and MM+GBMV/SA. A hypothetical all α-helix structure was also considered (Figure 7). As 

observed in Table 2, MM+GBMV/SA values tend to be lower for structures with higher α-helix 

content. The present result is consistent with studies showing that the CHARMM22 force-field 

parameters have a preference for α-helix conformations [72,73]. The hydration entropy in our 

free-energy function of the decoy structures is much larger than that of the native structure. It is quite 

reasonable that all α-helix structures, which have a relatively larger excluded volume for water, is 

unfavorable in terms of the hydration entropy [25,26]. The water entropy for the decoy structure is 

lower than that for the native structure by 98 kB. In contrast, an all α-helix structure has less 

dehydration penalty than a native structure because it can form intramolecular hydrogen bonds in a 

complete manner. The relation between structure and energy terms is discussed in the next subsection. 

Figure 6. Relation between F − FNative and (E − ENative)/(kBT0) for 1hdd-C in the fisa decoy 

set. F (note that this is already scaled by kBT0; T0 = 298 K) is our free-energy function, and 

E is the CHARMM22+CMAP+GBMV/SA. The square and the large circle represent the 

result of an all α-helix structure and the native structure, respectively. 

 

Figure 7. Ribbon representation of examined protein structures. (a) The native structure of 

1hdd-C. (b) Structure with the lowest value of CHARMM22+CMAP+GBMV/SA in the 

decoy set. (c) All α-helical structure with the same amino-acid sequence. 

 

(b) (a) 
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Figure 7. Cont. 

 

Table 2. Comparison among the native, decoy, and all α-helix structure in terms of 

α-helical content, the energy value of CHARMM22 (MM+GBMV/SA), hydration entropy 

(S), total dehydration penalty (, and our free energy function (F). All values are relative 

to the corresponding native energy values. 

Structure α-helical Content (%) MM+GBMV/SA/(kBT0) −S  F 
Native 74 0.0 0.0 0.0 0.0 
Decoy 79 −5.7 97.5 35 132.5 
All α 100 −29.1 204.5 −21 183.5 

3.2. Characteristics of Native Proteins 

We define X and Y by:  

 0 0/ ( ) / ( )B B Native
X k T k T     (8)

and: 

 0 0/ ( ) / ( )B B Native
Y TS k T TS k T     (9)

respectively, where the subscript ‘Native’ denotes the value for the native structure. The plot of Y 

against X is shown in Figure 8, and considered data for all of the decoy sets. There are many structures 

with X < 0. Some structures give Y < 0 only in the 4state_reduced decoy set. This result suggests that 

the full consideration of the water-entropy effect is crucially important in characterizing the native 

structure. In any case, there is no structure with X + Y < 0. Structures that have higher entropy of water 

than the native structure can certainly be constructed, but such structures suffer serious total 

dehydration penalties. Structures with less total dehydration penalty than the native structure can also 

be constructed (e.g., all α-helix structure), but such structures give rise to a rather low entropy of water. 

The native structure is optimized in terms of the sum of the two important factors. We emphasize, 

however, that the major driving force in protein folding is the gain in water entropy, especially when 

the folding process is considered under the isochoric condition. (Under the isobaric condition, part of 

the entropic gain is converted to a corresponding enthalpy gain. Refer to our publication [31] for more 

details.) The formation of intramolecular hydrogen bonds is important for reducing the dehydration 

penalty as much as possible during the folding process and leads to the formation of common motives 

found in the secondary structure of proteins, i.e., -helix or -sheet. 
  

(c) 
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Figure 8. Y plotted against X for all the proteins in the 4state_reduced (a), fisa (b), and 

fisa_casp3 (c) decoy sets, defined by Y = −TS/(kBT0) − {−TS/(kBT0)}Native and 

X = Λ/(kBT0) − {Λ/(kBT0)}Native, respectively. The three straight lines represent X = 0, 

Y = 0, and X + Y = 0, respectively.  

 
 

We found the evidence for how well F discriminated between the stable structures of a protein. In 

the lmds decoy set, one decoy structure is constructed for a native structure where the two fragments 

take a complex form as illustrated in Figure 9a. Their atomic coordinates are defined not for the 

complex but for the fragment (i.e., chain C of the PDB structure with code 1fc2). Such decoy 

structures are entered as the decoy set for 1fc2. If the structure of the fragment is assumed to remain 

unchanged even when isolated and regarded as the model of the native protein, there are a number of 

decoy structures whose F value is lower than that of the native model (Figure 9b). The Z-score is 

calculated as 0.76, but this treatment for the native model leads to failure, as reflected in 9/10 and 

−6.29 for the lmds decoy set in Table 1. The structure of the fragment was determined using NMR in 

its isolated form in aqueous solution (The PDB code is 1bdc) and is considerably different from the 

native model as illustrated in Figure 9c (it contains one more α-helix). The structure of 1dbc must be 

defined as the reference native structure. With this definition, our function gives the lowest value for 

the native, as shown in Figure 9d, and the Z-score for this decoy set becomes −4.15. This alteration is 
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identified as a success and reflected in (10/10) and (−6.79) for the lmds decoy set in Table 1. These 

results indicate that the features of the experimentally determined native structure (i.e., it is optimized 

in terms of the sum of the two important factors) are precisely captured by our function.  

Figure 9. (a) Ribbon representation of chain C structure in the complex (PDB code: 1fc2). 

(b) F − FNative plotted against Cα-RMSD from the native structure. Chain C of the PDB 

structure with code 1fc2 used as the native. (c) Ribbon representation of 1bdc. Chain C of 

1fc2 is isolated in aqueous solution, and its structure is determined using NMR 

spectroscopy and deposited to PDB as 1bdc. (d) F − FNative plotted against Cα-RMSD from 

1bdc as the native structure. 

 

3.3. Evaluation of Protein-Ligand Binding Free Energy 

The energetics of protein folding can be applied to binding between a ligand and a receptor protein 

because the change in hydration for such processes should be the same in terms of the molecular 

association in solvent water. The difference is only whether it denotes an intermolecular or an 

intramolecular change. However, this change in configuration entropy should additionally be 

considered in the energetics of the binding process as follows [74]. 

For a protein-ligand binding process in aqueous solution, the free-energy change is given by: 

complex protein ligandG G G G     (10)

! "#$

(d)(c)

! %$&

(b)
(a)

1fc2 
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Here, we introduce the assumption in hydration thermodynamics described in the Introduction: In 

Equation (10), the energetic components are replaced by the dehydration penalty, . Equation (10) is 

then written as follows: 

( )complex protein ligandG TS TS TS       (11)

In the case of intermolecular association, the conformational change of protein and ligand upon their 

binding are considered. Each entropic component can be decomposed into two terms: one from the 

solute alone and the other from water-entropy loss upon solute insertion. The former corresponds to the 

configuration entropy of the solute and is hereafter denoted by Sconfig. The latter corresponds to the 

solvation entropy of a solute and is denoted by Swater. Thus, the free-energy change ΔG for protein-

ligand binding in aqueous solution is given by: 

( ) ( )

( )

( )

( )

config water config water
complex complex protein protein

config water
ligand ligand

config config config
complex protein ligand

water water water
complex protein ligand

G TS TS TS TS

TS TS

TS TS TS

TS TS TS

      

 

    

  
config water

config

T S T S

F T S

     

   

 (12)

ΔG is regarded as the binding free energy (BFE) between a protein and a ligand. Swater for each 

structure of a solute molecule is calculated with the computational process described above. The 

structures are taken from snapshots of a trajectory generated with molecular dynamics simulations. In 

this study, we employ the so-called single-trajectory approach [75] to obtain structural ensembles of 

the protein, ligand, and their complex; namely, we perform a single MD simulation for the complex to 

obtain snapshot structures. The snapshot structures of the protein and ligand are extracted from the 

same trajectory data. Thus, the final value of Swater is an average of Swater for each structure. If a protein 

does not accompany large conformational change upon binding, Sconfig can be regard as local 

fluctuation around a fixed structure. To estimate Sconfig, suppose that the solute has N conformations, 

each of which can be treated as a disjoint multidimensional harmonic well. We can calculate Sconfig 

using the following equation [76]: 

,lnconfig config
X j j j X j

j j

S R p p p S     
(13)

where pj represents the probability that a conformation belongs to well j. SX,j
config corresponds to the 

local entropy of well j including translational, rotational, and vibrational entropies. Here, we omitted 

the first term on the right-hand side of Equation (13) because a change in the first term upon ligand 

binding would be negligible compared with that of the second term [71]. In calculating the local 

entropy of well j, Sconfig in Equation (13), the Hessian matrix is necessary for each local minimum 

structure. We then perform the optimization of geometry for each sampled structure by the conjugate 

gradient method followed by the Newton–Raphson method. During the optimization, the solvation 

effect is taken into account with a continuum model known as the generalized Born method [77]. The 

structures thus obtained are subjected to normal mode analysis to calculate the vibration entropy. It 

should be emphasized that we performed normal mode analysis for the full atomic protein structure. 
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We used standard statistical mechanics formulas for an ideal gas to calculate translational and rotational 

entropies. Note that these entropic contributions are minor for the relative value, as shown later.  

In the study of the BFE, we incorporate in the following manner. Before forming a complex, the 

protein and ligand are both fully hydrated, which means that the proton donors and acceptors on their 

surfaces form hydrogen bonds with the surrounding water molecules. Upon ligand binding, some of 

these hydrogen bonds are replaced by newly formed protein-ligand hydrogen bonds. If all of the 

protein-water or ligand-water hydrogen bonds lost upon complex formation are compensated by the 

protein-ligand hydrogen bonds, there is no dehydration penalty. However, when a donor or an acceptor 

is buried with no protein-ligand hydrogen bond formed, a dehydration penalty should be imposed.  

Here, we apply our energetics to protein-ligand binding systems. The system studied here comprises 

FK506-binding protein 12 (FKBP12) and its 11 ligands (Figure 10). The BFEs between FKBP12 and 

its inhibitors have been experimentally determined and studied by several research groups using 

different computational methodologies [78–83], making the system appropriate as the first choice for a 

benchmark study. We confirmed the MD simulation on this system shows no large conformational 

change upon binding [74]. Therefore, the treatment for Sconfig described above is suitable for the 

system. FKBP12 is a small protein of 107 residues with five anti-parallel β-strands wrapping around a 

short α-helix to form an overall barrel shape. The binding site consists of Tyr26, Phe36, Phe46, Val55, 

Ile56, Trp59, Tyr82, His87, Ile90, and Phe99, all of which are buried inside upon binding. A 

crystallographic structure study [84] revealed that two water molecules (WAT186 and WAT125 in the 

PDB file of 1FKG) bind to the hydroxyl group of Tyr82 in the FKBP12 and are displaced with 

ligand #7 upon the formation of a complex. In the structure, one hydrogen bond is formed between the 

amide carbonyl group of ligand #7 and the hydroxyl group of Tyr82. Because the ligands studied here 

share the same core structure (as observed in Figure 10b), the hydrogen bond between Tyr82 and 

ligand #7 should exist for every ligand. On the other hand, in the unliganded protein, water molecules 

are located around the hydroxyl group of Tyr82. The average number of hydrogen bonds between the 

protein and the surrounding water is 2 for the entire protein trajectory; this assertion is confirmed by 

our trajectory data (data not shown). Based on the computational evidence, we deem that, for every 

protein-ligand complex studied, nearly one hydrogen bond is lost upon ligand binding, leading to a 

dehydration penalty. In this study, we adopt 4.2 kcal/mol as the TDP value derived from the 

experiment in which a hydrogen bond was intentionally removed by mutation of Tyr82 [85]. 

Table 3 gives the calculated values for the configurational entropy change (Sconfig) and the 

water-entropy change (Swater) upon protein-ligand binding. The calculated BFE denoted by ΔGcalc is 

also compared with the experimentally determined BFE (ΔGexp) in the table. At 1 M standard 

concentration, a free molecule (ligand) has degrees of freedom: 1,660 Å3 for translational motion 

and 8π2 for rotational motion. Upon binding, those motions are confined in a “binding region,” where 

the interaction potential between the ligand and its receptor protein is minimal. This means that a large 

loss of translational and rotational freedom occurs upon binding. Such contributions should be 

incorporated to obtain ΔGcalc and retain ΔGexp. However, we can neglect such contributions for 

predicting relative binding affinity because those values are expected to be nearly equal among ligands 

with similar sizes and structures as this study. We also impose the same value of TDP to all of the 

systems. Therefore, can only contribute to shift the overall values likewise.  
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Figure 10. (a) X-ray structure of FKBP12 in complex form with a ligand (1FKG). 

(b) Structural formula of the ligands examined. All equilibrium inhibition constants Ki 

were determined by Holt et al. [86]. The value of the experimental BFE (ΔGexp) for each 

FKBP12-ligand system was calculated from Ki via RT ln Ki /C
0, where R and T are the gas 

constant and absolute temperature, respectively, and C0 is the standard concentration. In the 

Holt study, these values were 1.986 cal/(mol K), 283 K, and 1 M, respectively.  

(a) 

(b) 
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Table 3. Contributions of entropies and BFE values. All data are in kcal/mol. 

Sconfig 

Ligand # trans rot vib total Swater ΔGcalc ΔGexp 

1 12.1 9.7 −2.5 19.2 −29.6 −10.4 −7.5 
2 12.1 9.6 −2.8 18.8 −29.8 −11.0 −7.4 
3 12.0 9.5 −2.4 19.2 −30.7 −11.5 −8.0 
4 12.3 10.1 −2.2 20.2 −32.6 −12.3 −8.7 
5 12.2 10.2 −1.3 21.1 −33.2 −12.0 −9.0 
6 12.4 10.6 2.4 25.4 −38.6 −13.1 −10.3 
7 12.4 10.4 −1.5 21.3 −35.2 −13.9 −10.4 
8 12.4 10.4 0.5 23.3 −37.1 −13.7 −10.6 
9 12.4 10.4 −0.6 22.1 −34.3 −12.1 −8.2 

10 12.4 10.3 −1.0 21.8 −33.5 −11.7 −8.5 
11 12.4 10.3 −1.3 21.4 −33.4 −12.0 −9.1 

 

Figure 11a shows ΔGcalc plotted against ΔGexp. As observed in the figure, we obtain a good 

correlation between ΔGcalc and ΔGexp. The correlation coefficient is 0.95, and the slope of the 

regression line from least-squares fitting is nearly one (0.92). It is worth noting that, as plotted in 

Figure 11b, the relative order of the BFE values among different ligands can roughly be reproduced in 

terms of −TΔSwater, which is estimated with the calculation procedure from the hydration entropy. As 

observed in Table 3, the change in vibrational entropy within −TΔSconfig contributes to an increase in 

the correlation with experimental values. These results clearly demonstrate the validity of our 

methodology focusing on the entropic contributions to the BFE. For further quantitative accuracy, 

however, more sophisticated treatment for conformational entropy of a protein and other entropic cost 

of a solute molecule upon binding will be necessary in the future works [87,88].  

Figure 11. (a) Plots of ΔGcalc vs. ΔGexp for FKBP12 and its 11 ligands. (b) Plots of 

−TΔSwater vs. ΔGexp.  
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4. Conclusions 

We have developed a free energy function describing the structural stability of a solute molecule in 

aqueous solution. It is completely different from previously developed scoring functions. Most 

functions are based on the intramolecular potential energy of a protein or its modified version. By 

contrast, we begin with the free energy for the protein-aqueous solution system. The major factor 

governing the structural stability of a solute molecule is a gain in the entropy of the surrounding water. 

This theoretical background originates from part of the Asakura–Oosawa theory. Based on careful 

analyses and arguments for hydration thermodynamics, we extract only the essential factors. The 

resulting energy function comprises the total dehydration penalty and the hydration entropy, which 

should be calculated without simplifying a model of water such as a dielectric continuum (i.e., using a 

molecular model for water). The calculation of hydration entropy, which is computationally demanding 

if a molecular model is used for water, is performed quite rapidly using a method that combines 

angle-dependent integral equation theory and morphological thermodynamics. Our method is well 

suited to selecting the most stable structure from among the candidate structures; a huge number of 

structures can be compared because our energy function is calculated with minor computational effort.  

The free energy function based on our energetics is validated by a study using structural decoy sets, 

which contain a huge number of misfolded structures. From among these, the function can 

discriminate the native structure of a protein, assigning it the lowest value. Furthermore, it can 

distinguish whether the target structure is a fragment that complements a whole protein structure. The 

study also shows that the features of the experimentally determined native structure are precisely 

captured, i.e., the formation of common motifs found in the secondary structure of proteins (-helix or 

-sheet) are optimized in terms of the sum of the two factors. Furthermore, the energy function can be 

applied to the binding free energy between a ligand and a receptor protein because the change in 

hydration upon the binding processes should be the same in terms of the molecular association in 

solvent water. We obtain a good correlation between the calculated binding free energies and the 

experimentally determined free energies. Our result also indicates that the main contribution to binding 

affinity is hydration entropy. These results clearly demonstrate the validity of our focusing on the 

hydration of a ligand and a protein in determining energetics. 
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