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Abstract: Bearing fault diagnosis has attracted significant attention over the past few 

decades. It consists of two major parts: vibration signal feature extraction and condition 

classification for the extracted features. In this paper, multiscale permutation entropy 

(MPE) was introduced for feature extraction from faulty bearing vibration signals. After 

extracting feature vectors by MPE, the support vector machine (SVM) was applied to 

automate the fault diagnosis procedure. Simulation results demonstrated that the proposed 

method is a very powerful algorithm for bearing fault diagnosis and has much better 

performance than the methods based on single scale permutation entropy (PE) and 

multiscale entropy (MSE).  
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1. Introduction 

Bearings are the most frequently used component in a rotary machine. Bearing failures could lead 

to unpredictable productivity losses for production facilities. Therefore, bearing fault diagnosis has 

attracted significant attention from the research and engineering communities over the past decades. 

Generally, a bearing fault diagnosis process can be decomposed into three steps: data acquisition, 

feature extraction, and fault condition classification. 

Vibration-based signal analysis in the time-frequency domain has been a major technique for 

bearing fault diagnosis. Several statistical parameters in the time domain and the frequency domain, 

such as the root mean square, kurtosis, and skewness, have been shown to be capable of fault detection 

[1,2]. In [1], nine features in the time domain and seven features in the frequency domain were used 

for bearing fault detection. We call this method the time domain and frequency domain statistical 

formulas (TDFDSFs) method throughout this paper.  

Time-frequency analysis methods, such as the short-time Fourier transform [3], the Wigner Ville 

distribution [4], and the wavelet transform [5], have been widely used to detect bearing faults since 

they can provide abundant information about machine faults. However, these time-frequency based 

methods often require a lot of computation time, as they involve a lot of Fourier transforms or 

convolution operations. Moreover, due to the factors of clearance and nonlinear stiffness of bearings, 

the vibration signals are often characterized by nonlinearity. Therefore, these commonly used  

time-frequency analysis techniques may exhibit limitations because of their linearity assumption.  

In order to overcome this problem, several nonlinear parameter estimation techniques were applied 

to extract defect-related features hidden in the measured signals. In [6], Hong and Liang combined the 

Lempel-Ziv complexity with the continuous wavelet transform and found that the new method was 

more effective in bearing fault diagnosis. Then, the methods based on approximate entropy (ApEn) [7] 

and multiscale entropy (MSE) [8] were used for bearing fault diagnosis. Both ApEn and MSE can be 

used for measuring the regularity of a time series. Although these entropy-based methods are simple 

and require much less computation time, they have very good performance in bearing fault diagnosis.  

In [9], a new entropy based method named permutation entropy (PE) was exploited to assess the 

status of a rotary machine. The PE was introduced by Bandit [10]. It estimates the complexity of time 

series through the comparison of neighboring values. The PE has been widely used in a number of 

applications, such as electroencephalography (EEG) signal analysis [11,12], stock market analysis [13], 

tool breakage detection in end milling [14], and chatter detection in turning processes [15]. Time series 

derived from physiological and mechanical systems are usually complicated and consist of multiple 

temporal scale structures. Based on a single scale algorithm, the PE based method has limited 

performance in analyzing these complicated data. To overcome this shortcoming, based on the concept 

of multiscale [16], Aziz proposed a new method termed mutliscale permutation entropy (MPE) to 

calculate entropy over multiple scales [17]. In addition, Li employed the MPE method to track the 

effect of anesthetic drug sevoflurane on the brain and showed that the MPE index outperforms the 

single scale PE index [18]. 

In this paper, we introduce MPE as a feature extractor of the bearing fault diagnosis system. After 

extracting feature vectors by MPE, the multi-class support vector machine (SVM) [19] is used as a 

classifier. The SVM is probably the most popular and powerful machine learning algorithm because of 
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its well established theoretical background and intuitive geometrical interpretation. Nowadays, the 

SVM is widely applied and has even served as the baseline in computer vision, pattern recognition, 

information retrieval, and data mining, etc. In our simulations, the vibration signal datasets of bearing 

from Case Western Reserve University (CWRU) [20] are utilized. Experimental results demonstrate 

that the proposed MPE-based algorithm provides a significantly higher accuracy of prediction than the 

traditional feature extraction methods. 

The remainder of this paper is organized as follows: Section 2 provides a review of permutation 

entropy. In Section 3, the proposed algorithm based on multiscale permutation entropy is introduced. 

In Section 4, several examples are presented to demonstrate the effectiveness of the proposed MPE 

algorithm. A conclusion is given in Section 5. 

2. Permutation Entropy 

Given a time series {x(k), k = 1, 2, …, N}, the m-dimensional delay embedding vector at time i is 

defined as: 

 ( ), ( ), , ( ( 1))m
i x i x i x i m    x   (1)

where m is the embedded dimension and τ is time delay. We say that m
ix  has a permutation 

1 1...o mr r r


 if 
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1 1( ) ( ) ( )o mx t r x t r x t r         (2)

where 0 ൑ ri ൑ m − 1 and ri ് rj. 

There are m! possible permutations of for an m-tuple vector. For each permutation π, we determine 

the relative frequency by:  

 ( 1) ,  has type 
( )
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tNumber t t T m
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The PE of m dimension is then defined as: 

( ) ( ) ln( ( ))PEH m p p    (4)

The maximum value of HPE(m) is log(m!) when all possible permutations appear with the same 

probability. Therefore, the normalized permutation entropy (NPE) can be obtained as: 

( )( ) ln( !)
PE

NPE
H mH m m  (5)

For any time series, 0  HNPE(m)  1 is satisfied.  

In the remainder of this section, we explain the PE algorithm by using an example of the time series 

in Equation (6): 

 4,7,9,10,6,11,3x   (6)
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We set the parameter of time delay τ to be 1. When the embedded dimension m is 3, five embedding 

vectors can be obtained as: 

3
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10 6 11

6 11 3

x

x

x

x
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There are six (3!) possible permutations of dimension 3, which are denoted by π012, π021, π102, π120, 
π201, and π210, respectively. The embedding vectors 3

1x  and 3
2x  have the permutation type π012, the 

vector 3
4x  has the permutation type π102, while both 3

3x  and 3
5x  correspond to π201. Therefore, the 

probability of each permutation is given by: 
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The PE and the NPE of dimension 3 are then calculated by: 

PE
2 2 1 1 2 2( ) ln( ) ln( ) ln( ) 1.05495 5 5 5 5 5H m       (9)

NPE

1.0549
( ) 0.5888

ln(3!)
H m    (10)

The value of PE depends on the selection of the embedding dimension m and delay τ. If m is too 

small, the scheme will not work since there are too few distinct states. However, it is often 

inappropriate to choose m as a large value for detecting the dynamic change of a time series [17]. 

Moreover, Cao [21] indicated that the delay τ is related to the signal for analysis and its sampling rate. 

3. Proposed Bearing Fault Diagnosis System Based on Multiscale Permutation Entropy and 

Support Vector Machine  

The concept of multiscale analysis was originally proposed by Costa [16], who indicated that the 

single scale entropy algorithm yielded contradictory results when applied to real-world datasets 

obtained in health and disease states. In regard to this, Costa proposed a coarse-grained procedure to 

obtain multiple scale time series from the original time series. Then, the entropy at each scale is 

calculated to analyze the physiological signal. Given a time series x = {x1, x2, …, xN}, one can 

construct a consecutive coarse-grained time series y(s) corresponding to the time scale s. First, the 

original time series is divided into non-overlapping windows of length s. Second, the data points inside 

each window are averaged by Equation (11). The schematic illustration of the coarse-grained 

procedure is shown as in Figure 1: 

( )

( 1) 1

1
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N
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Figure 1. Schematic illustration of the coarse-grained procedure modified from [16]. 

 
 

Based on the concepts of multiscale and PE, Aziz proposed a new method termed mutliscale 

permutation entropy (MPE). In MPE analysis, the entropy of the coarse-grained time series at each 

scale is calculated by the NPE algorithm defined in Equations (3)–(5). Li employed MPE analysis to 

track the effect of anesthetic drug sevoflurane on the brain and showed that the MPE index 

outperforms the single scale PE index [18]. In this paper, motivated by the previous efforts, we 

investigate the utility of MPE for detecting a variety of bearing faults in rotary machines. The 

flowchart of the multiscale permutation entropy algorithm is as seen in Figure 2.  

Figure 2. Flowchart of the multiscale permutation entropy algorithm. 

 

 

In addition to multiscale permutation entropy, our proposed method also adopts the SVM technique. 

The SVM was originally a deterministic algorithm for finding the linear separating hyperplane of a 

binary labeled dataset. Compared to the perceptron learning algorithm (PLA), which eventually finds a 

 Original Signal 

Time Scale s = 1 

Coarse-Grain procedure 
Equation (11) 

Calculate Permutation entropy 
by Equations (1)–(5) 

MPE at the sth scale 

s = s + 1 
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random separating hyperplane in a linear-separable dataset, the SVM generates a unique hyperplane in 

a given dataset. This hyperplane provided by the SVM not only has an intuitive geometrical 

interpretation, but also been proved theoretically to balance the in-sample error (Ein) and the 

generalization error. 

Given a binary labeled dataset as shown in Figure 3, we found that there are many hyperplanes that 

can be used to separate red circles (positive: 1) from blue circles (negative: −1), such as the three gray 

lines plotted in Figure 3a. These gray lines may come from the PLA, the Adaline algorithm, the least 

square regression algorithm, or the logistic regression algorithm, where the last three ones determine 

their separating hyperplanes based on the corresponding objective functions but without a direct 

geometrical interpretation. By contrast, the SVM was originated from a geometrical view as shown in 

Figure 3b. It seeks a separating hyperplane which keeps its distance from the positive and negative 

samples as far as possible without training error. In other words, the SVM desires a separating 

hyperplane that can maximize the margin  between the positive and the negative samples. It can 

effectively tolerate the error of the unseen samples and was claimed to have good generalization 

ability. The objective function of the SVM is then modeled as a constraint optimization problem. In 

our algorithm, the SVM classifier is implemented by the LIBSVM software [20]. 

Figure 3. Different separating hyperplanes resulted from different algorithms: (a) the 

hyperplanes (three gray lines) resulted from general linear classification algorithms; (b) the 

hyperplane (gray line) resulted from the linear SVM algorithm where the margin σ is the 

distance between the hyperplane and the nearest sample.  

(a) (b) 

 

The overall flowchart of our proposed framework is shown in Figure 4. As recommended in [20], 

each feature is rescaled to the range of 0 to 1. The one-versus-one (OVO) SVM is chosen to classify 

different bearing faults. Assume that there are totally c classes. The OVO SVM builds a binary 

classifier for each pair of classes, which means that, in sum, c(c − 1)/2 binary classifiers are built. 

When given an input sample x, each classifier predicts a possible class label. The final predicted label 

is the one with the most votes among all c(c − 1)/2 classifiers. 
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Figure 4. The flowchart of our framework with the one-versus-one SVM of c classes. 

 

4. Simulation Results  

4.1. Experimental Data 

In order to validate the capability of the MPE algorithm, experimental analyses on bearing faults 

were conducted. All the bearing data we used were obtained from the CWRU Bearing Data Center [4]. 

The time-domain vibration signals of bearing were collected from the normal case, the ball fault case, 

the inner race fault case, and the case of the outer race fault at the 6 o’clock position. The shaft rotating 

speeds of the motor are 1730, 1750, 1772, and 1797 rpm, and the sampling frequency is 48 kHz. For 

all fault conditions, the defect size of point fault is 14 mil in diameter. 

In these experiments, the vibration signals collected from different fault conditions are divided into 

several non-overlapping 2048-point width windows. The window number of each fault condition at a 

specific rotating speed is shown in Table 1. Then, in Tables 2–9, the method of time domain and the 

frequency domain statistical formulas (TDFDSFs) [1], the MSE method [8,16], the PE method [10,16], 

and the proposed MPE method were used to extract the features and their performances compared. 

Table 1. The window number of each fault condition. 

Actual Class 
The motor shaft rotation speeds  

1730 rpm 1750 rpm 1772 rpm 1797 rpm 
Normal 237 236 236 119 

Ball fault 237 237 237 121 
Inner race 236 238 186 31 
outer race 238 237 236 119 

by MPE 
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To demonstrate the effect of the number of training samples, the experiments were designed by 

different training set sizes (10%, 20%, 30%, 40%, and 50% of total samples), and the remaining 

samples are used for prediction. The average accuracy of prediction for each experiment was 

quantified over 200 tests. 

4.2. Results 

The average accuracies of prediction for different feature extraction methods are presented  

in Tables 2–5. In the experiments, 16 TDFDSF features, 16 MSE features, a single PE feature  

and 16 MPE features were used to train the corresponding SVM model. The parameter r of MSE was 

set to 0.15σ where σ represents the standard deviation of original signals. The embedded dimension m 

and the time delay τ of MPE were set to 5 and 1, respectively. The parameters C and γ, of the SVM 

were 100 and the reciprocal of the feature number, respectively. As presented in Tables 2–5, in the 

cases where the percentages of training samples are 10%, 20%, 30%, 40%, and 50%, the accuracies of 

the MPE based fault diagnosis system are all superior to those of the TDFDSF, the MSE, and the 

single scale PE based fault diagnosis systems. As shown by the experimental results, the single scale 

PE (i.e., MPE at scale 1) is not good enough to classify different bearing faults. However, a fault 

diagnosis system with the accuracy of prediction up to 99% will be obtained if MPE features are used. 

Another advantage of the MPE is that it is more robust on the variation of the training size. The 

computational cost for the SVM training procedure can be greatly reduced since a large number of 

training samples are unnecessary. 

Table 2. The average accuracies at 1730 rpm. 

Actual Class 
Amount of training windows 

10% 20% 30% 40% 50% 
TDFDSFs 90.34% 91.56% 92.03% 92.55% 92.89% 

PE 73.19% 74.02% 74.25% 74.43% 74.59% 
MSE 98.26% 98.79% 99.08% 99.14% 99.30% 
MPE 99.15% 99.31% 99.43% 99.55% 99.55% 

Table 3. The average accuracies at 1750 rpm. 

Actual Class 
Amount of training windows 

10% 20% 30% 40% 50% 
TDFDSFs 81.26% 84.55% 85.65% 86.40% 87.09% 

PE 75.60% 75.67% 75.78% 75.43% 75.35% 
MSE 96.53% 97.53% 97.86% 98.12% 98.23% 
MPE 99.99% 99.99% 99.99% 99.99% 99.99% 



Entropy 2012, 14  

 

1351

Table 4. The average accuracies at 1772 rpm. 

Actual Class 
Amount of training windows 

10% 20% 30% 40% 50% 
TDFDSFs 87.77% 90.06% 91.47% 92.27% 92.96% 

PE 75.09% 75.09% 75.75% 76.30% 76.92% 
MSE 94.02% 9494% 95.14% 95.30% 95.63% 
MPE 99.43% 99.63% 99.72% 99.78% 99.82% 

Table 5. The average accuracies at 1797 rpm. 

Actual Class 
Amount of training windows 

10% 20% 30% 40% 50% 
TDFDSFs 91.58% 92.95% 93.53% 93.75% 93.94% 

PE 84.59% 84.81% 84.91% 84.93% 84.81% 
MSE 91.25% 92.90% 93.44% 93.38% 94.02% 
MPE 96.92% 97.29% 97.47% 97.88% 98.02% 

 

In the following, we only demonstrate the confusion matrices of MPE with 16 scales in Tables 6–9. 

At each shaft rotating speed, there are 50% of total samples in four kinds of fault conditions are used 

for training, and the remainders are for testing. All the parameters are the same as those used in the last 

experiment. The experiment results show that the average accuracies are close to 99% while the MPE 

is utilized. Therefore, the proposed method provides significant improvement in bearing fault diagnosis. 

Table 6. MPE confusion matrix at 1730 rpm. 

Actual Class 
Recognition result 

Normal Ball fault Inner race  Outer race  
Normal 100% 0% 0% 0% 

Ball fault 0% 100% 0% 0% 
Inner race  0.69% 0.78% 98.32% 0.23% 
Outer race  0% 0% 0% 100% 

Table 7. MPE confusion matrix at 1750 rpm. 

Actual Class 
Recognition result 

Normal Ball fault Inner race  Outer race  
Normal 100% 0% 0% 0% 

Ball fault 0% 100% 0% 0% 
Inner race  0% 0% 100% 0% 
Outer race  0% 0% 0% 100% 



Entropy 2012, 14  

 

1352

Table 8. MPE confusion matrix at 1772 rpm. 

Actual Class 
Recognition result 

Normal Ball fault Inner race  Outer race  
Normal 99.49% 0.51% 0% 0% 

Ball fault 0.13% 99.87% 0% 0% 
Inner race  0% 0% 99.98% 0.02% 
Outer race  0% 0% 0% 100% 

Table 9. MPE confusion matrix at 1797 rpm. 

Actual Class 
Recognition result 

Normal Ball fault Inner race  Outer race  
Normal 100% 0% 0% 0% 

Ball fault 0% 96.56% 0% 3.44% 
Inner race  0% 0% 100% 0% 
Outer race  0% 1.56% 0% 98.44% 

 

Furthermore, in Tables 10–12, we show the effects of varying the number of features for our 

proposed MPE algorithm. From these results, one can see that even if only 5 features are adopted, the 

recognition rate of the proposed MPE algorithm is more than 99%. Therefore, the proposed method is 

robust to the number of features. When using the proposed MPE algorithm, one can use very small 

number of features to achieve very high accuracies.  

Moreover, when using the proposed MPE algorithm, from our simulations, if the data used for 

training the SVM are collected under 1,730 rpm, the recognition rate for the data at 1,750 rpm  

is 95.36%. If the data used for training the SVM are collected under 1,750 rpm, the recognition rate for 

the data at 1,730 rpm is 99.26%. When the difference between the rotating speed of the training data 

and that of the testing data is small, the recognition rate remains high.  

Table 10. The average accuracies of the proposed MPE algorithm at 1,730 rpm when the 

number of features varies from 1 to 20.  

Number of 
features 

Percentage of the samples used for training 
10% 20% 30% 40% 50% 

1 73.19% 74.02% 74.25% 74.43% 74.59% 

2(Scale 1~2) 94.78% 96.66% 97.22% 97.56% 97.73% 

3(Scale 1~3) 96.20% 97.66% 98.00% 98.18% 98.18% 

4(Scale 1~4) 96.15% 97.87% 98.37% 98.60% 98.70% 

5 99.42% 99.46% 99.54% 99.61% 99.62% 

6 99.38% 99.46% 99.51% 99.63% 99.67% 

8 99.33% 99.44% 99.54% 99.57% 99.59% 

10 99.28% 99.41% 99.47% 99.58% 99.61% 

12 99.26% 99.37% 99.49% 99.54% 99.58% 

16 99.15% 99.31% 99.43% 99.55% 99.58% 

20 99.19% 99.36% 99.46% 99.55% 99.56% 
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Table 11. The average accuracies of the proposed MPE algorithm at 1,750 rpm when the 

number of features varies from 1 to 20. 

Number of 
features 

Percentage of the samples used for training 
10% 20% 30% 40% 50% 

1 75.60% 75.67% 75.78% 75.43% 75.35% 
2 96.30% 96.73% 96.82% 97.01% 97.01% 
3 97.35% 97.86% 97.96% 97.94% 97.95% 
4 98.61% 98.98% 99.17% 99.23% 99.29% 
5 99.17% 99.48% 99.56% 99.68% 99.71% 
6 99.27% 99.59% 99.71% 99.79% 99.85% 
8 99.58% 99.73% 99.83% 99.85% 99.88% 
10 99.72% 99.88% 99.91% 99.94% 99.96% 
12 99.92% 99.97% 99.98% 99.99% 100.00% 
16 99.96% 99.99% 100.00% 100.00% 100.00% 
20 99.95% 99.98% 99.99% 100.00% 100.00% 

Table 12. The average accuracies of the proposed MPE algorithm at 1,772 rpm when the 

number of features varies from 1 to 20. 

Number of 

features 

Percentage of the samples used for training 

10% 20% 30% 40% 50% 

1 75.09% 75.09% 75.75% 76.30% 76.92% 

2 91.38% 91.97% 92.16% 92.34% 92.30% 

3 98.25% 98.71% 98.86% 98.96% 99.02% 

4 99.35% 99.72% 99.81% 99.81% 99.82% 

5 99.29% 99.67% 99.75% 99.77% 99.77% 

6 99.59% 99.82% 99.86% 99.89% 99.92% 

8 99.58% 99.81% 99.91% 99.94% 99.97% 

10 99.44% 99.72% 99.82% 99.87% 99.89% 

12 99.37% 99.63% 99.77% 99.79% 99.85% 

16 99.43% 99.63% 99.72% 99.78% 99.82% 

20 99.60% 99.78% 99.84% 99.88% 99.89% 

5. Conclusions  

Multiscale permutation entropy (MPE) is an effective way to measure the complexity of chaotic 

time series, such as the vibration signal of bearings in our experiments. Compared with PE and other 

well-known complexity measures, MPE can extract the features with high distinguishability. 

Combined with the SVM, the simulation results of bearing fault diagnosis show that the proposed 

framework achieves much higher accuracies than other methods. Due to the fact that MPE is robust to 

the training set data size, a large amount of computational cost could be saved in the training process. 
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Appendix A. The Matlab Code for the Multiscale Permutation Entropy Algorithm  

function E=MPE(iSig,m,s)  

% iSig: input signal;   m : Embedded dimension;   % s: scale number 

for i=1:1:s     %i : scale index 

    oSig=CoarseGrain(iSig,i);     E(i)=PE(oSig,m); 

end 

%Coarse Grain Procedure. See Equation (11)   % iSig: input signal ;  s : scale numbers ;  oSig: output 

signal function oSig=CoarseGrain(iSig,s) 

N=length(iSig);   %length of input signal 

for i=1:1:N/s 

    oSig(i)=mean(iSig((i-1)*s+1:i*s)); 

end 

% function to calculate permutation entropy     % signal: input signal;  m:  embedded dimension 

function E=PE(sig,m) 

N=length(sig);   %length of signal 

v=[1:m];            % m=3, v=[1 2 3]; m=5, v=[1 2 3 4 5] 

all_pemu=perms(v);          % generate all possible permutations 

perm_num=factorial(m);   % calculate m! to obtain the number of all possible permutations 

for i=1:1:perm_num 

    key(i)=genkey(all_pemu(i,:));  %transform a vector into an integer; ex: [4 3 1 2] ==> 4321   

end 

pdf=zeros(1,perm_num);    %initialize frequency array 

for i=1:1:N-m+1 

    pattern=sig(i:i+m-1);   % obtain pattern vector from signal. See Equation (1). 

    [Y,order]=sort(pattern); % sort the pattern vector; order represents the permutation order. See 

Equation (2). 

    pkey=genkey(order);   %transform the order vector into an integer. See Equation (3) 

    id=find(key==pkey);        pdf(id)=pdf(id)+1;     % See Equation (3) 

end 

pdf=pdf/(N-m+1);     % normalize the frequency array to obtain probability density function. See 

Equation (3) 
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%calculate the entropy 

E=0; 

for i=1:1:perm_num 

    if (pdf(i)~=0) 

        E=E-pdf(i)*log(pdf(i));  %calculate entropy. See Equation (4) 

    end 

end 

perm_num = min(perm_num, N-m+1); 

E=E/log(perm_num);  %normalize entropy. See Equation (5) 

%function to transform a vector into an integer; ex: [2 1 3]==> 213, [4 3 1 2] ==> 4321 

function key=genkey(x) 

key=0; 

for i=1:1: length(x) 

    key=key*10+x(i); 

end 
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