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Fabio Benatti 1,2

1 Department of Physics, University of Trieste, Strada Costiera 11, I-34151 Trieste, Italy
2 INFN, Trieste, Strada Costiera 11, I-34151 Trieste, Italy; E-Mail: benatti@ts.infn.it

Received: 13 April 2012; in revised form: 8 June 2012 / Accepted: 3 July 2012 /
Published: 12 July 2012

Abstract: Several quantum dynamical entropies have been proposed that extend the
classical Kolmogorov–Sinai (dynamical) entropy. The same scenario appears in relation
to the extension of algorithmic complexity theory to the quantum realm. A theorem of
Brudno establishes that the complexity per unit time step along typical trajectories of a
classical ergodic system equals the KS-entropy. In the following, we establish a similar
relation between the Connes–Narnhofer–Thirring quantum dynamical entropy for the shift
on quantum spin chains and the Gács algorithmic entropy. We further provide, for the same
system, a weaker linkage between the latter algorithmic complexity and a different quantum
dynamical entropy proposed by Alicki and Fannes.
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1. Introduction

Several proposals have been put forward with the aim of extending the dynamical entropy of
Kolmogorov and Sinai (KS-entropy) [1] to the quantum realm [2–6]. The KS-entropy is a dynamical
invariant and a powerful indicator of the randomness of a classical dynamical system as it accounts for
the predictability of the future based on the knowledge of the past. Roughly speaking, the KS-entropy
measures our knowledge about the next step along a typical phase-space trajectory provided one knows
the trajectory’s past. Since in quantum mechanics there are neither phase-space nor trajectories and,
moreover, observations perturb the observed system, many different non-commutative extensions can be
envisaged, all of them reducing to the KS-invariant in the case of classical, that is, commutative systems.

While the KS-entropy is related to the rate at which information is produced by the dynamics with
respect to an equilibrium state, algorithmic complexity theory has been developed by Kolmogorov,
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Solomonoff and Chaitin [7] in order to qualify and quantify the randomness of individual objects, say
binary strings, independently of the statistical ensemble of which they may be part, that is, independently
of any a-priori probability distribution. In fact, probability theory cannot sort out regular from random
binary strings; for instance, in the case of a fair coin tossing, all strings of N zeroes and ones have
the same probability 2−N . Instead, algorithmic complexity measures their randomness based upon
the difficulty of description by means of programs that run by Universal Turing Machines (UTM) to
reproduce the target string.

The connection between the KS-entropy and classical algorithm complexity was established by a
theorem of Brudno [8,9] who proved that for ergodic classical systems the algorithmic complexity per
unit step of typical trajectories equals the KS-entropy.

The quantum extensions of the KS-entropy in [2–6] were formulated before quantum information
and computation theory revolutionized our views concerning the transmission and manipulation of
information [10]. The mere possibility of having quantum computers at disposal that might outperform
classical computers aroused the need of confronting the notion of algorithmic complexity with the new
avenues opened up by non-commutativity. The development of quantum information raised the question
of which impact the existence of quantum computers may have on the issue of the algorithmic complexity
of classical and quantum states [11]; in other words, can one do with classical algorithmic complexity
or is it necessary to formulate a quantum algorithmic complexity that generalizes the classical notion? If
one tries to pursue the second objective, the same scenario appears as for the quantum extension of the
KS-entropy: several inequivalent and more or less related quantities have been put forward [12–15].

In the very special case of the space-translations over quantum spin chains, a quantum analogue of
Brudno’s relation was proved to exist [16,17] between Connes–Narnhofer–Thirring [2] (CNT-) entropy
and Berthiaume–van Dam–Laplante algorithmic complexity [13]; in the following we shall instead
consider the Gács algorithmic entropy [14] and show how it is related to the CNT-entropy and the entropy
of Alicki and Fannes (AF-entropy).

The paper is organized as follows: in Section 2, we briefly survey certain basic aspects of quantum
mechanics and quantum information, in particular the notion of quantum spin chain and its von Neumann
entropy rate. In Section 3, we first reformulate the notion of classical stationary source in a way where it
appears as a particular realization of a quantum one; then, we summarize the fundamentals of algorithmic
complexity theory and its relation to Shannon entropy and algorithmic probability. In Section 4, we
introduce the AF-entropy, compute it for a binary quantum spin chain, explain the difference between
the latter and the CNT-entropy and relate it to the measurement processes. In Section 5, we introduce
Gács algorithmic entropy and establish a relation between it and the CNT and AF-entropies. Finally,
in the conclusions we comment on the difficulties and the necessary steps to arrive at a full quantum
Brudno theorem.
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2. Qubits: Fundamentals

The generalization of a classical bit is a qubit, namely any quantum degree of freedom that can be
described by a two-dimensional Hilbert space, like a spin 1/2 particle, photon polarization or a two-level
atom. A qubit vector state is thus an element of a two-dimensional Hilbert space:

H = C2 ∋ |ψ⟩ =

(
x

y

)
= x

(
1

0

)
+ y

(
0

1

)
, |x|2 + |y|2 = 1 (1)

Classical bits can then be identified by the elements of the orthonormal basis

(
1

0

)
,

(
0

1

)
, while generic

qubit (vector) states are as in (1). Classical binary strings of length n, i(n) = i1i2 · · · in, will then
correspond to the tensor product states

⊗n
ℓ=1 |iℓ⟩ in the Hilbert space (C2)⊗n = C2n . Though these states

are easily associated to familiar concepts from classical information theory, generic linear combinations
of these elementary states escape such an association. Even more, Hilbert space vectors are described
by pure state projectors Pψ = |ψ⟩⟨ψ|, and generic quantum states by mixed states or density matrices,
ρ =

∑
j λjPψj

. These are convex combinations of projections and are (non-uniquely) associated with
statistical ensembles of pure states Pψj

mixed with weights λj ≥ 0,
∑

j λj = 1.
An important indicator of the mixedness of a state ρ is its von Neumann entropy:

S(ρ) = −Trρ log ρ = −
2∑
i=1

ri log ri (2)

where ri are the eigenvalues of ρ such that ρ|ri⟩ = ri|ri⟩ with orthonormal eigenvectors ⟨ri|rj⟩ = δij . In
the following log will denote the logarithm in base 2: log 2 = 1

Any quantum mechanical process can be schematized in three steps: a preparation process, a
time-evolution and a measurement process. Differently from the time-evolution, preparation and
measurement are always irreversible processes. The last one is the most relevant of the two as it
corresponds to reading the system, an irreversible quantum process that collapses the system states
from pure ones to mixtures. These processes, also known as wave-packet reductions, correspond to
the following completely positive maps [17,18]

Pψ 7−→M [Pψ] =
∑
i

Xi |ψ⟩⟨ψ|X†
i ,

∑
i

X†
iXi = 1 (3)

The set X = {Xi}i∈I of bounded operators on the system Hilbert space is known as POVM and the
corresponding processes do in general increase entropy: S(M [Pψ]) ≥ S(Pψ) = 0.

Quantum Information Sources

From the algebraic point of view, a qubit is described by the algebraM2(C) of 2×2 complex matrices
acting on C2; whence n qubits by the tensor product algebra

M[1,n] =M2(C)⊗M2(C)⊗ · · ·M2(C) =M⊗n
2 =M2n(C) (4)

also called local spin algebra. It proves convenient to figure it out as describing n qubits located at the
sites from ℓ = 0 to ℓ = n − 1 of a 1-dimensional lattice. Of course, one can locate n qubits along any
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segment [−p,−p+ n− 1]; let n = 2p, the family of local spin algebras M[−p,p−1] can be completed, via
an inductive limit, to an infinite dimensional C∗ algebra [18,19], or two-sided quantum spin chain,

M2 := lim
p
M[−p,p−1] (5)

In such a context the qubit at site 0 is described by observables of the form 1−1] ⊗ A ⊗ 1[1 where
A ∈ M2(C) and 1−1] stands for the infinite tensor products of identity matrices up to site −1, while 1[1

for the infinite tensor product of infinitely many identity matrices from site 1 onwards.
The simplest dynamics on such a quantum spin chain is given by the right shift

Θ[M[−p,p−1]] =M[−p+1,p] , Θ[1−p−1] ⊗ A[−p,p−1] ⊗ 1[p] = 1−p] ⊗ A[−p,p−1] ⊗ 1[p+1 (6)

Any probability distribution over a classical source is assigned by fixing the probability measures of the
local configurations; in the same vein, a global state on the quantum spin chain is determined by local
density matrices on M[−p,p−1]. Translation-invariant states on M2 are then equivalent to a family of
density matrices ρ(n) defining the quantum statistic for all local algebras M[−p,−p+n−1], independently of
p; these density matrices determine a global, shift-invariant state ω onM2, in the sense that

ω(A[0,n−1]) = Tr
(
ρ(n)A[0,n−1]

)
= ω(Θp[A[0,n−1]])

for all A[0,n−1] ∈M[0,n−1](C) and p ≥ 0.
To such a global state one associates the von Neumann Entropy rate

s(ω) = lim
n→+∞

1

n
S(ρ(n)) = − lim

n→+∞

1

n
Tr ρ(n) log ρ(n) (7)

that corresponds to the entropy rate of classical stationary sources [20].
The entropy per unit step s(ω) is also the quantum dynamical entropy of the shift as proposed by

Connes, Narnhofer and Thirring in [2], but differs, as we shall see, from the quantum dynamical entropy
of Alicki and Fannes [3].

3. Classical Algorithmic Complexity and Entropy

In the light of the previous section, classical information sources can be accounted for as commutative
spin chains, consisting of spins at each site that can be either up, |i = 0⟩, or down, |i = 1⟩, along a
fixed direction in space. Namely, at each site of the lattice one locates diagonal 2 × 2 matrix algebras
and diagonal p-site algebras are equipped with diagonal p dimensional density matrices. Finite binary
strings i(n) ∈ Ωn

2 correspond to projectors that are tensor products of single bit projectors:

|i(n)⟩⟨i(n)| = |i1⟩⟨i1| ⊗ |i2⟩⟨i2| ⊗ · · · |in⟩⟨in| (8)

local probability distributions µ(n) =
{
µ(i(n))

}
to diagonal density matrices

ρ(n)µ =
∑
i(n)

µ(i(n)) |i(n)⟩⟨i(n)| (9)

whose von Neumann entropy equals the Shannon entropy of µ(n),

S(ρ(n)µ ) = −
∑
i(n)

µ(i(n)) log µ(i(n)) = H(µ(n)) (10)
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If the local probability distributions give rise to a translation-invariant global probability measure µ, then
the stationary source is characterized by the (Shannon) entropy rate

h(µ) = lim
n→+∞

1

n
H(µ(n)) (11)

The entropy rate of a classical stationary source is just the simplest example of KS-entropy, here the
dynamics corresponding to the shift along the words emitted by the source, or along the diagonal spin
chain in the quantum-like approach proposed above. In general, for a dynamical system equipped with
an equilibrium state, one reduces to a suitable shift over a symbolic model by means of a finite partition
of the system phase-space [1].

3.1. Algorithmic Complexity

In algorithmic complexity theory as developed by Kolmogorov, Solomonoff and Chaitin, one
attributes to a binary string i(n) ∈ Ωn

2 of length n a complexity K(i(n)) measured by the length of
any shortest program p∗, that is, another binary string of length ℓ(p∗), read by a prefix Universal Turing
Machine (UTM) U , would output i(n), U [p∗] = i(n),

K(i(n)) = min
{
ℓ(p) : U [p] = i(n)

}
(12)

The prefix property means that if U halts on a program p it does not continue to read on if another program
q is appended to p; in other words, no halting program can be used as prefix to a halting program.

Suppose one has an (algorithmically) computable probability distribution µ(n) = {µ(i(n))} on the
statistical ensemble of strings of length n, Ωn

2 = {0, 1}n. Then, the Shannon entropy is essentially the
average Kolmogorov complexity; specifically,∣∣∣∣∣∣H(µ(n))−

∑
i(n)∈Ωn

2

µ(i(n))K(i(n))

∣∣∣∣∣∣ ≤ K(µ(n)) (13)

where K(µ(n)) is the complexity of the computable probability distribution [7]. Brudno [9] proved that,
for ergodic sources, the difference disappears if one considers the rates. Actually, Brudno proved much
more as his theorem establishes a relation between the entropy rate and the algorithmic information per
unit step of almost all trajectories with respect to the ergodic measure of the source:

h(µ) = lim
n→+∞

1

n
H(µ(n)) = k(i) := lim

n→+∞

1

n
K(i(n)) (14)

for almost all sequences i with respect to the measure µ, that is, the set of sequences where the equality
fails has measure 0.

As already noticed, the Shannon entropy rate h(µ) is the Kolmogorov–Sinai entropy associated to
the shift dynamics; therefore, the source entropy rate can also be interpreted as the maximal information
provided by the shift dynamics per unit step of time. Indeed, Brudno’s theorem shows that the equality
holds between the KS-entropy, that is the dynamical entropy, and the algorithmic complexity rate along
almost all trajectories of a generic ergodic classical dynamical system.
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3.2. Universal Probability

With prefix UTMs one attributes a universal probability [7] P(i(n)) to all strings i(n) ∈ Ωn
2 :

P(i(n)) :=
∑

p : U [p]=i(n)

2−ℓ(p) , U prefix UTM (15)

Notice that
∑

i(n) P(i(n)) ≤ 1 because the prefix property implies the Kraft’s inequality [20]. The
map P defines a semi-computable semi-measure on Ωn

2 : indeed, it is not normalized and can be
approximated only from below because we cannot be sure that U will ever halt on a given program
(Halting Problem) [7]. Furthermore, for all other semi-computable semi-measures µ, there exists a
constant C(µ) ≥ 0 depending only on µ and not on the input string i(n) such that

C(µ)µ(i(n)) ≤ P(i(n)) (16)

This relation exhibits the universality of the algorithmic probability. Most important of all is the
connection between universal probability and algorithmic complexity:∣∣K(i(n)) + logP(i(n))

∣∣ ≤ C (17)

where C is a constant independent of i(n).

4. Alicki–Fannes Entropy

In a snapshot, the previous sections indicate that the complexity of the strings emitted by ergodic
classical information sources is essentially captured by the Shannon entropy rate of the source; indeed,
the ensemble point of view (Shannon entropy rate) and the individual point of view (algorithmic
complexity) give the same complexity per unit step (Brudno’s theorem).

Moving from classical to quantum sources, the obvious question is: what measures the complexity
of quantum information sources? One first answer is the von Neumann entropy rate; however, this is a
quantifier that is neither sensitive to the specific structure of the statistical ensemble nor to the objects
(quantum states) that compose the statistical ensemble. Furthermore, from the point of view of the spirit
behind the construction of the KS-entropy, predictions have to be made provided some information have
been gathered. However, unlike for classical systems, gathering information on a time-evolving quantum
system unavoidably perturbs the state of the system. How could then measurement processes (3) be
incorporated into the definition of the complexity of the shift along quantum spin chains? The answer is
given by the Alicki–Fannes entropy [3,18], whose main ideas we now briefly summarize for the specific
case of quantum spin chains.

We shall identify a quantum spin chain by the triple (M2, ω,Θ) and denote as partition of unit any
finite collection

X = {Xi}mi=1 ,

m∑
i=1

X†
iXi = 1 , Xi ∈M2 (18)

of local operators Xi belonging to some local algebra M[−p,p+1]. Notice that, by means of ω and X we
can define a m×m density matrix ρ[X ] with entries

ρij[X ] = ω(X†
jXi) = Tr

(
ρ(2p)X†

jXi

)
(19)
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and von Neumann entropy
S(ρ[X ]) = −Trρ[X ] log ρ[X ] (20)

In order to introduce the dynamics into the game, we let the partitions of unit transform under the action
of the dynamical map Θ in (6),

Θℓ[X ] = {Θℓ[Xi]}mi=1 (21)

Then, we refine the partitions of unit from ℓ = 0 to ℓ = n− 1 as follows

X (n) = {Xi(n)} , Xi(n) = Θ(n−1)[Xin−1 ] · · ·Θ[Xi1 ]Xi0 , i(n) = i0i1 . . . in−1 (22)

with i(n) an m-nary string in Ω
(n)
m . The refined sets X (n) are still partitions of unit according to (18);

one can thus associate to them density matrices ρ[X (n)] acting on Cmn with entries as in (19) and von
Neumann entropies S[X (n)] as in (20).

Notice the analogy with using a partition of phase-space to associate a symbolic model to a classical
dynamical system; here, the choice of a partition of unit X allows to describe the quantum triple
(M2, ω,Θ) via a quantum symbolic model consisting of the family of density matrices ρ[X (n)]. The
corresponding entropy rate is defined by

hAFω (Θ,X ) = lim sup
n→∞

1

n
S[X (n)] (23)

The Alicki–Fannes entropy of (M2, ω,Θ) is then defined by

hAFω (Θ) = sup
X
hAFω (Θ,X ) (24)

as the supremum over all possible finite partitionsX of unit by local operators of the quantum spin chain.

Remark 1. The lim sup in (23) has to be used for the sequence of density matrices ρ[X (n)] is not a
stationary one [3,18]. In fact, while consistency holds as tracing ρ[X (n)] over the n-th factor yields
the density matrix corresponding to the first n − 1 factors, Trnρ[X (n)] = ρ[X (n−1)], stationarity does
not. Indeed, in general,Tr1ρ[X (n)] ̸= ρ[X (n−1)]. Thence, the density matrix for the local algebra Mp,q

corresponding to sites from p to q in line of principle depends on the starting factor M2(C) at site p.

As a concrete example consider a set of 4 matrix units Uij ∈ M2(C) such that U †
ij = Uji, UijUkℓ =

δjkUiℓ and
∑2

i=1 Uii = 1. Dividing them by
√
2 one gets a partition of unit

U =

{
Uij√
2

}
i,j=1,2

∈M2(C)

the simplest choice being

U11 =

(
1 0

0 0

)
, U22 =

(
0 0

0 1

)
, U12 = U †

21 =

(
0 1

0 0

)
The refined partition that results after n applications of the right shift is

U (n) =

{
Ui(n)j(n)

2n/2

}
, Ui(n)j(n) = Ui0j0 ⊗ Ui1j1 ⊗ · · ·Uin−1jn−1 ∈M⊗n

2 (C) =M[0,n−1] (25)
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The associated density matrices ρ[U (n)] ∈M4n(C) have entries and von Neumann entropy given by

1

2n
Tr
(
ρ(n) U †

i(n)j(n)Uk(n)ℓ(n)

)
=

1

2n
Tr
(
ρ(n) Uj0i0Uk0ℓ0 ⊗ Uj1i1Uk1ℓ1 ⊗ · · ·

)
=

1

2n
Tr
(
ρ(n) δi0k0 Uj0ℓ0 ⊗ δi1k1 Uj1ℓ1 ⊗ · · ·

)
=

1

2n
⊗ ρ(n) (26)

S
(
ρ[U (n)]

)
= S(ρ(n)) + n (27)

The last equality in (26) comes from the fact that Tr
(
ρ(n)Ui(n)j(n)

)
are the matrix elements of ρ(n)

with respect to the orthonormal basis defined by the choice of matrix units. Then, entropy rate and
Alicki–Fannes entropy are readily computed to be [3,18]

hAFω (Θ) = hAFω (Θ,U) = lim sup
n→∞

1

n
S(ρ[U (n)]) = s(ω) + 1 (28)

Remark 2. With respect to the AF-quantum dynamical entropy, the quantum dynamical entropy
introduced by Connes, Narnhofer and Thirring [2] has a more complicated construction essentially due to
the fact that it is based on a classical symbolic modeling with superimposed quantum corrections [17,21].
Consider a quantum spin chain endowed with a translation invariant state with sufficiently fast decaying
correlations, the simplest case being the tensor product of a same density matrix ρ, that is

ω(A1 ⊗ A2 ⊗ · · ·An) =
n∏
ℓ=1

Tr(ρAℓ)

In such cases, the CNT-entropy of the shift equals the von Neumann entropy rate (7), that is

hCNTω (Θ) = s(ω) (= −Trρ log ρ in the product state case) (29)

One then notices that the AF-entropy exceeds the CNT-entropy by 1 = log 2 in the case of the
shift on quantum spin chains. The origin of the difference lies in that the AF-entropy accounts for the
disturbances brought about by the description of the quantum dynamics via a quantum symbolic model.
Does this addition have an interpretation in terms of quantum algorithmic complexity and of which one
among the many available on the market? In the following we shall seek answers to these questions.
A preliminary step is to clarify that the extra term 1 = log 2 is a consequence of having introduced the
measurement process through the partitions of unit.

AF-Entropy: Operational Interpretation

As we have seen in the second section, in quantum mechanics generic measurement processes on a
system in a state ρ lead to a modification of the state as in (3). Suppose

M2n(C) ∋ ρ(n) =
∑
i

r
(n)
i |r

(n)
i ⟩⟨r

(n)
i | (30)

is the spectral decomposition of a local state for n qubits described by the local algebra M[0,n−1]; any
such mixed state can be purified, that is transformed into a projector, by coupling M[0,n−1] to itself and
by doubling ρ(n) into

C4n ∋ |
√
ρ(n)⟩ =

∑
i

√
r
(n)
i |r

(n)
i ⟩ ⊗ |r

(n)
i ⟩ (31)
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Given the refined partition of unit U (n) in (25), one further amplifies the Hilbert space from C4n to
C4n ⊗ C4n and constructs the following vector state

C4n ⊗ C4n ∋ |Ψ[U (n)]⟩ =
∑
i

∑
(k(n)ℓ(n))

√
r
(n)
i Uk(n)ℓ(n) |r(n)i ⟩ ⊗ |r

(n)
i ⟩ ⊗ |k(n)ℓ(n)⟩ (32)

where the vectors |k(n)ℓ(n)⟩ indexed by pairs of binary strings in Ω
(n)
2 form an auxiliary orthonormal

basis in C4n of cardinality 2n × 2n.
One thus sees that |Ψ[U (n)]⟩ is the vector state of a three-partite system consisting of the n qubits,

system I , a copy of the latter, system II , and a copy of the first two, system III . From the projection
P = |Ψ[U (n)]⟩⟨Ψ[U (n)]|, by tracing over the first two systems, respectively over the last one, one obtains
the following marginal states on M[0,n−1] ⊗M[0,n−1],

TrI,II(P ) = ρ[U (n)] (33)

TrIII(P ) =
∑

(k(n)ℓ(n))

Uk(n)ℓ(n) ⊗ 1 |
√
ρ(n)⟩⟨

√
ρ(n)|U †

k(n)ℓ(n) ⊗ 1 = R[U (n)] (34)

Since they are marginal density matrices of a pure state, they have the same von Neumann entropy

S
(
ρ[U (n)]

)
= S

(
R[U (n)]

)
= S(ρ(n)) + n .

Thence, the entropy associated to ω and to the partition of unit U (n), that is ρ[U (n)], is also the entropy
of the state R[U (n)] which results from the action of the POVM {U †

k(n)ℓ(n) ⊗ 1} on the purified state
|
√
ρ(n)⟩⟨

√
ρ(n)|.

5. Quantum Dynamical Entropies and Gács Complexity

In order to extend classical algorithmic complexity theory to the quantum setting, P. Gács [14] started
from the notion of universal probability and its relation to algorithmic complexity embodied by (17).
He introduced the notion of universal semi-density matrix; it goes as follows. First, one defines the
elementary vectors as those n-qubit vector states |Ψ⟩ ∈ C2n that have a representation along a fixed
orthonormal basis {|φj⟩}j in terms of computable coefficients that are algebraic numbers

|Ψ⟩ =
∑
j

CΨ
j |φj⟩ , CΨ

j algebraic numbers (35)

These elementary vectors can thus be encoded by finite binary strings,

|Ψ⟩ ←→ iΨ ∈ Ωp
2 p < +∞ (36)

and characterized by algorithmic complexities K(iΨ) and universal probabilities P(iΨ). Then, one
proceeds to construct the convex combination of all elementary projectors weighted by their universal
probabilities:

D =
∑

Ψ elementary

P(iΨ) |Ψ⟩⟨Ψ| , D = TrD =
∑

Ψ elementary

P(iΨ) ≤ 1 (37)
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The latter inequality states that D is a semi-density matrix for it is not normalized; further, exactly as for
the classical universal probability, D is universal among lower semi-computable semi-density matrices,
those whose entries with respect to the fixed orthonormal basis can be approximated as much as one likes
from below by computable complex numbers. Namely, given a lower semi-computable semi-density
matrix ρ ∈M[0,n−1] there exists a constant C(ρ) ≥ 0 such that

C(ρ) ρ ≤ D , C(ρ) = 2−K(ρ) (38)

where the constant depends only on the classical algorithmic complexity of (the entries of) ρ.
It is suggestive then to introduce the quantum algorithmic complexity as an operator

κq = − logD (39)

and to define the complexity of |ψ⟩ ∈ C2n , called algorithmic entropy in [14] and referred to as Gács
complexity in this paper, as the mean value of the operator complexity with respect to such a state:

GC(ψ) := ⟨ψ|κq|ψ⟩ (40)

A remarkable and simple property that follows from such a definition is that any computable density
matrix ρ has von Neumann entropy that coincides with the mean value with respect to ρ of the operator
complexity:

S(ρ) ≤ S(ρ)− logD ≤ Tr(ρ κq) ≤ S(ρ)− logC(ρ) = S(ρ) +K(ρ) (41)

The first inequality follows from D ≤ 1, the second one is a consequence of the positivity of the relative
entropy

S(ρ1, ρ2) = Tr
(
ρ1(log ρ1 − log ρ2)

)
≥ 0

of any two density matrices ρ1,2 when one chooses ρ1 = ρ and [see (37)] ρ2 = D/D. Finally, the third
inequality comes from the universality of D, that is from (38).

In the following, we shall consider states of varying number n of qubits: the parameter n will always
be considered as an implicit parameter in all the occurrences of Gács complexity.

5.1. Gács Complexity and CNT-Entropy for Quantum Spin Chains

Consider a family of computable local states ρ(n) on M[0,n−1]; the universal semi-density matrix
Dn ∈ M[0,n−1] is a 2n × 2n matrix corresponding to the local sub-algebras; it gives rise to a Gács
operator complexity κ(n)q = − logDn for which

S(ρ(n)) ≤ Tr(ρ(n) κ(n)q ) ≤ S(ρ(n)) +K(ρ(n)) (42)

Therefore, if
K(ρ(n))

n
7−→ 0, a condition holding for computable local states of sufficient regularity, as

for instance for the totally uncorrelated states ρ(n) = ρ⊗n, then

S(ρ(n))

n
≤ Tr(ρ(n) κ

(n)
q )

n
≤ S(ρ(n))

n
+
K(ρ(n))

n
=⇒ lim

n→∞

Tr(ρ(n) κ
(n)
q )

n
= s(ω) (43)
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This equality establishes a relation between the von Neumann entropy rate for a quantum spin chain and
the average Gács algorithmic entropy rate relative to the local density matrices giving rise to the global
translation invariant state ω. However, comparing the above relation with Brudno’s relation (14), one
sees that the latter is a stronger pointwise relation. In the quantum setting, one would like to show that,
for sufficiently large n, GC(ψ) is close to n s(ω) for all states ψ that are, in some precise sense to be
defined, typical for the state ω.

Remark 3. A quantum Brudno’s relation was proved in [16] for an ergodic quantum spin chain and
the quantum complexity of a quantum state ψ, QCδ(ψ), introduced by [13,16] and defined by

QCδ(ψ) = min {ℓ(σ) | ∥|ψ⟩⟨ψ| −M(σ)∥tr ≤ δ} (44)

In the above expression,

1. σ is any density matrix acting on the Hilbert space H[0,1]∗ = lim
n→+∞

n⊕
k=0

Hk, where Hk = C⊗k is

the Hilbert space of k qubits: H[0,1]∗ accommodates classical binary strings of arbitrary length as
quantum states and makes meaningful referring to generic density matrices acting on it as quantum
programs. Furthermore, these density matrices constitute a Banach space T +

1 (H[0,1]∗) under the
so-called trace-distance ∥X∥tr = 1

2
Tr(
√
X†X).

2. ℓ(σ) is the length of quantum programs and is defined by

ℓ(σ) = min
{
n ∈ N |σ ∈ T +

1 (H≤n)
}

(45)

withH≤n =
⊕n

k=0Hk.

3. M is a quantum operation, that is a completely positive map from T +
1 (H[0,1]∗) into itself:

these maps are interpreted as Quantum Turing Machines (see [22] for a detailed mathematical
characterization and a discussion of the halting time in the context of the quantum superposition
principle).

The quantum Brudno relation involving the quantum complexity QCδ has the following form: for any
given δ ≥ 0, there exists a sequence of projections Pn(δ) that are typical with respect to ω, namely such
that limn→+∞ ω(Pn(δ)) = 1. Furthermore, choosing n large enough, one has

1

n
QCδ(ψ) ∈ ( s(ω)− δ(2 + δ)s(ω) , s(ω) + δ) (46)

for all vector states |ψ⟩ such that Pn(δ)|ψ⟩ = |ψ⟩.

We now prove a similar relation for the Gács complexity. The clue is given by the following result
in [14]: for any n-qubit state ψ ∈ (C2)⊗n and δ < 1/2, if QCδ(ψ) ≤ k then

GC(ψ) ≤ k +K(k) + 2n δ + C (47)

where C is a constant independent of ψ.
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Let k = ⌈QCδ(ψ)⌉ be the smallest integer larger than QCδ(ψ) and choose N0 ∈ N such that

1

n
GC(ψ)− s(ω) ≤ 1

n
QCδ(ψ)− s(ω) + 3δ ∀n ≥ N0

In turn, for all ψ in one of the typical subspaces projected out by Pn(δ) as specified in the previous

remark, the relation (46) for QCδ(ψ) gives
1

n
GC(ψ) − s(ω) ≤ 4δ. In order to show that, for n large

enough ∣∣∣∣ 1nGC(ψ)− s(ω)
∣∣∣∣ ≤ 4δ (48)

and hence a full quantum Brudno relation for the Gács complexity, we argue by contradiction.

Suppose that for any N0 one can find n ≥ N0 such that
1

n
GC(ψ) < s(ω)− 4δ. The convexity of the

function log x yields [14] GC(ψ) ≥ − log
(
⟨ψ|Dn|ψ⟩

)
. It thus follows that ⟨ψ|Dn|ψ⟩ > 2−n(s(ω)−4δ),

whence, by taking the trace of Dn with respect to the typical projection Pn(δ),

1 ≥ TrDn ≥ Tr (Pn(δ)Dn) > Tr(Pn(δ)) 2
−n(s(ω)−4δ) (49)

The last step in the proof is based on the following result [23]: for an ergodic quantum spin chain with
von Neumann entropy rate s(ω),

lim
n→+∞

1

n
βϵ,n(ω) = s(ω)

βϵ,n(ω) = min
{
log Tr(P ) |P † = P = P 2 ∈M[0,n−1] , ω(P ) ≥ 1− ϵ

}
, (50)

for any 1 > ϵ > 0. Roughly speaking, the dimension of typical subspaces grows like 2n s(ω). Thus, by
choosing n large enough one can make Tr(Pn(δ)) > 2n(s(ω)−3δ), hence obtaining a contradiction from
inequality (49):

1 ≥ Tr (Pn(δ)Dn) > 2n(s(ω)−3δ) 2−n(s(ω)−4δ) = 2n δ

5.2. Gács Complexity and AF-Entropy for Quantum Spin Chains

We now consider the Gács algorithmic entropy in relation to the AF-entropy that we have seen to
amount to a quantum dynamical entropy that takes into account the measurement processes, these latter
providing quantum symbolic models.

The partition of unit U (n) ∈ M[0,n−1] is computable (all matrix elements are computable algebraic
numbers) with respect to the fixed standard orthonormal basis. Given the computable local states ρ(n),
construct the auxiliary states R[U (n)] ∈ M[0,n−1] ⊗M[0,n−1] and the universal density matrix D̃n ∈
M[0,n−1]⊗M[0,n−1]. Notice that, unlike Dn, this matrix acts on the Hilbert space C4n . The corresponding
operator complexity κ̃(n) = − log D̃n is such that

S
(
R[U (n)]

)
≤ Tr

(
R[U (n)] κ̃(n)q

)
≤ S

(
R[U (n)]

)
+ K

(
R[U (n)]

)
(51)

Thus, if
K(R[U (n)])

n
7−→ 0, a condition also holding for sufficiently regular ρ(n) in view of the structure

of the partitions of unit U (n), one gets

lim sup
n→∞

Tr
(
R[U (n)] κ̃

(n)
q

)
n

= s(ω) + 1 (52)
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Though this is not a quantum Brudno’s relation as in (48), it establishes a connection, not available so
far, between the AF-entropy and the Gács complexity. For a point-wise relation between n(s(ω) + 1)

and ⟨ψ̃|κ̃(n)q |ψ̃⟩, one would need to define the notion of typicality of projectors in M[0,n−1] ⊗M[0,n−1]

with respect to the sequence of auxiliary states R[U (n)] and to prove an estimate of their dimension along
the line of (50).

6. Conclusions

In classical information theory and, more in general, for classical dynamical systems, Brudno’s
theorem establishes a relation between the dynamical information rate of ergodic time-evolutions and
the algorithmic complexity per unit time step of almost all trajectories. In quantum information
theory, classical sources are replaced by quantum spin chains which represent an arena for putting to
test the various non-commutative extensions of both the Kolmogorov–Sinai dynamical entropy and
the Kolmogorov–Solomonoff–Chaitin algorithmic complexity and their possible relations. There is a
relation between the von Neumann entropy rate of quantum spin chains and the Berthiaumme–van
Dam–Laplante quantum algorithmic complexity rate for every pure state in typical subspaces with
respect to ergodic shift-invariant states over the chain. As the von Neumann entropy rate coincides
with the quantum dynamical entropy of the shift along the quantum spin chain as defined by Connes,
Narnhofer and Thirring, the above relation can rightfully be considered as a quantum Brudno’s relation.
No similar relations have so far been proved to exist among any of the other existing proposals. In this
paper, in the case of quantum sources, we have proved a quantum Brudno relation between the quantum
dynamical entropy proposed by Connes, Narnhofer and Thirring and the rate of the algorithmic entropy
of Gács. In the case of the Alicki–Fannes entropy, a first step in setting a link between the latter and
the Gács complexity rate has been provided. For a full quantum Brudno relation new tools have to be
developed, as the quantum symbolic models behind the AF-construction are not even stationary and the
techniques of ergodic quantum spin chains cannot be used directly. Furthermore, should one succeed in
proving a relation to exist between the AF-entropy and the Gács algorithmic entropy rate for pure states
in typical subspaces for quantum spin chains, the next step, also in the case of the CNT-entropy, would
be to move on and consider more general ergodic quantum dynamical systems and face the problem of a
full quantum Brudno’s theorem for non-trivial dynamics.
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