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Abstract: The minimum error entropy (MEE) criterion has been receiving increasing 

attention due to its promising perspectives for applications in signal processing and 

machine learning. In the context of Bayesian estimation, the MEE criterion is concerned 

with the estimation of a certain random variable based on another random variable, so that 

the error’s entropy is minimized. Several theoretical results on this topic have been 

reported. In this work, we present some further results on the MEE estimation. The 

contributions are twofold: (1) we extend a recent result on the minimum entropy of a 

mixture of unimodal and symmetric distributions to a more general case, and prove that if 

the conditional distributions are generalized uniformly dominated (GUD), the dominant 

alignment will be the MEE estimator; (2) we show by examples that the MEE estimator 

(not limited to singular cases) may be non-unique even if the error distribution is restricted 

to zero-mean (unbiased). 
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1. Introduction 

A central concept in information theory is entropy, which is a mathematical measure of the 

uncertainty or the amount of missing information [1]. Entropy has been widely used in many areas, 

including physics, mathematics, communication, economics, signal processing, machine learning, etc. 

The maximum entropy principle is a powerful and widely accepted method for statistical inference or 

probabilistic reasoning with incomplete knowledge of probability distribution [2]. Another important 

entropy principle is the minimum entropy principle, which decreases the uncertainty associated with a 

system. In particular, the minimum error entropy (MEE) criterion can be applied in problems like 

estimation [3–5], identification [6,7], filtering [8–10], and system control [11,12]. In recent years, the 

MEE criterion, together with the nonparametric Renyi entropy estimator, has been successfully used in 

information theoretic learning (ITL) [13–15].  

In the scenario of Bayesian estimation, the MEE criterion aims to minimize the entropy of the 

estimation error, and hence decrease the uncertainty in estimation. Given two random variables: 
nX  , an unknown parameter to be estimated, and mY  , the observation (or measurement), the 

MEE estimation of X based onY can be formulated as: 

 

 

* arg min ( )

    arg min log ( )

    arg min ( ) log ( )
n

g

g

g

g g

g

g H X g Y

E p X g Y

p x p x dx







 

    

  

G

G
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 (1) 

where ( )g Y  denotes an estimator of X  based on Y , g is a measurable function, G  stands for the 

collection of all measurable functions of Y ,  ( )H X g Y  denotes the Shannon entropy of the 

estimation error ( )X g Y , and ( )gp x  denotes the probability density function (PDF) of the estimation 

error. Let ( )p x y be the conditional PDF of X  given Y . Then: 

( ) ( ( ) | ) ( )
m

gp x p x g y y dF y   (2) 

where ( )F y  denotes the distribution function of Y . From (2), one can see the error PDF ( )gp x  is 

actually a mixture of the shifted conditional PDF. 

Different from conventional Bayesian risks, like mean square error (MSE) and risk-sensitive 
cost [16], the “loss function” in MEE is log (.)gp , which is directly related to the error’s PDF, 

transforming nonlinearly the error by its own PDF. Some theoretical aspects of MEE estimation have 

been studied in the literature. In an early work [3], Weidemann and Stear proved that minimizing the 

error entropy is equivalent to minimizing the mutual information between the error and the observation, 

and also proved that the reduced error entropy is upper-bounded by the amount of information 

obtained by the observation. In [17], Janzura et al. proved that, for the case of finite mixtures (Y  is a 

discrete random variable with finite possible values), the MEE estimator equals the conditional median 

provided that the conditional PDFs are conditionally symmetric and unimodal (CSUM). Otahal [18] 

extended Janzura’s results to finite-dimensional Euclidean space. In a recent paper, Chen and 

Geman [19] employed a “function rearrangement” to study the minimum entropy of a mixture of 

CSUM distributions where no restriction on Y  was imposed. More recently, Chen et al. have 
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investigated the robustness, non-uniqueness (for singular cases), sufficient condition, and the 

necessary condition involved in the MEE estimation [20]. Chen et al. have also presented a new 

interpretation on the MSE criterion as a robust MEE criterion [21]. 

In this work, we continue the study on the MEE estimation, and obtain some further results. Our 

contributions are twofold. First, we extend the results of Chen and Geman to a more general case, and 

show that when the conditional PDFs are generalized uniformly dominated (GUD), the MEE estimator 

equals the dominant alignment. Second, we show by examples that, the unbiased MEE estimator (not 

limited to singular cases) may be non-unique, and there can even be infinitely many optimal solutions. 

The rest of the paper is organized as follows. In Section 2, we study the minimum entropy of a mixture 

of generalized uniformly dominated conditional distributions. In Section 3, we present two examples 

to show the non-uniqueness of the unbiased MEE estimation. Finally, we give our conclusions in 

Section 4.  

2. MEE Estimator for Generalized Uniformly Dominated Conditional Distributions  

Before presenting the main theorem of this section, we give the following definitions. 

Definition 1: Let  ( ) : ,n
tf x t  TF  be a set of nonnegative, integrable functions, 

where T denotes an index set (possibly uncountable). Then F  is said to be uniformly dominated in 
nx  if and only if  0,   , there exists a measurable set nD  , satisfying ( )D   and: 

   
: ( )
supt t

A AD A

f x dx f x dx


 
  , t T  (3) 

where   is Lebesgue measure. The set D  is called the  -volume dominant support of F . 

Definition 2: The nonnegative, integrable function set F  is said to be generalized uniformly 

dominated (GUD) in nx  if and only if there exists a function : n T , such that F  is 

uniformly dominated, where: 

    : ( ) ,t t tf f x f x t t 
    TF  (4) 

The function ( )t  is called the dominant alignment of F . 

Remark 1: The dominant alignment is, obviously, non-unique. If ( )t  is a dominant alignment of F , 

then n c , ( )t  c  will also be a dominant alignment of F . 

When regarding y  as an index parameter, the conditional PDF ( )p x y  will represent a set of 

nonnegative and integrable functions, that is: 

 ( ) : ,n mp x y y  P  (5) 

If the above function set is (generalized) uniformly dominated in nx , then we say that the 
conditional PDF ( )p x y  is (generalized) uniformly dominated in nx .  

Remark 2: The GUD is much more general than CSUM. Actually, if the conditional PDF is CSUM, it 

must also be GUD (with the conditional mean as the dominant alignment), but not vice versa. In 



Entropy 2012, 14  

 

 

969

Figure 1 we show two examples where two PDFs (solid and dotted lines) are uniformly dominated but 

not CSUM. 

Figure 1. Uniformly dominated PDFs: (a) non-symmetric, (b) non-unimodal. 
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Theorem 1: Assume the conditional PDF ( )p x y  is generalized uniformly dominated in nx , with 

dominant alignment ( )y . If ( ( ))H X Y  exists (here “exists” means “exists in the extended sense” 

as defined in [19]) then ( ( )) ( ( ))H X Y H X g Y    for all : m ng   for which ( ( ))H X g Y  

also exists. 

Proof of Theorem 1: The proof presented below is similar to that of the Theorem 1 in [19], except that 

the discretization procedure is avoided. In the following, we give a brief sketch of the proof, and 

consider only the case 1n   (the proof can be easily extended to 1n  ). First, one needs to prove the 

following proposition. 

Proposition 1: Assume that the function ( | )f x y , x , my  (not necessarily a conditional PDF) 

satisfies the following conditions: 

(1) non-negative, continuous, and integrable in x  for each my ; 

(2) generalized uniformly dominated in x , with dominant alignment ( )y ; 

(3) uniformly bounded in ( , )x y . 

Then for any : mg  , we have: 

   gH f H f   (6) 

where   ( ) log ( )H f f x f x dx   (here we extend the entropy definition to nonnegative 1L  

functions), and: 

( ) ( ( ) | ) ( )

( ) ( ( ) | ) ( )

m

m

g

f x f x y y dF y

f x f x g y y dF y

   


 




 (7) 
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Remark 3: It is easy to verify that  ( , )supg
x yf dx f dx f x y      (not necessarily 1f dx  ). 

Proof of Proposition 1: The above proposition can be readily proved using the following two lemmas. 

Lemma 1 [19]: Assume the nonnegative function  : 0,h    is bounded, continuous, and integrable, 

and define the function ( )hO z  by (  is Lebesgue measure): 

 ( ) : ( )hO z x h x z   (8) 

Then the following results hold: 

(a) Define  ( ) sup : ( )h
hm x z O z x  ,  0,x  , and (0) sup ( )h

xm h x . Then ( )hm x  is continuous 

and non-increasing on  0, , and ( ) 0hm x   as x  . 

(b) For any function  : 0,G    with  ( )G h x dx    

   
0

( ) ( )hG h x dx G m x dx


   (9) 

(c) For any  0 0,x    

0

0
0 : ( )

( ) sup ( )
x h

AA A x
m x dx h x dx

 
   (10) 

Proof of Lemma 1: See [19].  

Remark 4: Denote fm m
  , and 

gg fm m . Then by Lemma 1, we have ( ) ( )H m H f   and 

( ) ( )g gH m H f  (let ( ) logG x x x  ). Therefore, to prove Proposition 1, it suffices to prove:  

( ) ( ) gH m H m   (11) 

Lemma 2: Functions m and gm satisfy:  

(a) 

0 0
( ) ( )gm x dx m x dx 

     (12) 

(b) 

 
0 0

( ) ( ) ,   0,gm x dx m x dx
         (13) 
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Proof of Lemma 2: (a) comes directly from the fact gf dx f dx    . We only need to prove (b).  

We have: 

 

: ( )

: ( )

: ( )

: ( )

: ( )

sup ( )

sup ( ( ) | ) ( )

sup ( ( ) | ) ( )

sup ( ( ) | ) ( )

( ( ) | ) ( )

( ( ) | ) ( )

sup ( (

m

m

m

m

m

g

AA A

AA A

AA A

AA A

D

D

A A

f x dx

f x g y y dF y dx

f x g y y dxdF y

f x g y y dx dF y

f x y y dx dF y

f x y y dF y dx

f x y





 

 

 

 

 

















 

 

   
 

 

 

 



 

 

 

 
 

: ( )

) | ) ( )

sup ( )

mA

AA A

y dF y dx
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 (14) 

where D  is the  -volume dominant support of ( ( ) | )f x y y . By Lemma 1 (c):  

0 : ( )

0 : ( )

( ) sup ( )

( ) sup ( )

g g

AA A

AA A

m x dx f x dx

m x dx f x dx



 

  

 





 

 


 

 
 (15) 

Thus  0,   , we have
0 0

( ) ( )gm x dx m x dx
    : 

Q.E.D (Lemma 2) 

We are now in position to prove (11): 
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 (16) 

where  .I  denotes the indicator function, and (a) follows from 0x  , log 1x x   , that is: 
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In the above proof, we adopt the convention 0 0  .  

Q.E.D (Proposition 1) 

Now the proof of Proposition 1 has been completed. To finish the proof of Theorem 1, we have to 

remove the conditions of continuity and uniform boundedness imposed in Proposition 1. This can be 
easily accomplished by approximating ( | )p x y  by a sequence of functions  ( | )nf x y , 1, 2,n   , 

which satisfy these conditions. The remaining proof is omitted here, since it is exactly the same as the 

last part of the proof for Theorem 1 in [19]. 

Q.E.D. (Theorem 1) 

Example 1: Consider an additive noise model: 

 X Y    (18) 

where   is an additive noise that is independent of Y . In this case, we have    | ( )p x y p x y   , 

where (.)p  denotes the noise PDF. It is clear that  |p x y  is generalized uniformly dominated, with 

dominant alignment ( ) ( )y y  . According to Theorem 1, we have    ( ) ( )H X Y H X g Y   . In 

fact, this result can also be proved by: 

   

  
 

( )

( )

      ( ) ( )

      ( )

b

H X Y H

H Y g Y

H X g Y

 

 

 

  

 

 (19) 

where (b) comes from the fact that   and  ( ) ( )Y g Y   are independent (For independent random 

variables X  and Y , the inequality  ( ) max ( ), ( )H X Y H X H Y   holds). In this example, the 

conditional PDF  |p x y  is, obviously, not necessarily CSUM.  

Example 2: Suppose the joint PDF of random variables X , Y  ( ,X Y  ) is:  

   , exp 1 exp( )p x y x y   (20) 

where 0y  ,  exp( ) 1x y  . Then the conditional PDF  p x y  will be: 
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exp 1 exp( )

          exp 1 exp( )

y
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p x y

p y

x y

x y dx

x y y












  


 (21) 

One can easily verify that the above conditional PDF is non-symmetric but generalized uniformly 
dominated, with dominant alignment ( ) exp( )y y    (the ε-volume dominant support of 

( ( ) | )p x y y  is  0,D  ). By Theorem 1, the function exp( )y  is the minimizer of error entropy. 

3. Non-Uniqueness of Unbiased MEE Estimation 

Because entropy is shift-invariant, the MEE estimator is obviously non-unique. In practical 

applications, in order to yield a unique solution, or to meet the desire for small error values, the 

MEE estimator is usually restricted to be unbiased, that is, the estimation error is restricted to be  

zero-mean [15]. The question of interest in this paper is whether the unbiased MEE estimator is unique. 

In [20], it has been shown that, for the singular case (in which the error entropy approaches minus 

infinity), the unbiased MEE estimation may yield non-unique (even infinitely many) solutions. In the 

following, we present two examples to show that this result still holds even for nonsingular case.  

Example 3: Let the joint PDF of X  and Y  ( ,X Y  ) be a mixed-Gaussian density [20]: 

   
 

 
 

2 2 2 2

2 22

2 ( ) ( ) 2 ( ) ( )1
, exp exp

2 1 2 14 1

y y x x y y x x
p x y

     

  

                      
          

 (22) 

where 0  , 0 1  . The conditional PDF of X  given Y  will be: 

 
 

 
 

 
 

2 2

2 22

1
exp exp

2 1 2 12 2 1

x y x y
p x y

   
  

                         
 (23) 

y  ,  |p x y  is symmetric around zero (but not unimodal in x). It can be shown that for some 

values of  ,  , the MEE estimator of X  based on Y  does not equal zero (see [20], Example 3). In 

these cases, the MEE estimator will be non-unique, even if the error’s PDF is restricted to zero-mean 

(unbiased) distribution. This can be proved as follows:  
Let *g  be an unbiased MEE estimator of X  based on Y . Then *g  will also be an unbiased MEE 

estimator, because: 
*

*

*

( )
*

( ) ( ( ) | ) ( )

          ( ( ) | ) ( )

          ( )

g

c

g

p x p x g y y dF y

p x g y y dF y

p x

 

  

 



  (24) 

where (c) comes from the fact that  |p x y  is symmetric around zero, and further:  
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H p p x p x dx
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 (25) 

If the unbiased MEE estimator is unique, then we have * * * 0g g g    , which contradicts the fact 

that *g  does not equal zero. Therefore, the unbiased MEE estimator must be non-unique. Obviously, 

the above result can be extended to more general cases. In fact, we have the following proposition.  

Proposition2: The unbiased MEE estimator will be non-unique if the conditional PDF  |p x y  satisfies:  

(1) Symmetric in nx  around the conditional mean ( )y E X Y y       for each my ; 

(2) There exists a function : m n   such that ( ) ( )Y Y  ,    ( ) ( )H X Y H X Y    . 

Proof: Similar to the proof presented above (Omitted). 

In the next example, we show that, for some particular situations, there can be even infinitely many 

unbiased MEE estimators. 

Example 4: Suppose Y is a discrete random variable with Bernoulli distribution: 

Pr( 0) Pr( 1) 0.5Y Y     (26) 

The conditional PDF of X  given Y  is (see Figure 2): 

 
1

    
0 2

0      

if x a
p x Y a

other

   


 

 
1 1

    
1 2

0      

if x a
p x Y a

other

   


 

where 0a  . Note that the above conditional PDF is uniformly dominated in x . 

Figure 2. Conditional PDF of X givenY : (a) ( | 0)p x Y  , (b) ( | 1)p x Y  . 
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Given an estimator ˆ ( )X g Y , the error’s PDF will be:  

    1
( ) (0) 0 (1) 1

2
gp x p x g Y p x g Y       (27) 

Let g be an unbiased estimator, then ( ) 0gxp x dx



 , and hence (0) (1)g g  . In the following, we 

assume (0) 0g   (due to symmetry, one can obtain similar results for (0) 0g  ), and consider three cases: 

Case 1: 
1

0 (0)
4

g a  . In this case, the error PDF is: 

1
,       (0) (0)

4 2
3

( ) ,         (0) (0)
4 2 2
1

,            (0) (0)
4 2

g

a
a g x g

a
a a

p x g x g
a

a
g x a g

a

      

     

    

 (28) 

Then the error entropy can be calculated as: 

     3
( ) log 3 log 4

4
gH p x a    (29) 

Case 2: 
1 3

(0)
4 4

a g a  . In this case, we have: 

1
,       (0) (0)

4 2
3

( ) ,         (0) (0)
4 2
1

,            (0) (0)
2 2

g

a
a g x g

a
a

p x g x a g
a

a
a g x g

a

      

     

    

 (30) 

And hence: 

       9 3 (0) 1 (0)
( ) log 3 log 2 log 4

8 2 4
g g g

H p x a
a a

           
   

 (31) 

Case 3: 
3

(0)
4

g a . In this case:  

1
,       (0) (0)

4( )
1

,      (0) (0)
2 2 2

g

a g x a g
ap x

a a
g x g

a

      
     


 (32) 

Thus: 

     1
( ) log 2 log 4

2
gH p x a    (33) 
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One can easily verify that the error entropy achieves its minimum value when 0 (0) 4g a   (the 

first case). There are, therefore, infinitely many unbiased estimators that minimize the error entropy.  

4. Conclusion 

Two issues involved in the minimum error entropy (MEE) estimation have been studied in this 

work. The first issue is about which estimator minimizes the error entropy. In general there is no 

explicit expression for the MEE estimator unless some constraints on the conditional distribution are 

imposed. In the past, several researchers have shown that, if the conditional density is conditionally 

symmetric and unimodal (CSUM), then the conditional mean (or median) will be the MEE estimator. 

We extend these results to a more general case, and show that if the conditional densities are 

generalized uniformly dominated (GUD), then the dominant alignment will minimize the error 

entropy. The second issue is about the non-uniqueness of the unbiased MEE estimation. It has been 

shown in a recent paper that for the singular case (in which the error entropy approaches minus 

infinity), the unbiased MEE estimation may yield non-unique (even infinitely many) solutions. In this 

work, we show by examples that this result still holds even for nonsingular case.  
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