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Abstract: In this paper we examine an Information-Theoretic method for solving noisy 
linear inverse estimation problems which encompasses under a single framework a whole 
class of estimation methods. Under this framework, the prior information about the 
unknown parameters (when such information exists), and constraints on the parameters can 
be incorporated in the statement of the problem. The method builds on the basics of the 
maximum entropy principle and consists of transforming the original problem into an 
estimation of a probability density on an appropriate space naturally associated with the 
statement of the problem. This estimation method is generic in the sense that it provides a 
framework for analyzing non-normal models, it is easy to implement and is suitable for all 
types of inverse problems such as small and or ill-conditioned, noisy data. First order 
approximation, large sample properties and convergence in distribution are developed as 
well. Analytical examples, statistics for model comparisons and evaluations, that are 
inherent to this method, are discussed and complemented with explicit examples. 
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1. Introduction 

Researchers in all disciplines are often faced with small and/or ill-conditioned data. Unless much is 
known, or assumed, about the underlying process generating these data (the signal and the noise) these 
types of data lead to ill-posed noisy (inverse) problems. Traditionally, these types of problems are 
solved by using parametric and semi-parametric estimators such as the least squares, regularization and 
non-likelihood methods. In this work, we propose a semi-parametric information theoretic method for 
solving these problems while allowing the researcher to impose prior knowledge in a non-Bayesian 
way. The model developed here provides a major extension of the Generalized Maximum Entropy 
model of Golan, Judge and Miller [1] and provides new statistical results of estimators discussed in 
Gzyl and Velásquez [2].  

The overall purpose of this paper is fourfold. First, we develop a generic information theoretic 
method for solving linear, noisy inverse problems that uses minimal distributional assumptions. This 
method is generic in the sense that it provides a framework for analyzing non-normal models and it 
allows the user to incorporate prior knowledge in a non-Bayesian way. Second, we provide detailed 
analytic solutions for a number of possible priors. Third, using the concentrated (unconstrained) 
model, we are able to compare our estimator to other estimators, such as the Least Squares, 
regularization and Bayesian methods. Our proposed model is easy to apply and suitable for analyzing a 
whole class of linear inverse problems across the natural and social sciences. Fourth, we provide the 
large sample properties of our estimator.  

To achieve our goals, we build on the current Information-Theoretic (IT) literature that is founded 
on the basis of the Maximum Entropy (ME) principle (Jaynes [3,4]) and on Shannon’s [5] information 
measure (entropy) as well as other generalized entropy measures. To understand the relationship 
between the familiar linear statistical model and the approach we take here, we now briefly define our 
basic problem, discuss its traditional solution and provide the basic logic and related literature we use 
here in order to solve that problem such that our objectives are achieved. 

Consider the basic (linear) problem of estimating the K-dimensional location parameter vector 
(signal, input) ��given an N-dimensional observed sample (response) vector y and an N K�  design 
(transfer) matrix X such that y = X� + � and � is an N-dimensional random vector such that E[�] = 0 
and with some positive definite covariance matrix with a scale parameter 2.�  The statistical nature of 
the unobserved noise term is supposed to be known, and we suppose that the second moments of the 
noise are finite. The researcher’s objective is to estimate the unknown vector � with minimal 
assumptions on �. Recall that under the traditional regularity conditions for the linear model (and for X 
of rank K), the least squares, (LS), unconstrained, estimator is � � 1ˆ t t

LS

	

� X X X y  and 

� �� �12ˆ , t
LS �

	
� � X X  where “t” stands for transpose.  

Consider now the problem of estimating � and � simultaneously while imposing minimal 
assumptions on the likelihood structure and while incorporating certain constraints on the signal and 
perhaps on the noise. Further, rather than following the tradition of employing point estimators, 
consider estimating the empirical distribution of the unknown quantities k�  and n�  with the joint 
objectives of maximizing the in-and-out of sample prediction.  
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With these objectives, the problem is inherently under-determined and cannot be solved with the 
traditional least squares or likelihood approaches. Therefore, one must resort to a different principle.  
In the work done here, we follow the Maximum Entropy (ME) principle that was developed by  
Jaynes [3,4] for similar problems. The classical ME method consists of using a variational method to 
choose a probability distribution from a class of probability distributions having pre-assigned 
generalized moments.  

In more general terms, consider the problem of estimating an unknown discrete probability 
distribution from a finite and possibly noisy set of observed generalized (sample) moments, that is, 
arbitrary functions of the data. These moments (and the fact that the distribution is proper) are 
supposed to be the only available information. Regardless of the level of noise in these observed 
moments, if the dimension of the unknown distribution is larger than the number of observed 
moments, there are infinitely many proper probability distributions satisfying this information. Such a 
problem is called an under-determined problem. Which one of the infinitely many solutions that satisfy 
the data should one choose? Within the class of information-theoretic (IT) methods, the chosen 
solution is the one that maximizes an information criterion-entropy. Procedure that we propose below 
to solve the estimation problem described above, fits in that framework. 

We construct our proposed estimator for solving the noisy, inverse, linear problem in two basic 
steps. In our first step, each unknown parameter ( k�  and n� ) is constructed as the expected value of a 
certain random variable. That is, we view the possible values of the unknown parameters as values of 
random variables whose distributions are to be determined. We will assume that the range of each such 
random variable contains the true unknown value of k�  and n�  respectively. This step actually 
involves two specifications. The first one is the pre-specified support space for the two sets of 
parameters (finite/infinite and/or bounded/unbounded). At the outset of section two we shall do this as 
part of the mathematical statement of the problem. Any further information we may have about the 
parameters is incorporated into the choice of a prior (reference) measure on these supports. Since 
usually a model for the noise is supposed to be known, the statistical nature of the noise is incorporated 
at this stage. As far as the signal goes, this is an auxiliary construction. This constitutes our second 
specification. 

In our second step, because minimal assumptions on the likelihood implies that such a problem  
is under-determined, we resort to the ME principle. This means that we need to convert this  
under-determined problem to a well-posed, constrained optimization. Similar to the classical ME 
method the objective function in that constrained optimization problem is composed of N K�  entropy 
functions: one for each one of the N K�  proper probability distributions (one for each signal k�  and 
one for each noise component n� ). The constraints are just the observed information (data) and the 
requirement that all probability distributions are proper. Maximizing (simultaneously) the N K�  
entropies subject to the constraints yields the desired solution. This optimization yields a unique 
solution in terms of a unique set of proper probability distribution which in turn yields the desired 
point estimates k�  and n� . Once the constrained model is solved, we construct the concentrated 
(unconstrained) model. In the method proposed here, we also allow introduction of different priors 
corresponding to one’s beliefs about the data generating process and the structure of the unknown �’s.  

Our proposed estimator is a member of the IT family of estimators. The members of this family of 
estimators include the Empirical Likelihood (EL), the Generalized EL (GEL), the Generalized Method 
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of Moments (GMM), the Bayesian Method of Moments, (BMOM), the Generalized Maximum 
Entropy (GME), and the Maximum Entropy in the Mean (MEM), and are all related to the classical 
Maximum Entropy, ME. (e.g., Owen [6,7]; Qin and Lawless [8]; Smit, [9]; Newey and Smith [10]; 
Kitamura and Stutzer [11]; Imbens et al. [12]; Zellner [13,14]; Zellner and Tobias [15]; Golan, Judge 
and Miller [1]; Gamboa and Gassiat [16]; Gzyl [17]; Golan and Gzyl [18]). See also Gzyl and 
Velásquez [2], which builds upon Golan and Gzyl [18] where the synthesis was first proposed. If, in 
addition, the data are ill-conditioned, one often has to resort to the class of regularization methods 
(e.g., Hoerl and Kennard [19] O’Sullivan [20], Breiman [21], Tibshirani [22], Titterington [23], 
Donoho et al. [24]; Besnerais et al. [25]. A reference for regularization in statistics is Bickel and Li [26]. 
If some prior information on the data generation process or on the model is available, Bayesian 
methods are often used. For a detailed review and synthesis of the IT family of estimators, historical 
perspective and synthesis, see Golan [27]. For other background and related entropy and IT methods of 
estimation see the special volume of Advances in Econometrics (Fomby and Hill [28]) and the two 
special issues of the Journal of Econometrics [29,30]. For additional mathematical background see 
Mynbaev [31] and Asher, Borchers and Thurber [32]. 

Our proposed generic IT method will provide us with an estimator for the parameters of the linear 
statistical model that reconciles some of the objectives achieved by each one of the above methods. 
Like the philosophy behind the EL, we do not assume a pre-specified likelihood, but rather recover the 
(natural) weight of each observation via the optimization procedure (e.g., Owen [7]; Qin and Lawless [8]). 
Similar to regularization methods used for ill-behaved data, we follow the GME logic and use here the 
pre-specified support space for each one of the unknown parameters as a form of regularization  
(e.g., Golan, Judge and Miller [1]). The estimated parameters must fall within that space. However, 
unlike the GME, our method allows for infinitely large support spaces and continuous prior 
distributions. Like Bayesian approaches, we do use prior information. But we use these priors in a 
different way—in a way consistent with the basics of information theory and in line with the  
Kullback–Liebler entropy discrepancy measure. In that way, we are able to combine ideas from the 
different methods described above that together yield an efficient and consistent IT estimator that is 
statistically and computationally efficient and easy to apply. 

In Section 2, we lay out the basic formulation and then develop our basic model. In Section 3, we 
provide a detailed closed form examples of the normal priors’ case and other priors. In Section 4 we 
develop the basic statistical properties of our estimator including first order approximation. In Section 5, 
we compare our method with Least Squares, regularization and Bayesian methods, including the 
Bayesian Method of Moments. The comparisons are done under the normal priors. An additional set of 
analytical examples, providing the formulation and solution of four basic priors (bounded, unbounded 
and a combination of both) is developed in Section 6. In Section 7, we comment on model comparison. 
We provide detailed closed form formulations for that section in an Appendix. We conclude in Section 8. 
The Appendices provide the proofs and detailed analytical formulations. 
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2. Problem Statement and Solution  

2.1. Notation and Problem Statement 

Consider the linear statistical model  

y = X��+ ��  (1)  

where K�� �  is an unknown K-dimensional signal vector that cannot be directly measured but is 
required to satisfy some convex constraints expressed as sC��  where sC  is a closed convex set. For 
example,  [ , ]; 1,..., }K

ks k kC z z k K�
 � � 
��  with constants k kz z� . (These constraints may come 

from constraints on 
� �

k�
k

E y
x

�



�
, and may have a natural reason for being imposed). X is an N K�  

known linear operator (design matrix) that can be either fixed or stochastic, N�y �  is a vector of 
noisy observations, and N�� � is a noise vector. Throughout this paper we assume that the 
components of the noise vector �  are i.i.d. random variables with zero mean and a variance 2�  with 
respect to a probability law � �ndQ v  on .N�  We denote by Qs and Qn the prior probability measures 

reflecting our knowledge about ��and � respectively.  
Given the indirect noisy observations y, our objective is to simultaneously recover * K�� �  and the 

residuals * N�� �  so that Equation (1) holds. For that, we convert problem (1) into a generalized 
moment problem and consider the estimated � and � as expected values of random variables z and v 
with respect to an unknown probability law P. Note that z is an auxiliary random variable whereas v is 
the actual model for the noise perturbing the measurements. Formally: 

Assumption 2.1. The range of z is the constraint set sC  embodying the constraints that the unknown � 
is to satisfy. Similarly, we assume that the range of v is a closed convex set nC  where “s” and “n” 
stand for signal and noise respectively. Unless otherwise specified, and in line with tradition, it is 
assumed that v is symmetric about zero. 

Comment. It is reasonable to assume that nC  is convex and symmetric in N� . Further, in some cases 
the researcher may know the statistical model of the noise. In that case, this model should be used. As 
stated earlier, Qs and Qn are the prior probability measures for ��and � respectively. To ensure that the 
expected values of z and v fall in s nC C C
 �  we need the following assumption. 

Assumption 2.2. The closures of the convex hulls of the supports of Qs and Qn are respectively Cs and 
Cn and we set dQ = dQs � dQn.  

Comment. This assumption implies that for any strictly positive density �(z,v) we have: 

( , ) ( ) ( ) and ( , ) ( ) ( )s n s s n ndQ dQ C dQ dQ C� �� �� �z z v z v v z v z v  

To solve problems like (1) with minimal assumptions one has to (i) incorporate some prior 
knowledge, or constraints, on the solution, or (ii) specify a certain criterion to choose among the infinitely 
many solutions, or (iii) use both approaches. The different criteria used within the IT methods are all 
directly related to the Shannon’s information (entropy) criterion (Golan [33]). The criterion used in the 

sC��
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method developed and discussed here is the Shannon’s entropy. For a detailed discussion and further 
background see for example the two special issues of the Journal of Econometrics [29,30].  

2.2. The Solution  

In what follows we explain how to transform the original linear problem into a generalized moment 
problem, or how to transform any constrained linear model like (1) into a problem consisting of 
finding an unknown density. 

Instead of searching directly for the point estimates (�, ��t we view it as the expected value of 
auxiliary random variables (z, v)t that take values in the convex set Cs�Cn distributed according to 
some unknown auxiliary probability law � �,dP z v . Thus: 

 (2) 

where EP denotes the expected value with respect to P. 
To obtain P, we introduce the reference measure � � � � � �, s ndQ dQ dQ
z v z v  on the Borel subsets of 

the product space .s nC C C
 �  Again, note that while C is binding, Qs describes one’s own 

belief/knowledge on the unknown �, whereas Qn describes the actual model for �. With the above 
specification, problem (1) becomes: 

Problem (1) restated: We search for a density � �,� z v  such that dP dQ�
  is a probability law on C 
and the linear relations: 

 (3) 

are satisfied, where:  

� � � � � �, ,P C
E dQ�
 �z z z v z v  and � � � � � �, , .P C

E dQ�
 �v v z v z v  

Under this construction, � �*
*

P
E
� z  is a random estimator of the unknown parameter vector � and 

� �*
*

P
E
� v  is an estimator of the noise. 

Comment. Using � � � � � �, s ndQ dQ dQ
z v z v  amounts to assuming an a priori independence of signal 
and noise. This is a natural assumption as the signal part is a mathematical artifact and the noise part is 
the actual model of the randomness/noise.  

There are potentially many candidates �'s that satisfy (3). To find one (the least informative one 
given the data), we set up the following variational problem: Find � �* ,� z v  that maximizes the entropy 
functional, � �QS � defined by: 

 (4) 

on the following admissible class of densities: 

���� � ��	 � 
 �������� � ��� ��������������������������������� ��!�" (5) 

PE
� �� � � �


 � �� � � �
� � � �� �

� z
� v

� � � �P PE E
  y X z v

� � � � � � � �, , ,Q C
S ln dQ� � �
 	� z v z v z v
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where “ln” stands for the natural logarithm. As usual we extend xlnx  as 0 to 0x 
 . If the maximization 
problem has a solution, the estimates satisfy the constraints and Equations (1) or (3). The familiar and 
classical answer to the problem of finding such a *�  is expressed in the following lemma. 
Lemma 2.1. Assume that � is any positive density with respect to dQ and that ln� is integrable with 
respect to dP = �dQ, then SQ(P) < 0. 

Proof. By the concavity of the logarithm and Jensen’s inequality it is immediate to verify that: 

 (6) 

Before applying this result to our model, we define A=[X I] as an � �N K N�   matrix obtained 
from juxtaposing X and the N N� identity matrix I. We now work with the matrix A which allows us 
to consider the larger space rather than just the more traditional moment space. This is shown and 
discussed explicitly in the examples and derivations of Sections 4–6. For practical purposes, when 
facing a relatively small sample, the researcher may prefer working with A, rather than with the 
sample moments. This is because for finite sample the total information captured by using A is larger 
than when using the sample’s moments. 

To apply lemma (1) to our model, let � be any member of the exponential (parametric) family:  

 (7) 

where � �, tt 
� z v , ,a b  denotes the Euclidean scalar (inner) product of vectors a and b, and N�� �  
are N free parameters that will play the role of Lagrange multipliers (one multiplier for each 
observation). The quantity � �! �  is the normalization function: 

 (8) 

where:  

� � � � � �( ) exp , exp , exp , ( ) ( )
s n

s s n n s s n nC C C
dQ dQ dQ" # # # # " # " #
 	 
 	 	 
� � �� � z z v v  

is the Laplace transform of Q. Next taking logs in (7) and defining: 

 (9) 

Lemma 2.1 implies that � � � �QS$ �%&  for any N�� � and for any � in the class of probability 

laws � �P C  defined in (5). However, the problem is that we do not know whether the solution

� �* , ,� � z v  is a member of � �P C  for some $. Therefore, we search for *�  such that � �* *� �
 �  is in 

� �P C  and *�  is a minimum. If such a *�  is found, then we would have found a density (the unique 

one, for QS  is strictly convex in �) that maximizes the entropy, and by using the fact that � �*
*

P
E
� z  

and � �*
*

P
E
� v , the solution to (1), which is consistent with the data (3), is found. Formally, the result 

is contained in the following theorem. (Note that the Kullback’s measure (Kullback [34]), is a 
particular case of SQ(P), with a sign change and when both P and Q have densities). 

( ) 0Q P P P
dP dQ dQS P E ln E ln lnE
dQ dP dP

� �� � � � � �� � � �
 	 
 ' 
� �� � � � � �� � � �� � � �� � � �� �� �

� � � � � �1, , exp ,	
 ! 	� z v � � A��

� � � �exp , ( )t

C
dQ "! 
 	 
�� � A� � A �

� � � � ,ln
 !  & � � � y
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Theorem 2.1. Assume that � � � � (ND ! 
 � ! � )� ��  has a non-empty interior and that the 

minimum of the (convex) function � �& �  is achieved at *� . Then, � � � � � �* * ,dP dQ�
� � � �  satisfies 

the set of constrains (3) or (1) and maximizes the entropy. 

Proof. Consider the gradient of � �& �  at *� . The equation to be solved to determine *�  is 

� �ln ,	* ! 
� � y  which coincides with Equation (3) when the gradient is written out explicitly. 

Note that this is equivalent to minimizing (9) which is the concentrated likelihood-entropy function. 
Notice as well that � � � �* * .QS �
& �

 
Comment. This theorem is practically equivalent to representing the estimator in terms of the 
estimating equations. Estimation equations (or functions) are the underlying equations from which the 
roots or solutions are derived. The logic for using these equations is (i) they have simpler form  
(e.g., a linear form for the LS estimator) than their roots, and (ii) they preserve the sampling properties 
of their roots (Durbin, [35]). To see the direct relationship between estimation equations and the 
dual/concentrated model (extremum estimator), note that the estimation equations are the first order 
conditions of the respective extremum problem. The choice of estimation equations is appropriate 
whenever the first order conditions characterize the global solution to the (extremum) optimization 
problem, which is the case in the model discussed here. 

Theorem 2.1 can be summarized as follows: in order to determine � and � from (1), it is easier to 
transform the algebraic problem into the problem of obtaining a minimum of the convex function 

� �,& �  and then use � �*
*

P
E
� z  and � �*

*
P

E
� v to compute the estimates *� and *� . The above 

procedure is designed in such a way that *
sC��  is automatically satisfied. Since the actual 

measurement noise is unknown, it is treated as a quantity to be determined, and treated 
(mathematically) as if both � and � were unknown. The interpretations of the reconstructed residual *�  
and the reconstructed *� , are different. The latter is the unknown parameter vector we are after while 
the former is the residual (reconstructed error) such that the linear Equation (1), *
  y X �

+

� , is 
satisfied. With that background, we now discuss the basic properties of our model. For a detailed 
comparison of a large number of IT estimation methods see Golan ([27–33]) and the nice text of 
Mittelhammer, Judge and Miller [36]  

3. Closed Form Examples 

With the above formulation, we now turn to a number of relatively simple analytical examples. 
These examples demonstrate the advantages of our method and its simplicity. In Section 6 we provide 
additional closed form examples. 

3.1. Normal Priors 

In this example the index d takes the possible values (dimensions) K, N, or K+N depending if it 
relates to sC  (or z), to nC  (or v) or to both. Assume the reference prior dQ is a normal random vector 
with d d�  [i.e., K K� , N N�  or � � � �N K N K �  ] covariance matrix D, the law of which has 
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density � � � � � � � �2 1 2 0 1 02 det exp , 2d D, 	 	 		 	 	D c c c c  where 
0

0
0

� �

 � �� �
� �

z
c

v
 is the vector of prior means 

and is specified by the researcher. Next, we define the Laplace transform, "(�), of the normal prior. 
This transform involves the diagonal covariance matrix for the noise and signal models: 

 (10) 

Since � � 0, 2 , ,ln" 
  � � D� � c  then replacing �  by either tX �  or by � , (for the noise vector) 

verifies that � �! �  turns out to be of a quadratic form, and therefore the problem of minimizing � �- �  

is just a quadratic minimization problem. In this case, no bounds are specified on the parameters. 
Instead, normal priors are used.  

From (10) we get the concentrated model: 

 (11) 

with a minimum at *� � satisfying: 

 (12) 

If #M  denotes the generalized inverse of ,t
M ADA  then � �* # 0
 	 	� M y Ac  and therefore: 

 (13) 

For the general case A = [X I] and: 

� �
� �

1

2

s s

n n

Cov Q
Cov Q

� � � � � �
. .� � � � � �

� �� �� �

0 D 0 D 0
D =

0 0 D 0 D
, 

the generalized entropy solution for the traditional linear model is: 
t t

s n
  ADA XD X D  

so: 

� � � �
*

1 *
0 0* ,* *

t
P P

E E 	� �� �

 
 
  	 
� �� �

� � � �

z �
� c DA M y Ac �

v �
 

and finally: 

 (14) 

Here B = � �0	y Ac . See Appendix 2 for a detailed derivation. 

3.2. Discrete Uniform Priors — A GME Model 

Consider now the uniform priors, which is basically the GME method (Golan, Judge and Miller [1]). 
Jaynes’s classical ME estimator (Jaynes [3,4]) is a special case of the GME. Let the components of z 
take discrete values, and let 1 ( ){ ,..., }k

s k kM kC z z
  for 1 .k K' '  Note that we allow for the cardinality of 

� �  (0exp , 2 , ." 
  � � D� � c

� � � � � �0, , 2 ,tln
 !  
  	& � � � y � ADA � � y Ac

� �* * 0t. 
 	 	M� ADA � y Ac

� �0 * 0 # 0 .t t
  
 	 	c DA c DA M y Ac+� $

* 0 1
1

* 0 1
2 .

t 	

	


  


  

� z D X M B
� v D M B
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each of these sets to vary. Next, define 1 ... K
s s sC C C
 � � . A similar construction may be proposed for 

the noise terms, namely we put 1 ... N
n n nC C C
 � � . Since the spaces are discrete, the information is 

described by the obvious �-algebras and both the prior and post-data measures will be discrete. As a 
prior on the signal space, we may consider: 

1 1 1, , ( )1

1
1, , ( ) 1, , ( )( ,..., ) ( )... ( ) ...

k K M K

K s s
s k K M K s k s K M KQ z z Q z Q z q q
 
 ,  

where a similar expression may be specified for the priors on Cn. Finally, we get: 
( )

11

( ) j jk
M jK

z
s jk

kj

e q#" 	





� �

 � �

� �
&/� ,  

together with a similar expression for the Laplace transform of the noise prior. Notice that since the 
noise and signal are independent in the priors, this is also true for the post-data, so: 

* *, ,( , ) ( , ) ( , ) ( , ) ( ) ( ) s n
s n jn lm

jn lm

P Q e Q P P p p� 	 	

 
 
 
/ /� Xz � vz v z v z v z v z v . 

Finally, � �*
sP

E
� z  and � �*
nP

E
� z . For detailed derivations and discussion of the GME see Golan, 

Judge and Miller [1].  

3.3. Signal and Noise Bounded Above and Below  

Consider the case in which both � and � are bounded above and below. This time we place a 

Bernoulli measure on the constraint space Cs and the noise space Cn. Let
1

[ , ]
K

s j j
j

C a b




/ and  

Cn =
1

[ , ]
N

l

e e



	/ for the signal and noise bounds ,j ja b  and e respectively. The Bernoulli a priori 

measure on s nC C C
 � is:

� �
1 1 1 1

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
2 2j j

K N K N

j j l l j a j j b j e l e l
j l j l

dQ dQ z dQ v p dz q dz dv dv0 0 0 0	

 
 
 


� �
 
   � �
� �

/ / / /�  

where � �c dz0  denotes the (Dirac) unit point mass at some point c. Recalling that � �,
A X I  we now 

compute the Laplace transform "(t) of Q, which in turn yields !($)="(AT$): 

� � � � � �T T( ) ( )

1 1

1e e e e .
2

j j j j j j
K N

a b e e
j j

j j

p q	 	 	


 


! 
   / /X � X �� $ $  

The concentrated entropy function is: 

� � � � � � � �T T( ) ( )

1 1

1ln , ln e e ln e e ,
2

j j j j j j
K N

a b e e
j j

j j
p q $ $	 	 	


 



 !  
     & & &X � X �� � � y � y . 
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The minimizer of this function is the Lagrange multiplier vector *� . Once it has been found, then 
� � T *

* ln s" 


 	*t � X �

� �  and � � *

* ln n" 


 	*� � �

� t . Explicitly:  

� �* ln l l l lt a t b
j l l j j j j

j

p e q e a P b Q
t

� 	 	�

  
  
� &  

where: 

� �/j j j j j jt a t a t b
j j j jP p e p e q e	 	 	
   and � �/j j j j j jt b t a t b

j j j jQ q e p e q e	 	 	
   

and � �*T
� X � . Similarly: 

*
l l l leP e Q� 
 	  ��  

where:  

� �* * *

/l l le e e
lP e e e	 	
  � $ $ $  and � �* * *

/l l le e e
lQ e e e	
  � $ $ $ .  

These are respectively the Maximum Entropy probabilities that the auxiliary random variables zj 
will attain the values aj or bj, or the auxiliary random variables vl describing the error terms attain the 
values ±e. These can be also obtained as the expected values of v and z with respect to the post-data 
measure P*($,d1) given by: 

P*($,d1) = � � � �j j l l
1 1

(dz ) (dz ) (dv ) (dv ) .
j j

K N

j a j a l e l e
j l

P Q P Q	

 


  / / ��0 0 0 0  

Note that this model is the continuous version of the discrete GME model described earlier. 

4. Main Results 

4.1. Large Sample Properties 

In this section we develop the basic statistical results. In order to develop these results for our 
generic IT estimator, we needed to employ tools that are different than the standard tools used for 
developing asymptotic theories (e.g., Mynbaev [31] or in Mittelhammer et al. [36]).  

4.1.1. Notations and First Order Approximation 

Denote by *
N�  the estimator of the true �  when the sample size is N. Throughout this section we 

add a subscript N to all quantities introduced in Section 2 to remind us that the size of the data set is N. 
We want to show that *

N 2� �  and � � � �* ,NN N2� � 0 V	  as N 2)  in some appropriate way (for 
some covariance V�. We state here the basic notations, assumptions and results and leave the details to 
the Appendix. The problem is that when N varies, we are dealing with problems of different sizes 
(recall $ is of dimension N in our generic model). To turn all problems to the same size let: 

 (15) 
1 1 1 1: .t t t t

N N N N N N N N N NX y X X X W X
N N N N


 
  
  y � � � ��
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The modified data vector and the modified error terms are K-dimensional (moment) vectors, and the 
modified design matrix is a K�K-matrix. Problem (15), call it the moment, or the stochastic moment, 
problem, can be solved using the above generic IT approach which reduces to minimizing the modified 
concentrated (dual) entropy function: 

( ) ln ( ) ,N N N- 
 !  � 3� � y ��� �  

where K�� �  and 1( ) ( ).N N NX
N

! 
 !� ��
 

Assumption 4.1. Assume that there exits an invertible K K�  symmetric and positive definite matrix 

W such that 1: .t
N N NW X X W

N

 2  More precisely, assume that || || (1/ )NW W o N	 
  as N 2) . 

Assume as well that for any N-vector v, as N 2) 1 || || (1 / )t
NX o N

N

v .  

Recall that in finite dimensions all norms are equivalent so convergence in any norm is equivalent 

to component wise convergence. This implies that under Assumption 4.1, the vectors 1 t
N NX

N
�

converge to 0 in L2, therefore in probability. To see the logic for that statement, recall that the vector 

N�  has covariance matrix �2IN. Therefore, 
21( )t

N N NVar X W
N N

�

�  and assumption 4.1 yields the 

above conclusion. (To keep notations simple, and without loss of generality, we discuss here the case 
of �2IN.) 

Corollary 4.1. By Equation (15) 1 t
N N N Ny W X

N

  � �� . Let y W) 
 ��  where � is the true but unknown 

vector of parameters. Then, 2[|| || ] 0NE y y)	 2� �  as N 2)  (the proof is immediate). 

Lemma 4.1. Under Assumption 4.1 and assume that for real a ,exp( ) ( ) .
n

n N
C

a v dQ v � )�  Then, for 

K�� � , , ,
1( ) exp( , v ) (v) 1

n

t
n N N n N

C

X dQ
N

! 
 	 � 3 2�� ��  as N 2) . Equivalently, 1 0t
N NX

N
2�  as 

N 2)  weakly in K�  with respect to the appropriate induced measure. 

Proof of lemma 4.1. Note that for K�� � :  

, ,
1( ) exp , v (v) 1 .

n

t
n N N n N

C

X dQ as N
N

� �
! 
 	 2 2)� �

� �
�� ��  

This is equivalent to the assertion of the lemma. 

Lemma 4.2. Let .W) 
y ��  Then, under Assumption 4.1: 

� �( ) ( ) : exp , ( ).
s

N s
C

W dQ)! 2! 
 	�� � � z z� �  

Comment. Observe that the *�  that minimizes ( ) ln ( ) ,) ) )- 
 !  � � y ��� �  satisfies: 



Entropy 2012, 14              
 

 

904

� �*
* exp , ( ).

( )
s

s
C

W W dQ)
)


 	
!�

zy � z z
�

� �  Or since W is invertible, � admits the representation 

� �*
* exp , ( ).

( )
s

s
C

W dQ
)


 	
!�

z� � z z
��  Note that this last identity can be written as 

*ln ( ) |s W# "




 	*
� �

� �   

Next, we define the function:  

( ) ln ( )K K
s# "� 2 
 	* �� � � �� � . 

Assumption 4.2. The function ( )� �  is invertible and continuously differentiable.  
Observe that we also have *( ).W
� � �  To relate the solution to problem (1) to that of problem (15), 

observe that 1( ) ( )N N NX
N

! 
 !� ��  as well as 1( )N N NX
N

� �- 
 - � �
� �

� ��  where NandN! -  are the 

functions introduced in Section 2 for a problem of size N. To relate the solution of the problem of size 
K to that of the problem of size N, we have: 

Lemma 4.3. If *
N� denotes the minimizer of ( )N- ��  then * *1

N N NX
N


� �  is the minimizer of ( )N- � . 

Proof of Lemma 4.3. Recall that: 
1 1 1, , ,

( ) ( ) ( ) ( )
t t t
N N N N

s n

X A X X X
N N N

N n
C C C

e dQ e dQ e dQ
	 	 	

! 
 
� � �
� � � z � v

� � z v�  

From this, the desired result follows after a simple computation. 
We write the post data probability that solves problem (15) (or (1)) as:  

* 1,

*( ) ( )
( )

t
N NX A

N
o

N
N

edP dQ
	



!

� �

� �
��

 

Recalling that * ( )NdP �  is the solution for the N-dimensional (data) problem and 0 ( )NdP �  is the 

solution for the moment problem, we have the following result: 

Corollary 4.2. With the notations introduced above and by Lemma 4.3 we have 

*

*

*[ ] [ ]o
N N

N
P P

N

E E
� �


 
 � �
� �

�
� �

�
. 

To state Lemma 4.4 we must consider the functions K K2� � defined by: 

( ) : ln ( ) and ( ) : ln ( ).N N4 4) )2 
 	* ! 2 
 	* !� �� � � � � �� �  

Denote by NP5  the measure with density 
1,

( )/
t
NX A

N
Ne

	
!

� �
��  with respect to Q. The invertibility of 

the functions defined above is related to the non-singularity of their Jacobian matrices, which are the 
NP5 -covariances of 1. These functions will be invertible as long as these quantities are positive definite. 

The relationship among the above quantities is expressed in the following lemma: 
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Lemma 4.4. With the notations introduced above and in (8), and recall that we suppose that 
2

2 ,ND I�
  we have: 

1 1
/

2 2

0 0
( , ) ln ( ) | ; ( , ) ln ( ) |

0 0N

D D
C C

D D
" "

� � � �

 * * 
 
* * 
� � � �

� � � �
t t t

N
� � � � � ��=A � �=A X �

� � � � � � and  

2 2
1 1ln ( ) ( , ) ; ln ( ) /t

N N N N N N N NC X D X I W DW W N� �* * ! 
 
  * * ! 
  � � � � �� A � � A �� �  

where 1 '( ) ln ( ) |N s WD W "
 
 	* *� � �= �� � �� , 1 '( ) ln ( ) | t
N

t
N s X

D X "
 
 	* *� � �= �
� � �  and '�  is the first 

derivative of � . 

Comment. The block structure of the covariance matrix results from the independence of the signal 
and the noise components in both in the prior measure dQ and the post data (maximum entropy) 
probability measure dP*. 

Following the above, we assume:  

Assumption 4.3. The eigenvalues of the Hessian matrix ln ( )N* * !� � �� are uniformly (with respect to 

N and 5) bounded below away from zero.  

Proposition 4.1. Let ( ), ( )N6 6)y y respectively denote the compositional inverses of ( ), ( )N4 4)� � . 
Then, as N 2 ), (i) ( ) ( )N4 4)2� �  and (ii) ( ) ( ).N6 6)2y y   

The proof is presented in the Appendix. 

4.1.2. First Order Unbiasedness 

Lemma 4.5. (First Order Unbiasedness). With the notations introduced above and under Assumptions 
4.1–4.3, assume furthermore that || || (1/ )N o N6 6) )	 
  as .N 2)  Then up to o(1/N), *

N� is an 

unbiased estimator of �. 
The proof is presented in the Appendix. 

4.1.3. Consistency 

The following lemma and proposition provide results related to the large sample behavior of our 
generalized entropy estimator. For simplicity of the proof and without loss of generality, we suppose 
here that 2

2 2 N�
D I . 

Lemma 4.6. (Consistency in squared mean). Under the same assumptions of Lemma 4.5, since  
E[�] 
 7 and the ��are homoskedastic, then +

8 2� �  in square mean as N 2) . 
Next, we provide our main result of convergence in distribution. 

Proposition 4.2. (Convergence in distribution). Under the same assumptions as in Lemma 4.5 we have 

(a) * D
N 992� �  as N 2) , 

(b) � � 2 1( , )D N+
88 � 	992� � 0 W	 � as N 2) , 

where D992  stands for convergence in distribution (or law). 
Both proofs are presented in the Appendix. 
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4.2. Forecasting 

Once the Generalized Entropy (GE) estimated vector *�  has been found, we can use it to predict 
future (yet) “unobserved” values. If additive noise (� or v) is distributed according to the same prior 

nQ , and if future observations are determined by the design matrix fX , then the possible future 

observations are described by a random variable fy  given by *
f f f
  y X � v . For example, if fv  is 

centered (on 0), then *
nQ f fE � � 
� �y X �  and:  

� � � �� � ( � �* *
n n

t t
f Q f f f f Q f f fVar tr E trE Var
 	 	 
 
y y X � y X � v v v . 

In the next section we contrast our estimator with other estimators. Then, in Section 6 we provide 
more analytic solutions for different priors.  

5. Method Comparison 

In this Section we contrast our IT estimator with other estimators that are often used for estimating 
the location vector � in the noisy, inverse linear problem. We start with the least squares (LS) model, 
continue with the generalized LS (GLS) and then discuss the regularization method often used for  
ill-posed problems. We then contrast our estimator with a Bayesian one and with the Bayesian Method 
of Moments (BMOM). We also show that exact correspondence between our estimator and the other 
estimators under normal priors. 

5.1. The Least Squares Methods 

5.1.1. The General Case 

We first consider the purely geometric/algebraic approach for solving the linear model (1). A 
traditional method consists of solving the variational problem: 

 (16) 

The rationale here is that because of the noise �, the data True
  y X� �  may fall outside the range 

� �  (:K K. �X X� �� �  of X, so the objective is to minimize that discrepancy. The minimizer *
LS�  of 

(16) provides us with the LS estimates that minimize the errors sum of square distance from the data to 
� �KX � . When � � 1t 	

X X  exists, then � � 1* t t
LS

	

� X X X y . The reconstruction error * *

LS LS
 	� y X�  can 

be thought of as our estimate of the “minimal error in quadratic norm” of the measurement errors, or of 
the noise present in the measurements. 

The optimization (16) can be carried out with respect to different norms. In particular, we could 
have considered 

2

2 1
2,

D
	
	 	 D 	 . In this case we get the GLS solution � � 1* 1 1

2 2
t t

GLS

		 	
� X D X X D y  for 

any general (covariance) matrix D with blocks D1 and D2. 
If, on the other hand, our objective is to reconstruct simultaneously both the signal and the noise, we 

can rewrite (1) as:  

21
2

KMin X: ;	 �< =
> ?�

y � � �
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y = A1 (17) 

where A and 1�are as defined in Section 2. Since N�y � , N K �� �  and the matrix A is of dimension
� �N N K�  , there are infinitely many solutions that satisfy the observed data in (1) (or (17)). To 

choose a single solution we solve the following model: 

 (18) 

In the more general case we can incorporate the covariance matrix to weigh the different 
components of 1@ 

 (19) 

where 2 1,
D

	
� 3� � D �  is a weighted norm in the extended signal-noise space � �s nC C C
 �  and D 
can be taken to be the full covariance matrix composed of both 1D  and 2D  defined in Section 3.1. 

Under the assumption that � �t.M ADA  is invertible, the solution to the variational problem (19) is 

given by � � 1* 1t t t
GE

	 	
 
� DA ADA y DA M y . This solution coincides with our Generalized Entropy 

formulation when normal priors are imposed and are centered about zero � �0 
c 0  as is developed 

explicitly in Equation (14). 
If, on the other hand, the problem is ill-posed (e.g., X is not invertible), then the solution is not 

unique, and a combination of the above two methods (16 and 18) can be used. This yields the 
regularization method consisting of finding � such that: 

 (20) 

is achieved (see for example, Donoho et al. [25] for a nice discussion of regularization within the ME 
formulation.) Traditionally, the positive penalization parameter A is specified to favor small sized 
reconstructions, meaning that out of all possible reconstructions with a given discrepancy, those with 
the smallest norms are chosen. The norms in (20) can be chosen to be weighted, so that the model can 
be generalized to: 

 (21) 

The solution is: 

 (22) 

where 1D  and 2D  can be substituted for any weight matrix of interest. Using the first component of 
*

*
*

GE
GE

GE

� �

 � �� �
� �

�
�

�
, we can state the following. 

Lemma 5.1. With the above notations, * *
P GE
� �  for A�= 1. 

  

21
2

Min: ;
< =
> ?�

� A� y

21
2 D

Min : ;
< =
> ?�

� A� y

2 21 || ||
2 2

KMin A: ;	  �< =
> ?�

y X� � � �

12

2 21 || ||
2 2

K
DD

Min A: ;	  �< =
> ?�

y X� � � �

� �* 1 1 1
1

-1t t
P 2 2A	 	 	
� X D X D X D y+
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Proof of Lemma 5.1. The condition * *
P GE
� �  amounts to: 

� �  (1 1 1
1

-1 -1t t t -1 t t
2 2 1 1 1 2A	 	 	 
 
  X D X D X D D X M D X XD X D+  

independently of y. For this equality to hold, A=1.  
The above result shows that if we weigh the discrepancy between the observed data (y) and its true 

value (X�) by the prior covariance matrix 2D , the penalized GLS and our entropy solutions coincide 

for A=1 and for normal priors.  
The comparison of *

GE�  with *
LS�  is stated below. 

Lemma 5.2. With the above notations, *
GE�  = *

LS�  when the constraints are in terms of pure moments 

(zero moments). 

Proof of Lemma 5.2. If *
GE�  = *

LS� , then � � 11
1

t t t		 
D X M y X X X y  for all y, which implies the 

following chain of identities: 

� �
� �

11
1 1

1 1 2 2 0.

t t t t t t

t t t t t

		 
 B 


B 
  B 


D X M X X X X XD X X M

X XD X X XD X D X D
 

Clearly there are only two possibilities. First, if the noise components are not constant, D2 is 
invertible and therefore Xt must vanish (trivial but an uninteresting case). Second, if the variance of the 
noise component is zero, (1) becomes a pure linear inverse problem (i.e., we solve y = X�).  

5.1.2. The Moments’ Case 

Up to now, the comparison was done where the Generalized Entropy, GE, estimator was optimized 
under a larger space (A) than the other LS or GLS estimators. In other words, the constraints in the GE 
estimator are the data points rather than the moments. The comparison is easier if one performs the 
above comparisons under similar spaces, namely using the sample’s moments. This can easily be done  
if XtX is invertible, and where we re-specify A to be the generic matrix A = [XtX Xt], rather than  
A = [X I]. Now, let y’ . Xty, X’ . XtX, and �’ . Xt� , then the problem is represented as y’ = X’��+ �’. 
In that case the conditions for *

GE�  = *
LS�  is the trivial condition 2 .t 
X D X 0  

In general, when XtX is invertible, it is easy to verify that the solutions to variational problems of 
the type y’ . Xty = XtX� are of the form (XtX)�1Xty. In one case, the problem is to find: 

 (23) 

while in the other case the solution consists of finding: 

 (24) 

Under this “moment” specification, the solutions to the three different methods described above 
(16, 23 and 24) coincide. 
  

2* 1arg min '
2

t K: ;
 	 �< =
> ?

� y X X� � �

2* 1arg min ; ' .
2

K t: ;
 � 
< =
> ?

� � � y X X��
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5.2. The Basic Bayesian Method 

Under the Bayesian approach we may think of our problem in the following way. Assume, as 
before, that nC  and sC  are closed convex subsets of N�  and K�  respectively and that 

� � � �n nQ d g d
v v v  and � � � �s sQ d g d
z z z . For the rest of this section, the priors #$�%� � �ng v  will 
have their usual Bayesian interpretation. For a given z, we think of y = Xz + v  as a realization of the 
random variable Y = Xz + V. Then, � � � �| |y z ng g
 	y z y Xz . The joint density � �, ,y zg y z  of Y and Z, 
where Z is distributed according to the prior sQ  is: 

� � � � � � � � � �, |, |y z y z s n sg g g g X g
 
 	y z y z z y z z   

The marginal distribution of y is � �, ,
s

y z
C

g d� y z z  and therefore by Bayes Theorem the posterior 

(post-data) conditional � �| |z yg z y  is � �, , ( )y zg gy z y  from which: 

 (25) 

As usual *
B�  minimizes � �� �2

E 	Z � y
�

 where Z and Y are distributed according to � �, ,y zg y z . The 

conditional covariance matrix: 

� �� � � �� � � �* * * *
|| |

s

t t

B B B B Z Y
C

E Y y g dz� �	 	 
 
 	 	� �� � �Z � Z � z � z � z y   

is such that: 

� �� � ( � �* * | |
t

B Btr E Y y Var� �	 	 
 
� �� �
Z � Z � Z y , 

where Var(Z|y) is the total variance of the K random variates z in Z. Finally, it is important to 
emphasize here that the Bayesian approach provides us with a whole range of tools for inference, 
forecasting, model averaging, posterior intervals, etc. In this paper, however, the focus is on estimation 
and on the basic comparison of our GE method with other methods under the notations and 
formulations developed here. Extensions to testing and inference are left for future work.  

5.2.1. A Standard Example: Normal Priors 

As before, we view � and � as realizations of random variables Z and V having the informative 
normal “a priori” (priors for signal and noise) distributions: 

� �

1
1

1/2

1

1exp ,
2( )

(2 ) detK
f

,

	� �	� �
� �
Z

z D z
z

D
 

and: 

� � � �

� � � �
* [ | ] s

s

n s
C

B
n s

C

g g d
E Z Y y

g g d

	


 
 

	

�

�

z y Xz z z
�

y Xz z z
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� �

1
2

1/2

2

1exp ,
2( )

(2 ) detN
f

,

	� �	� �
� �
V

v D v
v

D
. 

For notational convenience we assume that both Z and V are centered on zero and independent, and 
both covariance matrices D1 and D2 are strictly positive definite. For comparison purposes, we are 
using the same notation as in Section 3. The randomness is propagated to the data Y such that the 
conditional density (or the conditional priors on y) of Y is: 

 (26) 

Then, the marginal distribution of Y is | ,( ) ( | , ) ( ) ( )f f f f d d
 ��Y Y Z V Z Vy y z v z v z v . The conditional 

distribution of Z given Y is easy to obtain under the normal setup. Thus, the post-data distribution of 
the signal, �, given the data y is: 

 (27) 

where 1
2

t 	
L CX D  and 1 1 1
1 2: ( ).t	 	 	
  C D X D X  That is, “the posterior (post-data)” distribution of Z has 

changed (relative to the prior) by the data. Finally, the post-data expected value of Z is given by: 

 (28) 

This is the traditional Bayesian solution for the linear regression using the support spaces for both 
signal and noise within the framework developed here. As before, one can compare this Bayesian 
solution with our Generalized Entropy solution. Equation (28) is comparable with our solution (14) for 
z0 = 0 which is the Generalized Entropy method with normal priors and center of supports equal zero. 
In addition, it is easy to see that the Bayesian solution (28) coincides with the penalized GLS 
(model (24)) for A�= 1.  

A few comments on these brief comparisons are in place. First, under both approaches the complete 
posterior (or post-data) density is estimated and not only the posterior mean, though under the GE 
estimator the post-data is related to the pre-specified spaces and priors. (Recall that the Bayesian 
posterior means are specific to a particular loss function.) Second, the agreement between the Bayesian 
result and the minimizer of (24) with A�= 1 assumes a known value of 2

v� , which is contained in D2. In 
the Bayesian result 2

v�  is marginalized, so it is not conditional on that parameter. Therefore, with a 
known value of 2

v� , both estimators are the same.  
There are two reasons for the equivalence of the three methods (GE, Bayes and Penalized GLS). 

The first is that there are no binding constraints imposed on the signal and the noise. The second is the 
choice of imposing the normal densities as informative priors for both signal and noise. In fact, this 
result is standard in inverse problem theory where L is known as the Wiener filter (see for example 
Bertero and Boccacci [37]). In that sense, the Bayesian technique and the GE technique have some 
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procedural ingredients in common, but the distinguishing factor is the way the posterior  
(post-data) is obtained. (Note that “posterior” for the entropy method, means the “post data” 
distribution which is based on both the priors and the data, obtained via the optimization process).  
In one case it is obtained by maximizing the entropy functional while in the Bayesian approach it is 
obtained by a direct application of Bayes theorem. For more background and related derivation of the 
ME and Bayes rule see Zellner [38,39]. 

5.3. Comparison with the Bayesian Method of Moments (BMOM) 

The basic idea behind Zellner’s BMOM is to avoid a likelihood function. This is done by 
maximizing the continuous (Shannon) entropy subject to the empirical moments of the data. This 
yields the most conservative (closest to uniform) post data density (Zellner [14,40–43]; Zellner and 
Tobias [15]). In that way the BMOM uses only assumptions on the realized error terms which are used 
to derive the post data density. 

Building on the above references, assume � � 1t 	
X X  exists, then the LS solution to (1) is 

� � 1ˆ t t
LS

	

� X X X y  which is assumed to be the post data mean with respect to (yet) unknown 

distribution (likelihood). This is equivalent to assuming � �|t E Data 
X V 0  (the columns of X are 

orthogonal to the 1N � vector E[V|Data]). To�find g(z|Data), or in Zellener’s notation g���|Data), one 
applies the classical ME with the following constraints (information): 

� � 1ˆ[ | ] t t
LSE Data

	

 
Z � X X X y  

and: 

� � 1 2[ | ] tVar Data �
	


Z X X  

where [ | ]Var DataZ  is based on the assumption that � � 1 2[ | ] t tVar Data �
	


V X X X X , or similarly 
under Zellner’s notation � � 1 2[ | ] t tVar Data �

	

� X X X X , and 2�  is a positive parameter. Then, the 

maximum entropy density satisfying these two constraints (and the requirement that it is a proper 
density) is: 

� � � � � �� �1 2ˆ| | , t
LSg Data g Data N �

	

� z � X X .  

This is the BMOM post data density for the parameter vector with mean ˆ
LS�  under the two side 

conditions used here. If more side conditions are used, the density function g will not be normal. 
Information other than moments can also be incorporated within the BMOM. 

Comparing Zellner’s BMOM with our Generalized Entropy method we note that the BMOM 
produces the post data density from which one can compute the vector of point estimates ˆ

LS�  of the 
unconstrained problem (1). Under the GE model, the solution *

GE�  satisfies the data/constraints within 

the joint support space C. Further, for the GE construction there is no need to impose exact moment 
constraints, meaning it provides a more flexible post data density. Finally, under both methods one can 
use the post data densities to calculate the uncertainties around future (unobserved) observations.  
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6. More Closed Form Examples 

In Section 3, we formulated three relatively simple closed form cases. In the current section, we 
extend our analytic solutions to a host of potential priors. This section demonstrates the capabilities of 
our proposed estimator. We do not intend here to formulate our model under all possible priors. We 
present our examples in such a way that the priors can be assigned for either the signal or the noise 
components. The different priors we discuss correspond to different prior beliefs: unbounded 
(unconstrained), bounded below, bounded above, or bounded below and above. The following set of 
examples, together with those in Section 3, represents different cases of commonly used prior 
distributions, and their corresponding partition functions. Specifically, the different cases are the 
Laplace (bilateral exponential) which is symmetric but with heavy tails, the Gamma distribution that is 
bounded below and is non-symmetric, the continuous and discrete uniform distributions, and the 
Bernoulli distribution that allows an easy specification of a prior mean that is not at the center of the 
pre-specified supports. In all the examples below, the index d takes the possible values (dimensions) K, 
N, or K+N depending if it relates to sC (or z), to nC  (or v) or to both.  

We note that information theoretic procedures were also used for producing priors (e.g., Jeffreys’, 
Berger and Bernardo’s, Zellner, etc.). In future work we will try to relate them to the procedure 
developed here. In these approaches, � is not always viewed as the mean, as given in Equation (2). For 
example, Jeffreys, Zellner (e.g., Zellner [41]) and others have used Cauchy priors and unbounded 
measure priors, for which the mean does not exist. 

6.1. The Basic Formulation 

Case 1. Bilateral Exponential—Laplace Distribution. Like the normal distribution, another possible 
unconstrained model is obtained if we take as reference measure a bilateral exponential, or Laplace 
distribution. This is useful for modeling distributions with tails heavier than the normal. The following 
derivation holds for both our generic model (captured via the generic matrix A) and for just the signal 
or noise parts separately. We only provide here the solution for the signal part.  

In this case, the density of dQ  is � � � �02 exp .j j j j
j

z z� �� �	 	� �/  The parameters 0
jz  is the set of 

prior means and 1 2 j�  is the variance of each component. The Laplace transform of dQ  is: 

 (29) 

Next, we use the relationship t
� X � . (Note that under the generic formulation, instead of tX , we 
can work with *X which stands for either ,   or .t tX I A ) We compute � �! �  via the Laplace 

transformation (8). It then follows that � � � � (N t
j jj

D � �! 
 � 	 � �� X ��  where "(t) is always 

finite and positive. For this relationship to be satisfied, | |j j# ��  for all j = 1, 2, …, d. Finally, 

replacing �  by Xt$ yields D(!). 
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Next, minimizing the concentrated entropy function: 

� � � �
2

2ln , ln( ) ,
( )

j o
t

j j

�
�


 !  
  	
	& &� � � y � y Xz

X �
 

by equating its gradient with respect to $ to 0, we obtain that at the minimum: 

 (30) 

Explicitly:  

 (31) 

Finally, having solved for the optimal vector *$  that minimizes � �& � , and such that the previous 

identity holds, we can rewrite our model as: 

 (32) 

where rather than solve (31) directly, we make use of *� , that minimizes � �& �  and satisfies (30).  

As expected, the post-data has a well-defined Laplace distribution (Kotz et al. [44]) but this 
distribution in not symmetrical anymore, and the decay rate is modified by the data. Specifically: 

dP($*, z) = � �
*

* 0
, 2 *

, ( ) 0
j*

( )e dQ( )=e exp dz .
( ) 2

t
j j

j j j
j j

z z
�

�
�

	
	 	 � �	 � �	 	� �� � � �! � �

/
� Xz

� X z z X �
z

�
 

Case 2. Lower Bounds—Gamma Distribution. Suppose that the �’s are all bounded below by theory. 
Then, we can specify a random vector Z with values in the positive orthant translated to the lower
bound K-dimensional vector l, so � � � �1 , ... ,s dC l l
 ) � � ) , where � �, ,j jl� �) 
 )� �z . Like related 

methods, we assume that each component jz of Z is distributed in �,jl� )� according to a translated

� �,j ja bC . With this in mind, a direct calculation yields: 

 (33) 

where the particular case of 0jb 
  corresponds to the standard exponential distribution defined on 

�,j� )�1 . Finally, when �  is replaced by Xt$, we get:  

 (34) 

Case 3. Bounds on Signal and Noise. Consider the case where each component Z and V takes values in 
some bounded interval ,j ja b� �� � . A common choice for the bounds of the errors supports in that case 

are the three-sigma rule (Pukelsheim [44]) where “sigma” is the empirical standard deviation of the 
sample analyzed (see for example Golan, Judge and Miller, [1] for a detailed discussion). In this 
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situation we provide two simple (and extreme) choices for the reference measure. The first is a uniform 
measure on ,j ja b� �� � , and the second is a Bernoulli distribution supported on ja  and jb . 

6.1.2. Uniform Reference Measure  

In this case the reference (prior) measure dQ(z) is distributed according to the uniform density 

� � 1

j jj
b a

	
	/  and the Laplace transform of this density is: 

 (35) 

and � �" �  is finite for every vector � .  

6.1.3. Bernoulli Reference Measure 

In this case the reference measure is singular (with respect to the volume measure) and is given by 
dQ(z) = ( ) ( )

j jj a j j b j
j

p dz q dz0 0� � � �/ , where � �c d0 z  denotes the (Dirac) unit point mass at some point 

c, and where jp  and jq  do not have to sum up to one, yet they determine the weight within the 

bounded interval ,j ja b� �� � . The Laplace transform of dQ  is: 

 (36) 

where again, � �" �  is finite for all � . 

In this case, there is no common criterion that can be used to decide which a priori reference 
measure to choose. In many specific cases, we have noticed that a reconstruction with the discrete 
Bernoulli prior of 1

2p q
 
  yields estimates that are very similar to the continuous uniform prior. 

Case 4. Symmetric Bounds. This is a special case of Case 3 above for aj = �cj and bj = cj for positive 
cj’s. The corresponding versions of (35) and (36), the uniform and Bernoulli, are respectively: 

 (37) 

and: 

 (38) 

6.2. The Full Model 

Having developed the basic formulations and building blocks of our model, we note that the list can 
be amplified considerably and these building blocks can be assembled into a variety of combinations. 
We already demonstrated such a case in Section 3.3. We now provide such an example. 
  

� �
1 ( )

j j j ja bd

j j j j

e e
b a

# #

"
#

	 	




	



	/�

� � [ ]j j j ja b
j j

j

p e q e# #" 	 	
  /�

� �
1 2

j j j jc cd

j j j

e e
c

# #

"
#

	




	

/�

� � j j j jc c
j j

j

p e q e# #" 	� �
  � �/�



Entropy 2012, 14              
 

 

915

6.2.1. Bounded Parameters and Normally Distributed Errors 

Consider the common case of naturally bounded signal and normally distributed errors. This case 
combines Case 2 of Section 6.1 together with the normal case discussed in Section 3.1. Let 

� � � �1, ... ,Kl l� ) � � )�  but we impose no constraints on the �. From Section 2, 

� � � � � �, s ndQ dQ dQ
z v z v  with � � � �
1

1

j j j jb b z aK
j j

s j
j j

a z e
dQ dz

b
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D
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D
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signal component is formulated earlier, while � � 2exp , / 2n" 
t t D t . Using A=[X I] we have 
t
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 � �
� �

X �
A �

�
 for the N-dimensional vector $, and therefore, � � � � � � � � � �t

s n s n" "! 
 
! !� X � � � � . 

The maximal entropy probability measures (post-data) are: 
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where �+ is found by minimizing the concentrated entropy function: 
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 &� D � $ � , or for the simple heteroscedastic case, we have 2 2
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 &� D � $ � ). Finally, 

once �+  is found, we get: 

� � � �
� � � �

*

*
*

2

,

.

s

n

j
j j jP T

jj

i iP i

b
E z l

a

E v

+�

�


 
  
 


 
 	

X �

D �

+

+

 
For example, if 2

2 N
D I� , then 2 2
2

1 1,2 2 i
i


 &� D � $ � , or for the simple heteroscedastic case, we have 

2 2
2

1 1,2 2 i i
i


 &� D � $ � . 

7. A Comment on Model Comparison 

So far we have described our model, its properties and specified some closed form examples. The 
next question facing the researcher is how to decide on the most appropriate prior/model to use for a 
given set of data. In this section, we briefly comment on a few possible model comparison techniques. 

A possible criterion for comparing estimations (reconstructions) resulting from different priors 
should be based on a comparison of the post-data entropies associated with the proposed setup. 
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Implicit in the choice of priors is the choice of supports (Z and V), which in turn is dictated by the 
constraints imposed on the �’s. Assumption 2.1 means that these constraints are properly specified, 
namely there is no arbitrariness in the choice of Cs. The choice of a specific model for the noise 
involves two assumptions. The first one is about the support that reflects the actual range of the errors. 
The second is the choice of a prior describing the distribution of the noise within that support. To 
contrast two possible priors, we want to compare the reconstructions provided by the different models 
for the signal and noise variables. Within the information theoretic approach taken here, comparing the 
post-data entropies seems a reasonable choice.  

From a practical point of view, the post-data entropies depend on the priors and the data in an 
explicit but nonlinear way. All we can say for certain is that for all models (or priors) the optimal 
solution is: 

 (39) 

where *�  has to be computed by minimizing the concentrated entropy function ( )- � , and it is clear 
that the total entropy difference between the post-data and the priors is just the entropy difference for 
the signal plus the entropy difference for the noise. Note that � �

* * 22 ( ) 2 ( )Q dS P as ND
 - 2 2)�  

where d is the dimension of $. This is the entropy ratio statistics which is similar in nature to the 
empirical likelihood ratio statistic (e.g., Golan [27]). Rather than discussing this statistic here, we 
provide in Appendix 3 analytic formulations of Equation (39) for a large number of prior distributions. 
These formulations are based on the examples of earlier sections. Last, we note that in some cases, 
where the competing models are of different dimensions, a normalization of both statistics is necessary. 

8. Conclusions 

In this paper we developed a generic information theoretic method for solving a noisy, linear 
inverse problem. This method uses minimal a-priori assumptions, and allows us to incorporate 
constraints and priors in a natural way for a whole class of linear inverse problems across the natural 
and social sciences. This inversion method is generic in the sense that it provides a framework for 
analyzing non-normal models and it performs well also for data that are not of full rank.  

We provided detailed analytic solutions for a large class of priors. We developed the first order 
properties as well as the large sample properties of that estimator. In addition, we compared our model 
to other methods such as the Least Squares, Penalized LS, Bayesian and the Bayesian Method of Moments.  

The proposed model main advantage over other LS and ML methods is that it has better 
performance (more stable and lower variances) for (possibly small) finite samples. The smaller the 
sample and/or the more ill-behaved (e.g., collinear) is the sample, the better this method performs. 
However, if one knows the underlying distribution, the sample is well behaved and large enough the 
traditional ML is the correct model to use. The other advantages of our proposed model (relative to the 
GME and other IT estimators) are that (i) we can impose different priors (discrete or continuous) for 
the signal and the noise, (ii) we estimate the full distribution of each one of the two sets of unknowns 
(signal and noise), and (iii) our model is based on minimal assumptions. 

In future research, we plan to study the small sample properties as well as develop statistics to 
evaluate the performance of the competing priors and models. We conclude by noting that the same 

* * * * * * *( ) ( ) ( ) ( ) ( ) ( ) ,Q Q s Q n s nS P S P S P ln ln
  
- 
 !  !  � � � � y
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framework developed here can be easily extended for nonlinear estimation problems. This is because all 
the available information enters as stochastic constraints within the constrained optimization problem. 
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Appendix 1: Proofs  

Proof of Proposition 4.1. From Assumptions 4.1–4.3 we have: 

 

Note that if the -covariance of the noise component of 1 is , then -covariance 
of 1 is an (N + K) � (N + K)-matrix given by  Here  is 
the -covariance of the signal component of 1. Again, from Assumptions 4.1–4.3 it follows that 

 which is the covariance of the signal component of 1 with respect to the 

limit probability  Therefore, is also invertible and  To 

verify the uniform convergence of  towards  note that: 

. 

Proof of Lemma 4.5 (First Order Unbiasedness). Observe that for N large, keeping only the first term 
of the Taylor expansion we have: 

 

after we drop the o(1/N) term. Keeping only the first term of the Taylor expansion, and invoking the 
assumptions of Lemma 4.5: 

 

Incorporating the model’s equations, we see that under the approximations made so far: 

 

We used the fact that  and  are the respective 
Jacobian matrices. The first order unbiasedness follows by taking expectations,   
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Proof of Lemma 4.6 (Consistency in squared mean). With the same notations as above, consider 

. Using the representation of lemma 4.5,  and computing the 

expected square norm indicated above, we obtain  which from Assumption 4.1 tends to 
0 as N 2 ). 

Proof of Proposition 4.2. 

Part (a) The proof is based on Lemma 4.5. Notice that under Qn for any , 

 where  Since the components of � are i.i.d. 

random variables, the standard approximations yield: 

, where , and therefore the law of  

concentrates at 0 asymptotically. This completes Part (a). 

Part (b) This part is similar to the previous proof, except that now the  factor in the exponent 

changes the result to be  as , from which assertion (b) of the 

proposition follows by the standard continuity theorem.  

Appendix 2: Normal Priors — Derivation of the Basic Linear Model 

Consider the linear model  where , and . We assume that (i) 
both  and  are normal and that (ii)  and  are independent, meaning the Laplace transform 

is just (10). Recalling that , and that in the generic model  

A = [X I] = [1 x I] where A is an , or  for the general model with K > 2, 

dimensional matrix. The log of the normalization factor of the post-data, , is: 

. 

Building on (11), the concentrated (dual) entropy function is: 

 

where  Solving for , , yields: 

 

and finally, . Explicitly, M is: 
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where:  

 

and . 

Next, we solve for the optimal � and �. Recalling the optimal solution is  and 
, then following the derivations of Section 3 we get: 

 

and: 

, 

so: 

 

Rewriting the exponent in the numerator as: 

 

and incorporating it in yields: 
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where the second right-hand side term equals 1. Finally: 
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To check our solution, note that , so: 

 

and finally: 

  

which is (14), where B = y � Ac0. Within the basic model, it is clear that , or 

. Under the natural case where the errors’ priors are centered on zero ( ), 
 and . If in addition , then . 

Appendix 3: Model Comparisons — Analytic Examples 

We provide here the detailed analytical formulations of constructing the dual (concentrated) GE 
model for different priors. It can be used to derive the entropy ratio statistics based on Equation (39).  

Example 1. The priors for both the signal and the noise are normal. In that case, the final post-data 
entropy, computed in Section 3, is: 

. 

This seems to be the only case amenable to full analytical computation.  

Example 2. Laplace prior for state space variables plus an uniform prior (in [�e, e]) for the noise 
term. The full post-data entropy is: 

. 

Example 3. Normal prior for state space variables and an uniform prior (in [�e, e]) for the noise. The 
post-data entropy is: 

 

where z0 is the center of the normal priors and D1 is the covariance matrix of the state space variables. 

Example 4. A Gamma prior for the state space variables, and an uniform prior (in [�e, e]) for the 
noise term. In this case the post-data entropy is: 
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Example 5. The priors for the state space variables are Laplace and the priors for the noise are 
normal. Here, the post-data entropy is: 

. 

Example 6. Both signal and noise have bounded supports, and we assume uniform priors for both. The 
post-data is: 

. 

Finally, we complete the set of examples with, probably, the most common case. 

Example 7. Uniform priors on bounded intervals for the signal components and normal priors for the 
noise. The post-data entropy is: 

 

We reemphasize that this model comparison can only be used to compare models after each model 
has been completely worked out and for a given data set. Finally, we presented here the case of 
comparing the total entropies of post-data to priors, but as Equation (39) shows, one can just compare 
the post and pre data entropies of only the signal, , or only the noise, . 
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