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Abstract: Constitutive laws for multi-component fluids (MCF) is one of the thorniest
problems in science. Two questions explored here are: how to ensure that these relations
reduce to accepted forms when all but one of the constituents vanishes; and what constraints
does the Second Law impose on the dynamics of viscous fluids at different temperatures?
The analysis suggests an alternative to the metaphysical principles for MCF proposed by
Truesdell [1].
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1. Introduction

The theoretical paradigm for multi-component materials is generally taken as Truesdell’s [1] three
metaphysical principles:

1. All properties of the mixture must be mathematical consequences of the properties of the
constituents.

2. So as to describe the motion of a constituent, we may in imagination isolate it from the rest of the
mixture, provided we allow properly for the actions of the other constituents upon it.

3. The motion of the mixture is governed by the same equations as is a single body.

Despite their broad scope, these metaphysical principles do not cover a number of issues in mixture
theory. Subsequently, several additional principles have been proposed. See Massoudi [2] for a timely



Entropy 2012, 14 881

and succinct summary. Two are of particular relevance here. The first is the Green and Adkins [3]
“reduction” principle:

“Also, in the absence of one fluid the constitutive equation for the other must reduce to the
usual one for that fluid alone.”

In distinction to Truesdell’s principles, which stress generality, the later principle is a fundamental
constraint on constitutive equations not unlike material frame indifference. As Green and Adkins did
not provide guidance on implementation of this principle, it has had little impact in the development of
constitutive theories of MCF to date.

Massoudi [2] applied this principle in a study of a mixture of two Navier–Stokes fluids. After an
intricate analysis of ways to implement the principle, he arrived at the “limiting” assumption:

“It indicates that the limiting case(s) or in the absence of one component, we expect the
governing equations and the constitutive relations(s) to reduce to their appropriate form(s)
for the single component.”

Based on this, he developed a general weighting function for the material properties in the constitutive
equations for the viscous stresses with this property. The simplest form of the weighting function is

f (φ) = φ (1− φ)

where φ is the volume fraction of one of the two constituents.
At this point it is appropriate to consider the use of volume fractions as the basis for weighting

functions in the constitutive equations for the stresses. As noted by Massoudi [2], volume fraction
models are common in mixture studies. For example, Hansen [4] developed a consistent theory based
on mixture velocities obtained by volume averaged constituents. Nevertheless it is not at all obvious
why volume fractions are appropriate for stresses. After all, they arise from surface tractions, which
suggests that area fractions would be more appropriate. However, Hansen et al. [5] showed that partial
stresses based on volume fractions is consistent with classical statistical mechanics. They also argue from
stereological considerations that there is no difference between volume and area fractions in randomly
distributed mixtures. These considerations validate the use of volume fraction mixture stresses here.

Massoudi’s analysis [2] was restricted to the mixture of two Navier–Stokes fluids at a common
temperature, although it was clear he expected it to have general applicability. One purpose of this
communication is to demonstrate this applicability. To this end it is postulated that the reduction principle
is fundamental and thus applicable to the constitutive equations of any MCF. Below this principle is
called the Green–Atkins–Massoudi or GAM reduction principle.

The second concern here is the third metaphysical principle. This principle is used to constrain the
constituent interaction terms so that when summed over all constituents they equal zero. The resulting
“mixture balance equations” formally resemble those of a single constituent. Perhaps this principle
was motivated by Truesdell’s ontological question “how does a mixture know it is a mixture?” In any
event the principle has caused some angst in the literature often associated with the appearance of a
“diffusion” stress associated with the “peculiar” velocities in the mixture momentum balance equations
and in formulations of constitutive equations. After a detailed comparison of classical mixture and
kinetic theory, Hansen et al. [5] offered a revised third metaphysical principle:
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“The motion of the mixture is governed by the sum of the constituent balance equations.
Furthermore, the equations of a single continuum must be recovered as a special case of the
mixture relations.”

The overarching issue raised by these considerations is the efficacy of the third metaphysical principle
in constraining the physics demanded by the second principle. Three specific questions are posed here:

1. Under what conditions do the constitutive balance equations reduce to those of a single
constituent?

2. Is the third principle compatible with the Second Law in all cases?

3. What are alternatives to the metaphysical principles?

These questions are addressed with a two fluid model with different temperatures. As noted by
Ruggeri and Lou [6], most studies consider a common temperature for both constituents even though
there are many examples where this is clearly not the case. In fact the only recent papers we are
aware of that address multi-temperature mixtures of fluids are the above citation along with Ruggeri
and Simić [7,8] and Gouin and Ruggeri [9]. Ruggeri and Lou [6] note that one motivation for single
temperature models is to avoid difficulties in measuring constituent temperatures. It has also been argued
that multi-temperature mixtures quickly reach a thermal equilibrium state characterized by a common
temperature, or that a mixture dependent conductivity can account for variable temperatures in mixtures.
Of course both possibilities are true in many cases. However, thermally stratified fluids such as the ocean
or atmosphere demonstrate that thermal equilibrium is not always achieved and that mixture dependent
conductivities may be difficult to characterize. In any event the possibility of multi-temperature mixtures
was recognized as early as in [1] and many of the early theoretical papers allowed for this. Thus there is
precedent for considering this model.

The rest of this report is organized as follows. The next section reviews the basic equations of mass,
momentum, energy conservation, and entropy tendency for MCF. Section 3 specifies linear constitutive
equations for the heat flux, interaction forces, and the viscous stresses for a mixture of two Navier
Stokes fluids at different temperatures. In Section 4 these equations are assessed for conformance with
the Second Law. This establishes constraints on the phenomenological coefficients that conflict with
third principle when the constituents have distinct temperatures. The last section discusses the results
and proposes an alternative to Truesdell’s metaphysical principles.

2. Formulation

The starting points for the analysis are the local balances of mass, momentum, energy, and entropy
for each constituent. Following Truesdell [1] and Rajagopal and Tao [10], these are well known to be
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Dαρα + ραvαj,j = c̃α

ραDαvαi = σαji,j + ραbαi + m̃α
i

σαji − σαij = M̃α
ji

ραDαεα = σαjiv
α
i,j − qαj,j + ραrα + ε̃α

ραDαηα = ραrα/θα −
(
qαj /θ

α
)
, j

+ η̃α (1)

Here Greek superscripts denote individual mixture constituents, Dα is the material derivative following
constituent α and ( ),j = ∂( )/∂xj . The dependent variables in (1) are generally standard: ρα,
vαj , σαji, ε

α, θα, and ηα are, respectively, the partial density, velocity, partial stress, internal energy,
temperature, and entropy of α. The prescribed forcing terms ραbαi , q

α
j , and rα are force per unit

volume, heat flux, and net radiation exchange for α. Finally the (̃) terms account for internal sources
of appropriate quantities arising from interactions between the constituents. Application of Truesdell’s
third metaphysical principal requires these terms to satisfy

∑
α

c̃α =
∑
α

(m̃α
i + c̃αvαi ) =

∑
α

M̃α
ji =

∑
α

[
ε̃α + m̃α

j v
α
j + c̃α (εα + κα)

]
= 0 (2)

Here κα is the kinetic energy per unit mass of the α constituent. Chemical reactions between constituents
is not considered so hereafter c̃α = 0. Finally, it is stipulated that the Second Law of Thermodynamics
requires ∑

α

η̃α ≥ 0 (3)

Following Coleman and Noll [11] and Müller [12] rα is eliminated between between the last two
equations in (1) to yield

η̃α = (θα)−1
[
ρα (θαDαηα −Dαεα)− (θα)−1 qαj θ

α
,j + σαjiv

α
i,j + ε̃α

]
(4)

Inserting the Helmholtz free energy ψα = εα − θαηα into (4) gives the Clausius–Duhem relation

η̃α = (θα)−1
[
σαjiv

α
i,j + ε̃α − qαj θαj (θα)−1 − ρα (Dαψα + ηαDαθα)

]
(5)

Obviously (3) requires the sum of the right hand side of (5) to be nonnegative. The large number of
terms in this sum present possibilities that some negative terms may be negated by larger positive terms.
Considerable simplification is achieved if the constituent temperatures are the same, i.e., θα = θ. Then
from (3) and (4)

∑
α η̃ ≥ 0 implies

∑
α η̃ θ ≥ 0. Obviously this is not generally true if the constituent

temperatures are different and some of the terms on the right hand side are negative. As discussed below
this fact has deep implications for the foundations of mixture theory.

The primary interest here is on irreversible processes for the case where c̃α = 0. Then

∑
α

(θα)−1
[
σαjiv

α
i,j − (θα)−1 qαj θ

α
,j − m̃α

j v
α
j − ρα (Dαψα + ηαDαθα)

]
≥ 0 (6)

In arriving at (6) use was made of
∑
α

(
ε̃α + m̃α

j v
α
j

)
= 0 from (2). The latter equation implies that

the internal friction generated by the velocity differences between constituents is a possible source of
internal energy.
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It is customary to divide the terms in (6) into forces and fluxes. In the Eringen [13] (p. 50)
classification the fluxes are qαj , m̃α

i , σαji and ραηα, while ραDαψα is confined to reversible processes. The
fluxes are expressed in terms of the forces θα,j , v

α
i,j , v

α
i − v

β
i through constitutive equations. Relations for

the first three listed fluxes are developed in the next section. A thermodynamic constitutive equation for
ραηα for multi-temperature mixtures is not as clear cut, and is not considered here. The only work I am
aware of that addresses this in a serious fashion is Gouin and Ruggeri [9], Ruggeri and Simić [7,8], and
Ruggeri and Lou [6]. Two important ideas have emerged from their studies. One is a precise definition
of the equilibrium or average temperature based on requirement that the internal energy of the mixture
reduce to the form for a single constituent medium. The other is the issue of measurement of temperature
in a multi-temperature mixture. Theorists have generally neglected the question of what exactly do
measurements of temperature, or other constituent properties for that matter, mean. These papers provide
a quantitative paradigm for constituent temperatures.

Nevertheless including their ideas in this report is deferred. Their theory is based on developing
constitutive relations for the internal energy rather than the Clausius–Duhem equation inequality.
Moreover, for consistency with the development here their approach would have to be modified to
account for the GAM principle. Addressing these issues would expand significantly the scope of this
effort while not directly addressing the three questions listed in the previous section. The focus here then
is on constraints imposed by the Second Law (4) on the phenomenological coefficients that appear in the
constitutive equations for the first three terms in (6). No matter what arises from the internal energy or
Helmholtz free energy these terms must be nonnegative.

3. Constitutive Theory for a Mixture of Two Fluids

The essential issues can be demonstrated with linear constitutive equations as one does not
expect more realistic nonlinear constitutive equations to obviate the essential conclusions. Following
Kuiken [14] central symmetry and material invariance requires that the constitutive equations for qαj and
m̃α
i be functions of just the vectors θα,i and vαi − v

β
i . Similarly σαij depends on the symmetric part of the

constituent velocity gradients and the difference between the spin tensors of the two constituents. No
effort is made to depict the functional dependence of material parameters on θα or ρα.

There is extensive literature on constitutive equations for multi-component materials. Massoudi
[2,15–17] provides extensive critiques of much of this work. There is also substantial literature on
multi-temperature elastic mixtures. See, for example, Bowen and Garcia [18], Bowen [19], Iesan [20],
and Klisch [21]. However, they provide little guidance for the irreversible processes considered here.
The only recent work on multi-temperature fluid mixtures is by Ruggeri and colleagues cited earlier.
The approach taken here differs from all of these studies in that the constitutive models adhere to the
GAM principle.

The subsequent analysis is streamlined by using the canonical representation of second order tensors
as sums of isotropic, deviatoric, and skew symmetric components. Thus, the velocity gradient of
constituent α in a two component mixture is

vαi,j = (dα/3) δij + d̂αij + wα[ij] (7)



Entropy 2012, 14 885

with

dα = vαj,j

d̂αij =
(
vαi,j + vαj,i

)
/2− (dα/3) δij

wα[ij] =
(
vαi,j − vαj,i

)
/2 (8)

These last three objects are recognized as the divergence, deviatoric rate of strain tensor, and the spin
tensor. From (7) and (8), it is easy to establish

vαi,jv
β
i,j = dαdβ/3 + d̂αij d̂

β
ij + wα[ij]w

β
[ij] (9)

As noted in the Introduction Massoudi [2] analyzed several constitutive models for a mixture of two
Navier–Stokes fluids and found that none of the standard models obeyed the GAM principle “... in the
absence of one fluid the constitutive equation for the other must reduce to the usual one for that fluid
alone.” To satisfy this principle, he hypothesized

σαji = φα
[
λααd

αδji + 2µααd̂
α
ji + φβ

(
λαβd

βδji + 2µαβd̂
β
ji

)
+ ναβφ

β
(
wα[ij] − w

β
[ij]

)]
(10)

In (10) α, β = 1, 2; α 6= β; and the volume fractions satisfy
∑
α φ

α = 1. When adjusted for the
definitions given in (8) the phenomenological coefficients λ and µ in (10) are the same as given by
Massoudi [2]. He considered a uniform temperature in the mixture and required

∑
α M̃

α
ji = 0, which

resulted in ναβ = νβα = ν. However, as shown later, this conflicts with the Second Law when
the constituents have different temperatures. Consequently the general version of (10) is retained.
Nevertheless, in accordance with GAM, if the volume fraction of one of the two constituents goes to
zero, this term will vanish. Finally note that only dissipative and irreversible processes are considered
in (10) so constituent partial pressures are omitted.

Now consider the constitutive equations for the constituent heat fluxes qαj and the internal momentum
source m̃i . As with the stresses, attention is focused on linear approximations. The simplest available
frame indifferent variables are the temperature gradients θα, j and the constituent velocity differences or
diffusion velocity vαi − v

β
i = uαβi . Truesdell [22] has an enlightening discussion on the role and history

of uαβi in constitutive equations of this sort. Also, since the constituents may be at different temperatures
a general version of Fourier’s heat conduction law is assumed here.

Application of GAM gives

qαj = −φα
(
kαα θ

α
,j + φβkαβ θ

β
,j + φβhαβ u

αβ
j

)
m̃α
j = −φαφβ

lαβuαβj +
2∑

γ=1

rαβγθ
γ
,j

 (11)

as in (10) α, β = 1, 2 and α 6= β. The first of (11) is consistent with Gidaspow [23] and also extends the
constitutive theory of Massoudi [17] to include distinct constituent temperature. Moreover, it reduces to
Fourier’s law when either constituent vanishes. The second of (11) extends the work of Massoudi [16]
to include the effect of constituent temperature gradients.

Truesdell’s third principle, as expressed by (2), imposes constraints on some the coefficients in (10)
and (11). The complete list is:
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ναβ = νβα

hαβ = hβα

lαβ = lβα

rαβγ = −rβαγ (12)

I refer to these as dynamical constraints since they apply to the fundamental balance equations for each
of the constituents. However, as shown in the next section (12) conflicts with constraints imposed by
the Second Law for a mixture of two fluids at different temperatures. Hence the dilemma: one may
accept (2), in which case positive entropy production cannot be ensured; or one may accept the Second
Law, in which case (2) is not always be satisfied. Consequently (12) is not imposed at this stage.

4. Entropy Production

This section determines the restrictions imposed on the phenomenological coefficients in (10) and
(11) by (6). The theory developed by Klika and Maršı́k [24] in a study of the entropy production
by mechanical loading in the presence of chemical reactions applies directly here as well. Since the
coefficient matrices in (10) and (11) are symmetric, they can be replaced by diagonal matrices whose
values are the eigenvalues of the original matrices. Second Law constraints are imposed by requiring that
the diagonal elements by non-negative. Since the largest matrices considered here are of order three, the
eigenvalues are well known and the problem is reduced to ensuring they are non-negative. The notation,
and perhaps the physics, is simplified if the constituent “coldness” Cα = (θα)−1 is used below instead of
temperature.

The tensor and vector constraints are considered separately. For the former∑
α

Cασαjivαi,j ≥ 0 (13)

When (10) is inserted into this equation it is readily seen that it reduces to quadratic forms in dα, d̂αij ,
and wαij . Since the latter are independent kinematic quantities, motions where just one of these quantities
is non-zero are conceivable. Hence each of the three quadratic forms are required to be non-negative.
Obviously this strict constraint requires any combination kinematic quantities to be non-negative as well.

Consider first the dα terms. The quadratic form is

Fλ =
[
d1 d2

]  φ1λ11C1 φ1φ2 (λ12C1 + λ21C2) /2
φ1φ2 (λ12C1 + λ21C2) /2 φ2λ22C2

 d1

d2

 (14)

The eigenvalue equation for a second order symmetric matrix A is

γ2 − γ tr (A) + det (A) = 0

The roots of this equation are non-negative when tr (A) ≥ 0 and det (A) ≥ 0. When applied to (14)
this gives

φ1λ11 C1, φ2λ22 C2 ≥ 0

λ11λ22 C1 C2 ≥
(
φ1φ2/4

)
(λ12 C1 + λ21 C2)2 (15)
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The same grouping applies to the d̂αij terms. This results in

φ1µ11 C1, φ2µ22 C2 ≥ 0

µ11 µ22 C1 C2 ≥
(
φ1φ2/4

)
(µ12 C1 + µ21 C2)2 (16)

After accounting for the differences in definitions and the presence of volume fractions and distinct
constituent temperatures, these are identical to results first reported by Atkin and Craine [25].

Consider now the wα[ij] terms in (13)

∑
Cασαjiwα[ij] = φ1φ2

[
w1

[ij] w2
[ij]

]  ν12C1 − (ν12C1 + ν21C2) /2
− (ν12C1 + ν21C2) /2 ν21C2

 w1
[ij]

w2
[ij]

 (17)

For the eigenvalues of coefficient matrix to be non-negative it is necessary that the determinant vanish.
Thus

ν12 C1 = ν21 C2 ≥ 0 (18)

Note that this reduces to ν12 = ν21 only if C1 = C2. Then ν12 = ν21 ≥ 0 in accordance with Atkin
and Craine [25]. What does this imply about M̃α

ji = 2φαφβναβ
(
wαij − w

β
ij

)
? In the general case of

non-uniform constituent temperatures, the Second Law requirement
∑ Cασαjiwα[ij] ≥ 0 and the dynamic

hypothesis
∑
α M̃

α
ji = 0 cannot both be satisfied.

Now focus attention on −∑α Cα
[
Cαqkj θα, j + m̃α

j v
α
j

]
. The goal is to reduce this term to a quadratic in

the objective variables θα, j and uαβj . Of course gradients of Cα could replace the gradients of θα but there
is no advantage to this in the subsequent analysis.

The reduction to a quadratic form is not straightforward because of the product of m̃α
j and vαj , the

latter variable not being objective. However, if

lαβ Cα = lβα Cβ
rαβγ Cγ = −rβαγ Cγ (19)

then ∑
α

m̃α
j v

α
j Cα = φ1φ2

[
lβγCβu12j u12j +

(
r121θ

1
,jC1 − r212θ2,jC2

)
u12j
]

(20)

Equation (19) reduces to the dynamic constraints given by (12) only when Cα = Cβ .
Using (19) the vector components of (6) become

∑
α

Cα
[
Cαqαj θα,j + m̃α

j v
α
j

]
=
[
θ1, j θ

2
, j u

12
j

] 
Γ11 Γ12 Γ13

Γ12 Γ22 Γ23

Γ13 Γ23 Γ33



θ1, j
θ2, j
u12j

 (21)

Here

Γ11 = φ1k11 C21
Γ12 =

(
φ1φ2/2

) (
k12 C21 + k21 C22

)
Γ13 =

(
φ1φ2/2

) (
h12C21 + r121C1

)
Γ22 = φ2k22 C22
Γ23 = −

(
φ1φ2/2

) (
h21C22 + r212C2

)
Γ33 = φ1φ2l12 C1 = φ1φ2l21C2 (22)
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Non-negative entropy production requires the Γ matrix in (21) to be non-negative definite. The
resulting eigenvalue equation is

γ3 − γ2tr (Γ) + γΣ (Γ)− det (Γ) = 0

with Σ (Γ) the sum of the three principal minors. The strictest requirements for the roots to be
non-negative are tr (Γ) ≥ 0, Σ (Γ) ≥ 0, and det (Γ) ≥ 0. Thus for tr (Γ) ≥ 0

k11 C21 , k22 C22 ≥ 0

Γ33 ≥ 0 (23)

Σ (Γ) ≥ 0 gives

k11 k22 C21 C22 ≥
(
φ1φ2/4

) (
k12C21 + k21C22

)2
k11 l12 C1 ≥

(
φ2/4

)
(h12C1 + r121)

2

k22 l21 C2 ≥
(
φ1/4

)
(h21C2 + r212)

2 (24)

Finally, the requirement
det (Γ) ≥ 0 (25)

appears to be a new constraint on the phenomenological coefficients in (11).
The dynamic constraints (12) provide considerable simplification when θ1 = θ2 = θ = C−1. Setting

r12γ = −r21γ = r and l12 = l21 = l it follows that

φ1k11 + φ2k22 + φ1 φ2 (k12 + k21) ≥ 0

l ≥ 0

l
[
φ1k11 + φ2k22 + φ1 φ2 (k12 + k21)

]
C2 +

(
φ1φ2/4

)
[(h12 − h21) C + r]2 ≥ 0 (26)

Observe that the cross terms considered in the entropy inequalities have a symmetry property that is
not present in the constitutive equations. For example, in the shear deformation, the cross terms in (10)
were given as µ12 and µ21, but in the entropy inequality only the sum of these terms, weighted by the
coldness of the respective constituent, survives as is seen in (15), (16), and (24). Now Kirwan et al. [26]
argued that any dissipative phenomenological parameters that do not appear in entropy inequalities have
no physical meaning. Although that study was not concerned with different constituent temperatures the
fundamental idea is applicable here as well.

To see this, consider two rheological experiments performed on MCF that are identical in every
respect except that in one experiment the components are at different temperatures while in the other
experiment the component temperatures are the same. In the second case Kirwan et al. [26] would argue
that since only µ12+µ21, for example, entered into the entropy inequality, then it would be appropriate to
replace the two coefficients in the constitutive equations by a single coefficient, say µS/2. This reduces
the number of coefficients by one. And since the MCF are identical the same condition could just as well
be applied to the first experiment. This thought experiment suggests

λ12 = λ21

µ12 = µ21

k12 = k21 (27)
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From the discussion above it seems that this argument does not apply to the interaction coefficients hαβ ,
lαβ , and rαβγ .

5. Discussion

Linear constitutive equations for the viscous stress, heat flux, and internal energy source based on
GAM were developed for a mixture of two Navier–Stokes fluids at different temperatures. GAM ensured
that these equations reduced to the appropriate form for a Navier–Stokes fluid when the volume fraction
of either constituent vanished. The resultant constitutive equations were used to calculate the entropy
production and the results were consistent with the previous analyses with two exceptions. One was
that the cross terms automatically vanished when the volume fraction of either constituent vanished.
The other difference was the peculiar effect distinct constituent temperatures had on entropy production.
For this situation the internal source terms could not satisfy both positive entropy production and the
requirement imposed by Truesdell’s third principle that they vanish when summed over all constituents.

As noted earlier Green and Adkins [3], Hansen [4], Hansen et al. [5] and more recently Massoudi [2]
proposed other metaphysical principles. It is appropriate then to reassess Truesdell’s three principles.
The first principle is a truism that applies to all theories and thus offers no specific insight to MCF. On the
other hand GAM seems to be an attractive modification of Truesdell’s second principle, Hansen et al. [5]
offered an alternative to his third principle, and Kirwan et al. [26] suggested a way to reduce the number
of coefficients in constitutive theories for MCF. In view of this it seems appropriate to reassess these
three metaphysical principles. To codify these ideas I propose:

• The constituent balance equations for mass, linear and angular momentum, and internal energy
must account for all interactions between the constituents in accordance with the general principles
of physics. They must reduce to the balance equations for a pristine medium when all but one of
the constituents vanishes.

• The evolution of MCF is determined by the simultaneous solution of the coupled balance equations
for each of the constituents.

• All phenomenological coefficients must be constrained by the Second Law applied to the sum of
all the constituents. Any coefficient not so constrained has no effect in the dynamical evolution of
MCF.

It is stressed that these principles do not appeal to “mixture balance equations”. Instead, they are
motivated by the ontological question “how does a constituent know it is in an MCF?” These new
principles offer guidance on the formulation of constitutive theories for MCF that are in strict accordance
with the Second Law. Moreover, they are consistent with previous studies that focused on uniform
constituent temperatures.

It is worth noting that the three revised metaphysical principles given above provide guidance to
generalize (10) and (11) to an MCF composed of N constituents. These equations can be compactly
stated as
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σαji = φα
(
λααd

αδji + 2µααd̂
α
ji

)
+

φα
∑
β 6=α

φβ
[(
λαβd

βδji + 2µαβd̂
β
ji

)
+ νβα

(
wα[ij] − w

β
[ij]

)]

qαj = −φα
kααθα,j +

∑
β 6=α

φβkαβθ
β
,j +

∑
β 6=α

φβhβα
(
vαj − v

β
i

)
m̃α
j = −φα

∑
β 6=α

φβ

lβα (vαj − vβj )+
N∑
γ=1

rαβγθ
γ
,j

 (28)

The Second Law imposes inequality constraints that are straightforward extensions of (15), (18), (19),
(23), and (24). At the same time the third metaphysical principle provides restrictions on the number of
independent coefficients that are straightforward extensions of (12) and (27).

In closing it is noted that constitutive equations based on the three metaphysical principles proposed
above provide guidance for rheological experiments on MCF. The principal coefficients λαα, µαα,
and kαα are the values determined from pristine conditions. These values are simply diluted by the
appropriate specific volumes when the constituents appear in MCF.
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