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Abstract: A new statistical dynamical closure theory for general inhomogeneous turbulent 
flows and subgrid modeling is presented. This Self-Energy (SE) closure represents all eddy 
interactions through nonlinear dissipation or forcing ‘self-energy’ terms in the mean-field, 
covariance and response function equations. This makes the renormalization of the bare 
dissipation and forcing, and the subgrid modeling problem, transparent. The SE closure 
generalizes the quasi-diagonal direct interaction closure to allow for more complex 
interactions. The SE closure is applicable to flows in different geometries, is exact near 
maximum entropy states corresponding to canonical equilibrium, and provides a 
framework for deriving simpler realizable closures.  
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1. Introduction 

Statistical dynamical closure theory describes the direct evolution of the mean and transient 
statistics of generally turbulent fluid flows. It is also the natural formalism for deriving subgrid models 
of the unresolved scales of motion needed in large eddy simulations (LES) of fluid systems with very 
large numbers of degrees of freedom. Much of statistical closure theory has focused on homogeneous 
turbulence [1] since this somewhat idealized problem nevertheless captures many of the essential 
issues of this complex field. Kraichnan’s [2] pioneering work in developing the direct interaction 
approximation (DIA) closure theory for homogeneous turbulence paved the way for advances in fluid 
turbulence. Herring [3] and McComb [1,4] independently developed the related non-Markovian self 
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consistent field theory (SCFT) and local energy transfer theory (LET) closures that subsequently have 
been shown to differ from the DIA only in how a fluctuation dissipation theorem is invoked [5–7]. The 
SCFT and LET closures have very similar performance to the DIA for homogeneous turbulence at 
finite Reynolds number [5,7] while the LET closure has the property of being consistent with the 
Kolmogorov 1941 [8] scaling laws at very high Reynolds numbers [1,9]. 

More recently there has been increasing attention focused on the development and performance of 
closure theories for inhomogeneous turbulent flows. A computationally tractable non-Markovian 
closure theory, termed the quasi-diagonal direct interaction approximation (QDIA), was formulated by 
Frederiksen [10] and applied to the subgrid modeling problem for two-dimensional turbulent flow over 
topography. In the QDIA closure the off-diagonal elements of the covariance and response functions 
are expressed in terms of the diagonal elements and the mean-field and topography. The theory was 
generalized to inhomogeneous turbulent flows on a �-plane and applied to Rossby wave dispersion and 
predictability by Frederiksen and O’Kane [11]. The theory has also recently been generalized to 
classical field theories with quadratic nonlinearity, including quasigeostrophic (QG) baroclinic and 
three-dimensional (3D) turbulence, by Frederiksen [12].  

The QDIA statistical closure has been implemented numerically [11,13] and extensively tested and 
applied to problems in dynamics [11,13], predictability [11,14], data assimilation [15] and subgrid 
modeling [16,17]. O’Kane and Frederiksen [13] found that the f-plane QDIA closure has similar 
performance to the DIA for homogeneous turbulence and is only a few times more computationally 
intensive. Frederiksen and O’Kane [11] found that the �-plane QDIA closure [11] was as successful as 
the f-plane QDIA. Indeed, in a study of Rossby wave dispersion when eastward zonal flows impinge 
on an isolated topography in a turbulent environment, they found pattern correlations as high as 0.9999 
between the closure and the statistics of 1800 DNSs for the mean Rossby wave trains in 10 day 
simulations. This is quite a remarkable result since Rossby wave dispersion in a turbulent environment 
is a far from equilibrium process and a severe test of the closure. As in earlier homogeneous DIA, 
SCFT and LET closure calculations [5,7,9] these studies with the QDIA have employed a cumulant 
update restart procedure [18] to enhance the performance of the QDIA [11,13]. A regularization 
procedure, similar to that employed by Frederiksen and Davies [14] for homogeneous turbulence, 
which corresponds to an empirical vertex renormalization, has also been implemented in the QDIA to 
ensure it has the right power law behavior [13].

The QDIA closure theory also provides a framework for developing subgrid parameterizations of 
unresolved eddy-eddy, eddy-mean-field, eddy-topographic and mean-field-mean-field interactions. 
This is because the QDIA allows unambiguous identification of the terms that renormalize the 
generalized dissipation and forcing terms in the mean-field equation, as well as in the equations for the 
covariance and response functions. In the language of field theory [19–21] these interactions are 
represented as integrals over the product of nonlinear dissipation and forcing ‘self-energy’ terms and 
the mean-field, topography, covariance and response functions. Because of this factorization of the 
interactions it is transparent that the ‘self-energy’ terms renormalize the generalized dissipation and 
forcing terms in both the equations for the mean-fields and the transients. 

In the inhomogeneous direct interaction approximation (IDIA) of Kraichnan (1972) [22] the 
three-point functions in the equations for the covariance and response functions are also represented by 
integrals over products of ‘self-energy’ (nonlinear damping and noise) terms and the covariance and 
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response functions to close the system. This again means that the renormalization of the bare 
dissipation and random forcing in the equations for the transients is transparent in the IDIA (and in the 
homogeneous DIA). However, the covariance of the statistics of the transients in the mean field 
equation, unlike in the QDIA, is not represented in terms of integrals over products of ‘self-energy’ 
terms and the mean-field or topography. This different structure of the mean-field equation in the IDIA 
makes it more difficult to determine how to renormalize the dissipation and forcing terms in the 
mean-field equation. In the IDIA the covariance and response function equations are second order in 
perturbation theory and in the interaction coefficient. When the second order covariance is inserted in 
the mean-field equation it in turn becomes third order in perturbation theory and in the interaction 
coefficients. The IDIA closes the statistical dynamical equations at the level of the propagators, the 
covariance and response functions, and the mean-field. If the system is closed at the next level then the 
explicit three-point function appears in the equations for the propagators, rather than through a 
representation as integrals over ‘self-energy’ terms and propagators. In that case the renormalization in 
the propagator equations is again less transparent. This argument can clearly be generalized to closure 
at any level of n-point functions. 

The primary purpose of this article is to develop a closure theory for inhomogeneous turbulent 
flows which generalizes the QDIA closure to more complex interactions. The SE closure, like the 
QDIA closure, is second order in perturbation theory, and the nonlinear interactions are represented 
through ‘self-energy’ terms, in the mean-field equation, as well as in the propagator equations. It is 
however, more general in that it does not employ the quasi-diagonal approximation. This ‘Self-Energy’ 
closure theory allows interactions that are essentially as complex as those in the IDIA but importantly 
makes the general inhomogeneous subgrid modeling problem much more transparent. The general SE 
closure is also useful for deriving simpler realizable closures for different geometries and boundary 
conditions as will also be demonstrated in this paper. The SE closure, like the IDIA [22] and QDIA 
[10,12], has the important property of being exact near maximum entropy states corresponding to 
canonical equilibrium [10]. 

The subgrid modeling problem has had a long history in the field of fluid turbulence with most 
studies and applications focusing on homogeneous turbulence. In Kraichnan’s [2] homogeneous DIA, 
like in his inhomogeneous IDIA [22], the tendency of the covariance, or two-point function, is driven 
by the three-point function which is represented by nonlinear damping and nonlinear noise terms. As 
noted above, this makes the subgrid modeling problem transparent with eddy-eddy interactions 
consisting of an eddy damping term and a stochastic backscatter term. A theory of eddy viscosity was 
also developed by Kraichnan [23] and he found that the eddy viscosity increases to a cusp 
near the cut-off wavenumber. Rose [24] and Leith [25] noted the importance of eddy noise in 
subgrid modeling. Leith [25] combined a heuristic stochastic backscatter parameterization with the 
Smagorinsky [26] empirical eddy viscosity model in numerical studies of a turbulent shear mixing 
layer. Further subgrid modeling studies for three-dimensional homogeneous turbulence were carried 
out by Leslie and Quarini [27], Chollet and Lesieur [28], Chasnov [29], Domaradzki et al. [30], 
McComb et al. [31–33]. 

There has also been considerable progress in developing subgrid-scale parameterizations for large 
eddy simulations (LES) of quasigeostrophic flows. Frederiksen and Davies [34] developed self 
consistent representations of eddy viscosity and stochastic backscatter based on eddy damped 
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quasi-normal Markovian (EDQNM) and DIA closures for two-dimensional turbulence. A direct 
stochastic modeling approach to subgrid processes, based on the statistics of DNS, was employed by 
Frederiksen and Kepert [35] and shown to produce very similar results. Zidikheri and Frederiksen  
[36–38] also successfully applied this stochastic modeling methodology to two-level QG model studies 
with typical atmospheric flows and oceanic flows. More recently, Kitsios, Frederiksen and 
Zidikheri [39] derived universal scaling laws for subgrid models of eddy-eddy interactions 
applicable to baroclinic atmospheric flows. The more complex problem of determining subgrid-scale 
parameterizations in the presence of strong inhomogeneities has also been examined for 
quasigeostrophic flows. General expressions for the eddy-topographic force, eddy viscosity and 
stochastic backscatter were derived by Frederiksen [10] based on the QDIA closure. O'Kane and 
Frederiksen [16] and Frederiksen and O’Kane [17] analysed the numerical implementation of these 
subgrid terms.  

In the last decade there has been increasing interest in exploring how parameterizations of 
stochastic backscatter may improve simulations and predictions of weather and climate [34,40–42]. 
Stochastic backscatter may be particularly important in predictability studies where it increases 
ensemble spread [34,43,44] in a similar manner to ensemble methods [45]. It may also result in 
reductions in systematic errors in seasonal forecasts [46] and affect the climate sensitivity to increased 
greenhouse gas forcing [47].

The derivation of the Self-Energy closure and its application to the subgrid modeling problem will 
be carried out with generic prognostic equations that take the form [12]: 

0 0( ) ( ) ( ) ( , , ) ( ) ( ) ( , , ) ( )  ( , )a a abc b c abc b c at D t t t t h f t
t

� �� � � � �� � � �

� � �� 	 � �
 �� ��k k p q p q
p q

k k p q k p q kK A (1)

Here )(ta
k� is typically a field variable in spectral space depending on time t , the level or field type 

a  and the wave vector k . The equations are quadratic in the fields and also contain forcing ),(0 tf a k , a 
linear term with coefficients )(0 k�aD  and a term bilinear in the dynamical fields )(ta

k�  and in constant 
fields ahk  that typically specify topography. Throughout this paper we assume summation over 
repeated superscripts.  

We suppose that the interaction coefficients ),,( qpkabcA and ),,( qpkabcK  satisfy the relationships:  

),,(),,( pqkqpk acbabc KK 	 (2)

and:

1( , , ) [ ( , , ) ( , , )]
2

abc abc acb	 �k p q k p q k q pK  A A (3)

The plan of this paper is as follows. In Section 2 we summarize the spectral equations for two-level 
QG turbulence, as well as for 3D turbulence, as specific examples of classical field theories to which 
the Self-Energy closure formalism applies. The inhomogeneous IDIA closure equations, as well as the 
generalized Langevin equation that guarantees realizability of the closure, are presented in Section 3. 
In Section 4, the SE closure and the corresponding generalized Langevin equation are detailed. In 
Sections 5 and 6 subgrid-scale parameterizations based on the SE closure are formulated for 
application to large eddy simulations. The QDIA closure for flow in planar geometry is recovered from 
the SE closure in Section 7 by assuming that the covariance and response functions are diagonal in 
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spectral space to lowest order. In Section 8, the SE closure is considered for QG flow on a sphere and 
we discuss how to derive from it simplified closures that are nevertheless realizable. The conclusions 
are presented in Section 9. Appendix A details the interaction coefficients for QG flows on the plane 
and on the sphere and for 3D turbulent flows. Appendix B contains a derivation relating the first order 
inhomogeneous elements of the covariance [Equation (B.9)] and response functions [Equation (B.12)] 
to the mean-field and topography. 

2. Equations for Inhomogeneous Fluid Turbulence 

The statistical closure equations formulated in this paper apply to classical field theories with 
quadratic nonlinearity. In this section and in Appendix A we outline some typical systems of equations 
for quasigeostrophic and three-dimensional turbulence to which the theory can be applied. Further 
examples have been given by Frederiksen [12] and include the primitive equations [48]. 

2.1. Quasigeostrophic Equations for Turbulent Flow 

Taking suitable length and time scales, the nondimensional equation for 2-level baroclinic 
quasigeostrophic flow over topography on an f-plane may be written in the form: 

0 0( , )
a

a a a ab b aq J q h D q f
t

� 
�

	 � � � � (4)

Here, 2or1	a , a  is the streamfunction and )()1( 212  ����	 L
aaa Fq  is the reduced potential 

vorticity, aa � 2�	  is the relative vorticity, 0, 12 		 hhh  where h  is the scaled topography, abD0  are 
dissipation operators to be specified below and af0  are forcing functions. Also, LF  is the layer 

coupling parameter [36], which is inversely proportional to the static stability. In planar geometry: 

( , )J
x y y x

� �� � �� �
� � � �

	 � (5)

As shown in Appendix A, with the identification ),()( ttq aa
kk ��  where k is a two-dimensional 

wave vector, the spectral equations for quasigeostrophic flow on the periodic domain 
�� 20,20 ���� yx can then be written in the standard form: 

0

0

( ) ( ) ( ) ( , , ) ( , , ) ( ) ( ) ( , , ) ( )

                                          ( , )

a a abc b c abc b c

a

t D t K t t A t h
t

f t

� �� � � � � �� � � �

� � �� 	 �
 ��

�

��k k p q p q
p q

k k p q k p q k p q

k
(6)

Here, we suppose that the dissipation may be related to the viscosity through: 
2

00 )()( kD aa kk �� �	 (7)

where we refer to )(0 k�� a  as the bare viscosity, although more general forms can be considered 
including wave frequencies; we shall also refer to ),(0 tf a k  as the bare forcing.  

In the above spectral equations:  

k 	 k (7a)
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*a a� �� 	k k (7b)

1( , , ) ( , , ) ( , , )
2

abc abc acbK A A� �	 �
 �k p q k p q k q p (7c)

1 if  0
( , , )

0  otherwise
�

� � 	�
	 �
�

k p q
k p q (7d)

The interaction coefficients are given in Appendix A. We note that the interaction coefficients 
),,( qpkabcK  satisfy the relationship:  

( , , ) ( , , )abc acbK K	k p q k q p (8)

2.2. Navier Stokes Equations for Three-Dimensional Turbulent Flow 

The Navies Stokes equations for three-dimensional inhomogeneous turbulent flow may be written 
in the form [1]: 

2
0 0

1a
a a a

a

u pu u u f
t x x

�
� �

�
� � �

� 	 � � � �
� � � (9)

Here, 1,2,3),,( 	atua x  is the fluid velocity at position x and time t . Also, � is the density and 

),( tp x  is the pressure. The bare viscosity is specified by 0� , and ),(0 tf a x are forcing functions.
As shown in Appendix A, with the identification ),()( ttu aa

kk �� the spectral equations for three-
dimensional flow on the periodic domain ��� 20,20,20 321 �	��	��	� xzxyxx  can then 
be written in the standard form given in Equations (1) and (6). Here 0	ahk  and the following analysis 
applies equally to the Navier Stokes equations where k is a three-dimensional wave vector as it does to 
the baroclinic quasigeostrophic equations where k is a two-dimensional wave vector. 

3. Inhomogeneous DIA Closure Equations — IDIA 

We consider an ensemble of flows satisfying Equation (1) or (6) where the ensemble mean is 
denoted by �� a

k�  and angle brackets denote expectation value. We express the field component for a 
given realization by: 

aaa
kkk ��� ˆ���	 (10)

where a
k�̂  denotes the deviation from the ensemble mean. The spectral equation can then be expressed 

in terms of �� a
k�  and a

k�̂  as follows: 
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Here:

0 0 0̂( ) ( ) ( )a a af f f	 �k k k (13)

0 0( )  ( )a af f	 � �k k (14)

,
ˆ ˆ( , )  ( ) ( )bc b cC t s t s� �� � � �	 � �p q p q (15)

are the mean and fluctuating forcing functions and two-time covariance matrix elements. Also,  

kkkkk �	� ,00 )(),( ��� aa DD (16)

where kk �,�  is the Kronecker delta function. Thus )(),( 00 kkk �� aa DD 	�  when kk 	� and is zero 

otherwise. We have introduced the more general form in Equation (12) for later convenience.  

3.1. Statistical Closure Equations 

Direct interaction approximation closure equations may be derived for general inhomogeneous 
flows following Kraichnan [22] or Martin et al. [20]. The equation for the mean-field is just 
Equation (11) which requires an expression for the single-time two-point cumulant ),(, ttC bc

qp ��  in order 

to close it. 
From Equation (12) we can obtain an equation for the two-time cumulant by multiplying by )(ˆ t��

�� l

and taking the statistical average: 
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(17)

This equation in turn involves the three-point function. The method of representing three-point 
function in terms of the response function and covariance follows Kraichnan [2] (see also  
Martin et al. [20] and the review of Frederiksen [49]) and results in the expression: 

, , , ,

ˆ ˆ ˆ( , , ) ( , , ) ( ) ( ) ( )
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o o
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for Gaussian initial conditions. Non-Gaussian initial conditions can also be considered as described by 
Rose [18] and Frederiksen et al. [5]; for the sake of brevity we do not detail the non-Gaussian initial 
conditions here but refer the interested reader to these papers and O’Kane and Frederiksen [13]. 

Thus, we obtain the closure: 

, 0 , ,

, ,

, ,

( , ) ( , ) ( , ) ( , , ) ( , , ) ( , )
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Here, the nonlinear damping (self-energy): 

,

, ,

( , )
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the nonlinear noise (self-energy): 
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and covariance of the bare random forcing: 

0 0 0
ˆ ˆ( , , , ) ( , ) ( , )a aF t s f t f s� �� �� 	 � � �k k k k (22)

We assume homogeneous random forcing so that: 

kkkkkk ��	�� ,00 ),,,(),,,( ��� stFstF aa
(23)

where kk �,� is the Kronecker delta function. Thus ),,,(),,,( 00 stFstF aa kkkk �	�� ��  when kk 	� and is 

zero otherwise. We have introduced the more general form for later convenience.  
The equation for the response function is derived in a similar way. We find: 
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with abab ttR �� lklk ,, ),( 	  and �  is the Kronecker delta function. 

The singe-time cumulant equation may be obtained from the expression: 
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This yields: 
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The system of statistical dynamical equations (11) for the mean-field, (19) for the two-time 
covariance, (24) for the response function and (26) for the single-time covariance constitute the 
IDIA closure in conjunction with the expressions (20) and (21) for the nonlinear damping and 
nonlinear noise. 

3.2. Langevin Equation for IDIA Closure 

As in the case of the homogeneous DIA closure equations [50], the general inhomogeneous IDIA 
closure equations (11), (19) (24) and (26) have an exact stochastic model representation [22]. The 
generalized Langevin equation which exactly reproduces the IDIA closure equations is as follows: 
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where:
(1) (2)( , ) 2 ( , , ) ( ) ( ) ( )a abc b c

Sf t K t t� � �� �	 �� p q
p q

k k p q k,p,q (28)
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Here, )()( taj
k� , where j = 1 or 2, are statistically independent random variables such that: 

),()()( ,
)()( ttCtt abjjbjaj ��	�� �

��
� lklk ��� (29)

and:

,( ) ( ) ( , )a b abt t C t t� � � �� �� �	k l k l
� � (30)

In Equation (29), jj ��  is the Kronecker delta function. 
The Langevin equation (27) guarantees realizability for the IDIA closure equations. The closure 

equations also preserve conservation of the quadratic invariants of the original equations (in the 
absence of forcing and dissipation). 

4. Self-Energy Closure Equations — SE 

In the IDIA equations of Kraichnan [22] the covariance and response function equations are second 
order in perturbation theory, or in the interaction coefficient. This implies that the mean-field equation 
becomes third order in the interaction coefficient. In contrast, in the QDIA [10,12] closure both the 
mean-field equation and the covariance and response functions are second order in perturbation theory. 
Importantly, in the QDIA closure the eddy-eddy interaction is expressed in terms of self-energies in 
the mean-field equation as well as in the covariance and response function equations. Thus the bare 
dissipation is renormalized by the nonlinear damping (self-energy) and the bare force is renormalized 
by the eddy-topographic interaction (self-energy) in the mean-field equation. 

In this section we develop the Self-Energy closure equations which are structurally similar to the 
QDIA closure but allow for more complex interaction terms since they do not employ the quasi-
diagonal approximation. 

4.1. Statistical Closure Equations 

The derivation of the SE closure equations differs from that for the IDIA equations in the following 
ways. Firstly, in the mean-field equation (11), the first order expression for the two-point 
cumulant ),(, ttCbc

qp �� , derived in Equation (B.9) is used. The mean-field equation then becomes 

second order in the interaction coefficients and perturbation theory. Thus, using equation (B.9) in 
Equation (11) yields: 
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where the eddy-topographic interaction (self-energy): 
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with the eddy-topographic force is given by: 
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and the nonlinear damping ),(, sta� kk �  is given in Equation (20). That is, the nonlinear damping due to 

eddy-eddy interactions that occurs in the mean-field equation is identical with that which occurs in the 
covariance equation (19). Substituting Equation (31) into Equation (11) yields the SE mean-field 
equation: 

0

, 0

( ) ( , ) ( )  ( , , ) ( , , ) ( )

( , , ) ( , , ) ( ) ( )

( , ) ( ) ( , ) ( , )
o

a a abc b c

abc b c

t
a a a

H
t

t D t A t h
t

K t t

ds t s s f t f t

� �

� �

� � � �

� � �

 �

� � �
�

� �

� �
�

� �� � � � � 	 � �
�

� � �� �

� � � � �

� ��

��

��

k k p q
k p q

p q
p q

k k k
k

k k k p q k p q

k p q k p q

k k

(34)

It is also clear from the second form on the right hand side of Equation (33) that the eddy-topographic 
force has a similar structural form to the Jacobian term involving the topography on the right side of 
Equation (34) (after using the delta function (7d) to eliminate the summation over p ).

Secondly, the SE equation for the two-time cumulant is obtained by using the first order 
expression for the two-point cumulant ),(, ttCbc

qp �� , derived in Equation (B.9), on the right hand side of 

Equation (17). Then, using as well Equation (19) we have the SE two-time cumulant equation: 
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Again this equation is for Gaussian initial conditions and non-Gaussian initial conditions can 
also be added by following the methods of Rose [18], Frederiksen et al. [5] and O’Kane and 
Frederiksen [13]. In Equation (35):  
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are nonlinear noise (self-energy) and nonlinear damping (self-energy) terms associated with 
eddy-mean-field and eddy-topographic interactions. Again, ),(, sta� kk �  and ),(, stS a�

kk �� are given in 

Equations (20) and (21). Both ),(, stS a�
kk ��  and ),(, stPa�

kk ��  are positive semi-definite in the sense of 

equation (19) of Bowman et al. [51]. 
Thirdly, the equation for the response function in the SE closure is derived in a similar way by using 

the first order expression for the response function in Equation (B.12) in the Jacobian terms on the 
right hand side of Equation (24). We find: 
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with abab ttR �� lklk ,, ),( 	  and �  is the Kronecker delta function. 

The singe-time cumulant equation for the SE closure then follows on using Equations (25) and (35):  
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In summary, the Self-Energy closure consists of Equation (34) for the mean-field, (35) for the 
two-time covariance, (38) for the response function and (39) for the single-time covariance together 
with the expressions (20), (21), (32), (36) and (37) for the self energy terms. 

4.2. Langevin Equation for SE Closure 

The SE closure, like the IDIA of Section 3 has an exact stochastic model representation. The 
generalized Langevin equation which exactly reproduces the inhomogeneous SE closure equations is 
as follows: 
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where:
(1) (2)( , ) 2 ( , , ) ( ) ( ) ( )a abc b c

Sf t K t t� � �� �	 �� p q
p q

k k p q k,p,q (41a)

(3)( , ) ( , , )[2 ( , , ) ( ) ( , , ) ] ( )a abc c abc c b
Pf t K t A h t� � �� � �	 � � ��� q q p

p q
k k p q k p q k p q (41b)

Here, )()( taj
k� , where j = 1, 2 or 3, are statistically independent random variables such that 

),()()( ,
)()( ttCtt abjjbjaj ��	�� �

��
� lklk ��� (42)

and:

,( ) ( ) ( , )a b abt t C t t� � � �� �� �	k l k l
� � (43)

In Equation (42), jj ��  is the Kronecker delta function. 
The Langevin Equation (40) guarantees realizability for the SE closure equations. The closure 

equations also preserve conservation of the quadratic invariants of the original equations (in the 
absence of forcing and dissipation). 

5. Subgrid-Scale Parameterizations 

We can now derive expressions for subgrid scale terms when the resolution is reduced from CT to 
CR < CT, where CR is the resolution of the resolved scales. In the previous sections, the summations 
over p and q are such that TT CqCp �� ,  or T),( &qp  where the set: 

� �, ,  T Tp C q C	 � �p qT (44)

We also define the set R  of resolved scales by: 

� �, ,  R Rp C q C	 � �p qR (45)

and the set S of subgrid scales by: 

	S T -R (46)

The functions defined in the previous sections, which involve summations over p and q, can now be 
split into resolved scale terms for which R),( &qp and subgrid scale terms for which S),( &qp . For 

S),( &qp  we define ),(, stabS
kk � , ),( tf a

H kS , ),(, stabS
kk �$  by right hand side of Equations (20), (33), (32), 

),(, stS abS
kk �� , ),(, stabS

kk �� , ),(, stP abS
kk ��  by (21), (36), (37), and ),( tf a

S kS  and ),( tf a
P kS  by Equations (41a) 

and (41b) respectively. Similar expressions with superscript R  may be defined for R),( &qp .

5.1. Large Eddy Simulations with SE Subgrid Model 

First we consider the modifications to the equations for direct numerical simulation when the SE 
closure based subgrid model is applied to form equations for large eddy simulation. 
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5.1.1. Mean-Field Equation for Large Eddy Simulations with SE Subgrid Model 

The dynamical equation for the mean resolved scale vorticity, including subgrid scale terms, may 
then be derived as follows. For R),( &qp , we use the original Equation (11) for �� a

k�  and the 
subgrid scale contributions are taken from the closure based Equation (34). Thus, for RCk �  we have: 
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This can also be written in the form: 
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where the two-time renormalized dissipation elements: 

),,,()(),(),,,( 0 stdstDstd a
d

a
r kkkkkk ����	� ���� � (48a)

and )( st ��  is the Dirac delta function. Here we have defined the two-time drain dissipation 
elements by: 

,( , , , ) ( , )a a
dd t s t s� � �� 	 k kk k S

(48b)

As well, the renormalized mean force is defined by: 

0( , ) ( , ) ( , ) ( , )a a a a
r hf t f t f t j t	 � �k k k k (48c)

where the ‘residual Jacobian’ term is given by: 
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Here, we have also denoted the subgrid eddy-topographic force by: 

( , ) ( , )a a
h Hf t f t%k kS (48e)

5.1.2. Fluctuating Field Equation for Large Eddy Simulations with SE Subgrid Model 

Again, for R),( &qp  the equation for the resolved scale vorticity fluctuations is taken from 
Equation (12) and for the subgrid scale terms the Langevin Equation (40) is used with aa

kk �� ˆ~
"

to give: 
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This can also be written as: 

),(ˆ])(ˆ,,+}),()(ˆ)(ˆ

)()(ˆ)(ˆ)({),,([),,(

)(ˆ),,,(ˆ)(ˆ

,

),(

tf+ht)(AttCtt

ttttK

sstddst
t

a
r

cbabcbccb

cbcbabc

t

t

a
r

a

o

kqpk

qpkqpk

kk

qpqpqp

qp
qpqp

k
k

k

������

&
����

�
�

��

�����	

��
�
�

��

� �

���

�����

�� ��

R

(49b)

where the two-time renormalized dissipation elements: 

0
ˆ ˆ( , , , ) ( , ) ( ) ( , , , )a a

r dd t s D t s d t s� �� ��� � �	 � �k k k k k k (50a)

Here, the two-time drain dissipation elements are given by: 
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As well, the renormalized random force is defined by: 
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These mean-field and fluctuation equations are generalizations of the original Equations (11) and 
(12) with additional forcing contributions and linear terms modifying the bare viscous dissipation; 
these additional terms are due to the subgrid scale eddies. Note also that the linear terms now have an 
integral representation. That is, our parameterization of the subgrid scale eddies changes the original 
coupled ordinary differential Equations (11) and (12) to coupled integro-differential equations for the 
resolved scales. This is due to the subgrid scales having memory effects. 

5.2. Self-Energy Closure with SE Subgrid Model 

Mean-Field Equation for Self-Energy Closure with SE Subgrid Model 

The mean-field equation for the Self-Energy closure with the SE subgrid model is again given by 
Equation (47) but with the replacement: 
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5.3. Response Function and Covariance for Self-Energy Closure with SE Subgrid Model 

The equation for the response function, including subgrid terms, follows from Equation (38): 
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Similarly, from Equation (35), the two-time cumulant equation including subgrid terms is: 
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Finally, from Equation (39), the single-time cumulant equation including subgrid terms is: 
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Here, we have defined renormalized noise covariance matrix elements by: 
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The renormalized random force ),(ˆ tf a
r k  is given by Equation (50c), ),,,(0 stF a kk ���  is given in 

Equation (22) and the backscatter covariance matrix elements by: 

, ,
ˆ ˆ( , , , ) ( , ) ( , ) ( , ) ( , )a a

b b bF t s S t s P t s f t f s� �� �� �
� �� �� �� 	 � %� � �k k k kk k k kS S (55b)

As well, the stochastic backscatter noise ),(ˆ tf a
b k  is given by Equation (50d). 

5.4. Langevin Equation for Self-Energy Closure with Subgrid-Scale Parameterizations 

The generalized Langevin equation which exactly reproduces the Self-Energy closure equations 
with subgrid-scale parameterizations is as follows: 
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where:
(1) (2)

( , )    
( , ) 2 ( , , ) ( ) ( ) ( )a abc b c

Sf t K t t� � �� �
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	 � � p q
p q

k k p q k,p,qR
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(57a)

(3)
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(57b)

Again, )()( taj
k� , where j = 1, 2 or 3, are statistically independent random variables that satisfy 

Equation (42) and Equation (43) also holds. The Langevin Equation (56) guarantees realizability for 
the elements of the covariance matrices in the SE closure equations. 

6. Effective Dissipation and Viscosity Parameterizations 

We can also write Equation (34) in the form:  
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(58)

where renormalized generalized drain dissipation matrices appearing in Equation (58) are given by: 

0( , ) ( , ) ( , )ab ab ab
r dD D D� � �	 �k k k k k k (59)

Here the drain dissipation matrix elements for the mean-field are given by: 
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(60)

In general ),( kk �ab
rD  and ),( kk �ab

dD are time-dependent but in our previous studies we have 

primarily been interested in their properties at statistical steady state. 
We also define the drain dissipation matrix elements for fluctuations by: 
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(61)
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Thus:
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where:
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r dD D D� � �	 �k k k k k k (63)

We can define the backscatter dissipation matrix elements by: 
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Further, we define the net dissipation matrix elements by: 
ˆ ˆ ˆ( , ) ( , ) ( , )ab ab ab

n d bD D D� � �	 �k k k k k k (64b)

and the renormalized net dissipation matrix elements by: 

0
ˆ ˆ( , ) ( , ) ( , )ab ab ab

rn nD D D� � �	 �k k k k k k (64c)

Again, generalized viscosity matrix elements may be defined as follows: 
2( , ) ( , )ab abD k� �

( (� �	k k k k (65a)

and:
2ˆˆ ( , ) ( , )ab abD k� �

( (� �	k k k k (65b)

where .,,,,,0ofanydenotes rnrndb(

In general, and specifically if we include the beta-effect in our analysis, the dissipation matrix 
elements ),(kabD( ),(ˆ kabD(  and the viscosities ),(kab

(�  )(ˆ kab
(�  are complex; both the viscosity and 

wave frequency are renormalized by the subgrid scale eddies. If our system is quasi-isotropic, as well 
as quasi-diagonal, then these terms are real viscosities and only depend on k, the magnitude of k. This 
is the case, in particular, near canonical equilibrium.  

We note that Equation (58) is identical to Equation (11) except that the bare dissipation )(0 k�aD  is 
replaced by the renormalized dissipation )(k�a

rD , the bare force ),(0 tf a k  is replaced by the 
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renormalized force ),( tf a
r k  and the summation is now for R)( &qp,  rather than over the whole space 

T)( &qp, . Similarly Equation (62) is the same as Equation (39) but with )(ˆ)(0 kk �� a
r

a DD " ,

),,(),,(0 stFstF a
r

a kk �� "  (or ),(ˆ),(0̂ tftf a
r

a kk " ) and RT " . Our analysis also shows that the 

subgrid-scale eddies affect the mean and fluctuating-parts of the field variables differently. In general, 
the mean and fluctuating parts of the fields relax at different rates as seen from Equations (60) 
and (61).

7. Derivation of QDIA Closure from Self-Energy Closure 

The Self-Energy closure provides a general formalism for subgrid modeling for the mean-field 
equation as well as the transients. It is also convenient for deriving simpler, more computationally 
tractable closures, for different geometries and boundary conditions. In this section we apply it to 
derive the QDIA closure theory for planar geometry. The QDIA may be obtained from the SE closure 
equations as follows. In the SE closure equations of Section 5 we suppose that the two-point cumulants 
and response functions are diagonal in spectral space to lowest order. Thus, to lowest order: 

, ,( , ) ( , )ab abR t t R t t �� �� �	k k k k k (66a)

,( , ) ( , )ab abR t t R t t� �%k k k (66b)

, ,( , ) ( , )ab abC t t C t t �� �� �	k k k k k (66c)

,( , ) ( , )ab abC t t C t t�� �%k k k (66d)

Then the mean-field Equation (34) becomes:  
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where the nonlinear eddy-eddy damping, eddy-topographic force and eddy-topographic interaction are 
given by: 

( , ) 4 ( , , ) ( , , ) ( , , ) ( , ) ( , )a abc b ct s K K R t s C t s� �!� � ! � � �	 � � � ���k p q
p q
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( , ) ( , )
o

t
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H
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f t h ds t s� �$	 �k kk (68b)

( , ) 2 ( , , ) ( , , ) ( , , ) ( , ) ( , )a abc b ct s K A R t s C t s� �!� � !$ � � �	 � � ���k p q
p q

k p q k p q p q k (68c)

This equation is for initial conditions that are homogeneous in the horizontal. Inhomogeneous initial 
conditions can also be treated following the method of O’Kane and Frederiksen [13]. 
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The two-point SE Equation (35) reduces to:
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This equation is again valid for Gaussian initial conditions and can be generalized to non-Gaussian 
and inhomogeneous initial conditions following the approach of O’Kane and Frederiksen [13]. In 
Equation (69):

0 0 0
ˆ ˆ( , , ) ( , ) ( , )a aF t s f t f s� �	 � � �k k k (70a)

�� �����	
p q

qpk qpkqpkqpk ),(),(),,(),,(),,(2),( stCstCKKstS cbabca !���!� � (70b)

( , ) ( , , ) ( , )[2 ( , , ) ( ) ( , , ) ]

[2 ( , , ) ( ) ( , , ) ]

a b abc c abc cP t s C t s K t A h

K s A h

� �

��! ! ��! !

� �

�

� � �	 � � �

# � � � � � � � � �

��k p q q
p q

q q

k p q k p q k p q

k p q k p q
(70c)

]),,()(),,(2[

]),,()(),,(2[),(),,(),(

!��!!��!

��

�

���

qq

p q
qqpk

qkpqkp

qpkqpkqpk

hAsK

hAtKstRst cabccabcba

���������#

����	 �� ���

(70d)

and ),( sta� k  is given in Equation (68a).  
Again, the SE response function Equation (38) reduces to:
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with abab ttR �	),(k  and ab�  is the Kronecker delta function. Further, the single-time two-point 
cumulant Equation (39) becomes: 
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Finally, the first order expression for the SE closure two-time cumulant in Equation (B.9) 
reduces to: 
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This is just the QDIA expression in Equation (A.9) of Frederiksen [12]. As well, the first order 
expression for the response function in Equation (A.12) becomes: 
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This is the QDIA expression in Equation (A.12) of [12].

8. Closure Equations for Quasigeostrophic Turbulent Flow on a Sphere 

Next, we consider dynamical and closure equations in spherical geometry as a specific example of 
the generality of the closure equations. 

8.1. Quasigeostrophic Equations for Flow on the Sphere 

The two-level quasigeostrophic equations for geophysical flows on the sphere take the same form as 
in Equation (4). However, the x  and y  coordinates for planar geometry are replaced by 

.(latitude)sinandlongitude 		 )*  The derivation of the corresponding spectral equations is as 
outlined in Appendix with the result: 
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Here, )1()()( 00 �	 kkD aa kk �� �  and we use the notation:  
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where m  is zonal wavenumber and n is total wavenumber. Also, in the above spectral equations:  
* *

( , ) ( , )
a a a a

m n m n� � � �� �% 	 %k k (77a)
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Also ),,( qpkabcK  satisfies Equation (7c) and the interaction coefficients are given in Appendix A. 
The selection rules for non-zero interaction coefficients are as given in Equation (2.3) of Frederiksen 
and Sawford [52]. These equations also apply when )(0 k�aD includes the Rossby wave frequency due 

to differential rotation. 

8.2. Self-Energy Closure for Inhomogeneous Turbulent Flow on the Sphere 

For the case of quasigeostrophic turbulent flows on a sphere the SE closure equations are again as 
given in Section 4, as is the corresponding Langevin equation, with ),,( qpkSphere�  in Equation (77b) 
replacing ),,( qpk� .

8.3. Quasi-Diagonal Self-Energy Closure for Inhomogeneous Turbulent Flow on the Sphere 

We can again consider simplified closure equations for flow on the sphere by assuming that to 
lowest order the covariance and response functions are diagonal as in Equation (66). This yields a 
reduced system of realizable closure equations that are related to the QDIA closure but differ in that 
there is still more complex coupling in the total wavenumber because of the different selection 
rules (77b). 

8.4. QDIA Closure for Inhomogeneous Turbulent Flow on the Sphere 

Although applying the quasi-diagonal approximation at lowest order in spherical geometry does not 
yield equations with the simplicity of the QDIA closure of Section 7, the QDIA closure is still a 
realizable system for flow on the sphere with ),,( qpkSphere�  in Equation (77b) replacing ),,( qpk� . Its 
performance would of course need to be tested against direct numerical simulations. 

9. Discussion and Conclusions 

We have formulated the Self-Energy closure theory for inhomogeneous turbulent flow and more 
generally for classical fields with quadratic nonlinearities. The SE closure is a generalization of the 
computationally tractable QDIA closure [10–12]. It has a similar structure to the QDIA in that the 
nonlinear interactions are expressed as integrals of self-energy terms multiplied by the mean-fields, 
topography, covariance and response functions. The renormalization of the bare dissipation and 
forcing by eddy-eddy interactions is thus transparent in both the mean-field equation and in the 
equations for the propagators, the two-point cumulant and the response function. The SE closure 
equations are also second order in perturbation theory and in the interaction coefficients like the 
QDIA. However, the SE closure does not employ the quasi-diagonal approximation but allows more 
complex interactions like Kraichnan’s IDIA [22]. The IDIA differs from the SE closure in that the 
covariance of eddy-eddy transient interactions is not expressed as integrals over self-energy terms 
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multiplied by the mean-field and topography that makes renormalization transparent. In the IDIA the 
propagator equations are second order in perturbation theory and in interaction coefficients. Thus when 
the second order expression for the covariance is inserted in the mean-field equation it becomes third 
order in the interaction coefficient. 

We have shown how the SE closure can be used to formulate subgrid-scale parameterizations for 
both the mean-field and transient equations needed for large eddy simulations. It provides a general 
formalism for tackling the particularly difficult problem of determining the subgrid contribution to the 
mean-field dissipation and forcing [10,12,16,17,35,38,54].

9.1. Self-Energy LET and SCFT Inhomogeneous Closures 

Both the SCFT [3] and LET [4,1] closures for homogeneous turbulence may be formally obtained 
from the DIA by invoking the fluctuation-dissipation theorem [5–7], although this was not the way 
they were originally derived. In a similar way we can obtain Self-Energy SCFT (SE-SCFT) and LET 
(SE-LET) closures for inhomogeneous turbulent flows from the SE. For our multi-field equations we 
use the fluctuation-dissipation theorem: 

),(),()(),( ,,, ttCttRttttC baab ��
lkkk

k
lk ��

�

�	��,� � (78)

which relates the two-time cumulant to the response function and the single-time cumulant. Here )(x,

is the Heaviside theta function which is unity for x  positive and otherwise vanishes. The SE-SCFT is 
then obtained from the SE by replacing the prognostic equation for the two-time cumulant, 
Equation (35), by Equation (78). Similarly, the SE-LET closure is obtained from the SE by replacing 
the equation for the response function, Equation (38), by the expression in Equation (78) in terms of 
the single- and two-time cumulants.  

9.2. Regularization, Vertex Renormalization and Non-Gaussian Initial Conditions 

The SE closure can also be adapted to incorporate a regularization procedure following the 
approach of Frederiksen and Davies [14] and O’Kane and Frederiksen [13]. This corresponds to an 
empirical vertex renormalization in which the interactions are localized in wavenumber space. For the 
SE closure this is achieved by making the replacements: 

( , , ) ( / ) ( / ) ( , , )abc abc
c cA p k q k A� �", � , �k p q k q p (79a)

),,()/()/(),,( pqkqpk abc
cc

abc KkqkpK �� �,�," (79b)

in the two-time cumulant and response function equations, but not in the single-time cumulant 
equations, where )(x, is again the Heaviside theta function. For suitable interaction cut-off parameter 

c�  we expect that the SE closure will again have the correct power laws as well as accurately 
capturing the evolution of the energy containing scales. Again, non-Gaussian initial conditions can be 
included in the SE closure following the methods of Rose [18], Frederiksen et al. [5] and O’Kane and 
Frederiksen [13].  
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9.3. Maximum Entropy States of Canonical Equilibrium 

Statistical mechanics equilibrium states [52,55–58] corresponding to maximum entropy are exact 
solutions of the inviscid QDIA closure for the case of barotropic turbulent flows [10]. In the case of 
inviscid quasigeostrophic baroclinic turbulent flows canonical equilibrium states [59,60] are again 
exact solutions of the QDIA. These maximum entropy states are also exact solutions of the SE closure 
for the corresponding inviscid equations. So it is perhaps not surprising that near canonical equilibrium 
states the QDIA closure would perform well and could replace the SE or IDIA closures. What is more 
surprising is that the QDIA performs so well in all the studies mentioned in the Introduction including 
for far from equilibrium phenomena like Rossby wave dispersion in a turbulent environment. Thus 
employing the diagonal or homogeneous conjecture (66) to lowest order appears to be a good 
approximation. It is as if the only inhomogeneities that survive in the covariance and response 
functions are those generated by the mean-field and topography through Equations (73) and (74). 
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Appendices

Appendix A: Spectral Equations for Inhomogeneous Fluid Turbulence 

A.1. Spectral Equations for Quasigeostrophic Turbulent Flow in Planar Geometry 

Here, we summarize the conversion of the quasigeostrophic Equations (4) and (5) in physical space 
to spectral space. We focus on flow on the doubly periodic f-plane .20,20 �� ���� yx  However, 
the analysis can equally be generalized to flows in a channel, in a bounded domain, in an infinite 
domain [53] and to flow on a �-plane.  

The spectral equations are obtained by expanding each of the functions in Equation (4) in a Fourier 
series:  

� #	
k

k xkx )exp()(),( itt aa �� (A.1)
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and ).,(),,( yx kkyx 		 kx  Then, multiplying Equation (4) by )exp( xk #�i  and integrating over the ),( yx

domain, we find that with the identification ),()( ttq aa
kk ��  that the spectral equation takes the form 

given in Equation (6). Here, the interaction coefficients are defined by: 
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Also ),,( qpkabcK  is then determined by Equation (7c). 
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A.2. Spectral Equations for Three-Dimensional Turbulent Flow 

We can again convert the physical space Navier Stokes Equation (9) into spectral space by 
expanding the fields in Fourier series. The Navies Stokes equations for three-dimensional 
inhomogeneous turbulence in a periodic box, ��� 20,20,20 321 �	��	��	� xzxyxx , may 
then be written in the form [1]: 

0 0( ) ( ) ( ) ( , , ) ( ) ( ) ( ) ( , )a a abc b c au t D u t M u t u t f t
t
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�
� 	 �

� ��k k p q
p q

k k p q k k (A.3)

Similar equations apply on the infinite domain with the sums replaced by integrals [49]. Here, 
1,2,3),( 	atua

k  are the spectral components of the velocity fields in the zyx ,, directions respectively 
that depend on time t  and the vector ).,,(),,( 321

zyx kkkkkk 		k  The linear term involving )(0 k�aD
generally represents dissipation and ),(0 tf a k  is a forcing term. Also, the interaction coefficient: 

})()({2/)( baccababc kkiM kkk -�-	 (A.4a)
2( ) /ab ab a bk k�- 	 �k k (A.4b)

We next change the notation to put Equations (A.3) and (A.4) into the standard form (1) and (2). We 
make the identifications: 

( ) ( )a au t t��k k (A.5a)

( , , ) ( )abc ab cA i k	 -k p q k (A.5b)

Also ),,( qpkabcK  is then determined by Equation (7c). Thus Equation (A.3) is in the form (1) 
or (6) with 0	ahk .

A.3. Spectral Equations for Quasigeostrophic Turbulent Flow on the Sphere 

In spherical geometry the quasigeostrophic equations are again given by Equation (4) and the 
Jacobian is given by: 
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	 � (A.6)

Spectral equations corresponding to this system may be obtained by first expanding each of the 
fields in spherical harmonics in the horizontal, e.g., 
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Then, multiplying Equation (4) by )exp()( *) imPm
n �  and integrating over the ),( )* domain, 

we find that the spectral equations are as given in Equation (75). Here the interaction coefficients 
take the form: 

000 101 1

1

1

( , , ) ( , , ) [ ( 1)]

                        

p p

p q

A A i n n
dP dP

d P m P m P
d d

)
) )

�

�

	 	 � � #

0 1
# �2 3

4 5
� q p

k p q

k p q k p q

(A.9a)

011 110 1

1

1

( , , ) ( , , ) [ ( 1) ]

                        

p p

p q

A A i n n
dP dP

d P m P m P
d d

)
) )

�

�

	 	 � � �6 #

0 1
# �2 3

4 5
� q p

k p q

k p q k p q

(A.9b)

010 001 100 111( , , ) ( , , ) ( , , ) ( , , ) 0A A A A	 	 	 	k p q k p q k p q k p q (A.9c)

Also ),,( qpkabcK  is then determined by Equation (7c). 

Appendix B: Perturbation Theory 

Here, we derive expressions that relate the off-diagonal elements of the covariance and response 
function matrices to the mean-field and topography. These are needed in the formulation of the SE 
closure equations presented in Section 4. The closure equations are formulated by doing a formal 
perturbation theory. We suppose that the interaction coefficients on the right hand side of 
Equation (12) are multiplied by small parameter * . The closure equations are then formally 
renormalized and *  restored back to unity.  

We begin by expanding a
k�̂  in Equation (12) in a perturbation series: 
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where )(ˆ )0( ta
k� has a multivariate Gaussian distribution. Then, to zero order, we have from 

Equation (12) that: 
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Here, we note that )(),( 00 kkk ��� DDa 	�  when kk 	� and is zero otherwise. However, we keep the 

more general form since it makes the renormalization of the first order covariance and response 
functions more transparent. 

To first order we have: 
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Then the formal solution to (B.3) can be written, using the Greens function ),()0( stR a�
kk, �

corresponding to equation (B.2), as follows: 
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We can also express the two-time cumulant as: 

������������	�

��	��

���

��

)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ
)(ˆ)(ˆ),(

)1()0()0()1()0()0(

,

tttttt

ttttC
bababa

baab

lklklk

lklk

��*��*��

��
(B.5)

To lowest order in perturbation theory: 
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To first order in *  we have the general inhomogeneous contribution: 
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Using equation (B.4) then gives: 
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Next, we implement Equation (B.6) and perform the formal renormalizations 
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This completes the derivation of the expression for abC )1(
, lk � . We recall that abab CC )0(

,,
)0(

kklklk, �� 	 �  is in fact 

diagonal in spectral space and does not contribute to the Jacobian terms. 
In a similar way, we treat the response function. We define: 
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and performing a perturbation expansion we have: 
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To lowest order in perturbation theory: 
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To first order in* , the general inhomogeneous contribution is:  
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We then perform the formal renormalizations abab RR lklk, ,
)0(,1 ""* . This procedure yields: 
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Again at zero order abab RR )0(
,,

)0(
kklklk, �	  is diagonal in spectral space.  
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