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Abstract: The entropy calculation for radiation fluxes is reviewed and applied to simple 
radiation-surface interactions. A plate interacting with radiation from a hot object in the 
zenith of the hemisphere surrounded by a colder atmosphere is analyzed in detail. The 
entropy generation rate upon absorption and reflection of the incoming radiation is 
calculated and discussed. The plate is adiabatic in a first version (thermal equilibrium), 
then its temperature is fixed by allowing a heat flux to or from the plate. This analysis 
prepares the way towards an entropy generation minimization analysis of more complex 
radiation settings. 
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Nomenclature 

� area, m² � geometry parameter related to solid angle [see Equation (17)]; sr ��� geometry parameter of the inner radiation source; sr ��� geometry parameter of the (atmospheric) environment; 
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� speed of light in vacuum, c = 299,792,458 m/s; 	 overall hemispheric radiation entropy fluxes, W/m²/K; 	�� incoming radiation entropy flux from the atmosphere, W/m²/K; 	
 blackbody radiation entropy flux, W/m²/K; 	�� incoming radiation entropy flux from the inner source, W/m²/K; 	��
������� entropy flux of overall outgoing radiation, W/m²/K; 	���
����� entropy production rate by heat conduction; � overall hemispheric radiation energy flux, W/m²; ��� incoming radiation energy flux from the atmosphere, W/m²; �
 blackbody radiation energy flux, W/m²; ��� incoming radiation energy flux from the inner radiation source, W/m²; ��� radiation energy flux, emitted from the plate, W/m²; �����
�� reflected radiation energy flux from the atmosphere, W/m²; �����
�� reflected radiation energy flux from the inner source, W/m²; � Planck’s constant, h = 6.6261 × 10�34 J·s; �
 overall radiation entropy intensity of blackbody radiation, W/K/m²/sr; �� spectral radiation entropy intensity, W/K/m²/μm/sr; ��
 spectral entropy flux of blackbody radiation, W/K/m²/μm; � Boltzmann’s constant, k = 1.3806 × 10�23 J/K; �

 overall energy intensity of blackbody radiation, W/m2/sr ��  spectral radiation intensity, W/m2/μm/sr ��
  spectral intensity of blackbody radiation, W/m2/μm/sr �� density of number of photons, 1/m³;  ���� density of number of photons (equilibrium), 1/m³;  ��  normal vector of a surface; ! pressure, N/m²; "#  heat conduction flow to or from the plate, W/m²; $ entropy, J/K; %�� volume specific radiation entropy in equilibrium, J/m³/K; $#��� entropy production rate, W/K; % volume specific entropy, J/m³/K; %� volume specific spectral radiation entropy, J/m³/K; & absolute temperature, K; &�� temperature of (atmospheric) environment, K; &�� temperature of the plate, K; &�� equilibrium temperature, K; &�� temperature of inner radiation source, K; &' formal radiation flux temperature, K; &� spectral radiation temperature, K; () time, s; (* internal energy, J; *��� spectral energy of cavity radiation in equilibrium, J/μm; 
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+ volume specific internal energy, J/m³; +�� volume specific overall energy of cavity radiation in equilibrium, J/m³; +��� volume specific spectral energy of cavity radiation in equilibrium, J/m³/μm; +� volume specific spectral energy of cavity radiation, J/m³/μm; , Volume, m³; - average occupation number of the photon state in equilibrium; ./01 grey body entropy function 
� solid angle, sr; 0 emissivity coefficient; 0�� emissivity coefficient of inner radiation source; 0�� emissivity coefficient of outer (atmosphere) radiation source; 0�� emissivity coefficient of the plate; 0�� real part of complex dielectrical constant; 0� energy of a photon with wavelength �; 2 polar angle measured from normal of surface, °; 2�� polar angle of radiation from environment, °; 2�� upper limit of polar angle of inner radiation source, °; 3 azimuth angle, °; 4 wavelength in vacuum, μm; 5 Stefan–Boltzmann constant, � = 5.67 × 10�8 W/m²/K4 

1. Introduction 

Within thermal engineering society, the topic of thermal radiation is not well integrated. Its 
energetic contribution to heat transfer apparatus is well known, but in most cases the calculation 
procedure is quite involved [1]. The dependency of radiation fluxes from the solid angle as well as 
from wavelength makes the radiative transfer equation somewhat complicated and the material 
property research on emissivities, for example, is somewhat demanding. Application within the field of 
solar energy conversion, high temperature heat transfer and combustion engineering has kept research 
in thermal radiation alive, but still there are deficiencies. This is especially true for the thermodynamic 
basics of topics in radiation energy transfer and conversion. Even though solar radiation is an incoming 
energy flux which is free of cost, the efficiency of solar energy conversion, for example, is of interest. 
Photovoltaic cells as well as thermal solar power plants have a high material expenditure, which can be 
reduced only if the plant conversion efficiency is increased. The study of the basic mechanisms which 
influence the entropy generation upon reflection, absorption and transmission of thermal radiation 
interacting with technical surfaces can help to increase the radiation conversion efficiency. Some 
research efforts have been devoted to the entropy generation in atmospheric physics, see e.g., [2]; less 
is known about the entropy generation on radiation-surface interactions. Even though the validity of a 
general extremum principle on behalf of the entropy production is discussed controversially in 
literature [3] and outcomes are not clear at all in the moment, the calculation of entropy has to be clear 
to begin with. As a first step on the way to benefit from a possible entropy production extremum 
principle [4,5], the paper will recall the calculation procedure for arbitrary radiation entropy and derive 
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the entropy production rate on the occasion of reflection of radiation on a diffuse grey surface. It is 
shown that already this simple situation with simplifying assumptions gets quite involved on behalf of 
the role of the parameters of influence. Only after gaining a thorough understanding of the entropy 
production during basic radiation situations like reflection, absorption and transmission, more complex 
situations in radiative transfer shall be tackled. 

2. Radiation Entropy 

The calculation and handling of radiation entropy seems to be well known. This is certainly true for 
isotropic equilibrium radiation in an isothermal cavity (Hohlraum). But leaving this theoretical solid 
island to more practical nonequilibrium radiation fluxes with spectral and directional dependencies, the 
situation is less clear. Before entropy generation problems involving radiation fluxes are addressed and 
before entropy generation minimization is used as a design tool, the problems and possible 
uncertainties in calculating the entropy fluxes of arbitrary radiation are analysed in this chapter. 

2.1. Equilibrium Situation 

The volume specific spectral energy of cavity radiation as given in Equation (1) is the product of 
the number of photons eqNλ  in the wavelength interval λλλ d, +  and the energy of one such photon, 

λε  [6]: 

4

( , ) 1 1( , ) 8
exp 1

eq
eq eqU T h cu T N

hcV
k T

λ
λ λ λ

λλ ε π
λ λ

λ

⋅= = ⋅ = ⋅ ⋅ ⋅ ⋅
� � −� 	
 �

 (1) 

The number of photons is a product of the volumetric density of states, which reads 42 4 /π λ⋅  and 
the average occupation of those states given by the Bose–Einstein statistics, which is 

1(exp[ / ] 1)hc k Tλ −− . 
The factor of 2 in the density of states takes account of the two possible planes of polarization. As 

the density of states used in the Planck formula Equation (1) is an integral approximation, the Planck 
formula holds true only if 1/ 3 >>λV . For extremely small cavities or very low temperatures a 
summation of the quantum states has to be performed instead of an integration [7]. 

The radiation within a cavity originates, as in all other situations, from the material of the cavity 
surface. All matter with & 6 7(K radiates. The reason for cavity radiation having a characteristic 
spectrum which does not show the specific fingerprint of the boundary material is the entropy of the 
closed radiation system, which takes a maximum value in the equilibrium situation. To calculate this 
radiation entropy the fundamental thermodynamic equation: 

d d dU T S p V= ⋅ − ⋅  (2) 

is used [8]. If the volume V is constant )0d( =V , derivation of the volumetric version of Equation (2) 
on behalf of the wavelength λ  gives the differential of the spectral radiation entropy: 

(d ) (d )d d deq equ T su s T T sλ λλ λ λ
∂ ∂ ∂
 �= = ⋅ + =� �∂ ∂ ∂� �

 (3) 
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The temperature showing up in Equation (2) is the thermodynamic absolute temperature of the 
system under consideration, the “gas of photons” in this case. It is the temperature of the system in the 
moment in which there is an infinitely small change of its energy content as described by Equation (2). 
If an “equation of state” is known for this system as is true for the equilibrium photon gas, 
Equation (1), the temperature can be given as: 

[ ]1/8ln 5 +⋅⋅
⋅=

λ
λ λπλ uhck

chT  (4) 

where λT  is a spectral temperature valid for radiation in the wavelength interval , dλ λ λ+ . For 
equilibrium radiation in a cavity, Equation (4) gives, fortunately, one uniform temperature only for all 
wavelengths, i.e., there is a special thermal equilibrium situation were eqTT == constλ . This is no 
surprise, as Equation (1) holds for equilibrium radiation only. So one basic question is whether 
Equation (4) can be used for non-equilibrium situations as well. The spectral temperature λT  is shown 
as a function of wavelength λ  for different non-equilibrium situations in Figure 1. 

Figure 1. The dependency of the spectral radiation temperature(&� on wavelength � for 
grey body radiation. The parameter is the emissivity 0 8 �9�%), the grey body temperature 
is & 8 :777(�. 

 
 

A non-equilibrium situation is introduced by means of a dilution factor 0 in the density of states for 
photons, leading to the model of grey radiation, as will be discussed later. It is seen that grey radiation 
is no longer isothermal. Equation (3) can be integrated to give the volume specific spectral entropy of 
cavity radiation as: 

( ) ( )4 4

1 8 1 8d ln 1 d 1 ln 1 ln� �
�k �ks u x x x x x

T � x �

 �= = + = + + − ⋅� �� � 
 �� �� �  (5) 
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Here the substitution ( ) 1]1[exp: −−= Tkhcx λ  has been used, which is the average occupation 
number of the photon state in equilibrium. Integrating Equation (5) over wavelength gives: 

4 ( )
3

eq
eq u Ts

T
=  (6) 

which is the same as if Equation (2) would have been used not for spectral values but for the  
Stefan–Boltzmann equation directly: 

5 4
3

5 3 3

d 4 8 4 ( )
3 3

eq
eq u k u Ts T

T h c T
π

λ
⋅= = ⋅ ⋅ =� . 

Thus cavity radiation, a photon gas in equilibrium, is all consistent with (classical) thermodynamics. 
The thermodynamic temperature T plays a major role in this derivation, so special care has to be taken 
if there is no equilibrium situation any more, i.e., if eqT Tλ≠ . 

2.2. Fluxes 

Problems arise when the theoretically safe and well founded equilibrium status is abandoned and 
open flux situations are considered. The basic and very central idea here is the definition of a black 
body, which tries to freeze some results known from cavity radiation and transfer these results to  
non-equilibrium situations. So a black body of temperature T  has, by definition, the same radiation 
energy spectrum as an isothermal cavity at this same temperature. As the radiation emitted from an 
arbitrary surface is a result of quantum processes regarding adjustments in the occupation of energy 
levels which are very specific to individual species of molecules, there is no reason why a real body 
should radiate like a blackbody. The radiation spectrum is not automatically supplemented to give the 
characteristic cavity radiation equilibrium spectrum, there is no entropy maximization. The radiation 
emitted is a fingerprint of these oscillators. The radiation becomes anisotropic i.e., directional, thus 
there is now an additional variable, the solid angle � . The spectral radiation energy intensity Lλ  is 
analogous to the volume specific spectral energy of cavity radiation equλ , they are connected by 

Equation (7): 

d
d d cos d 4

U cL u
dt Aλ λλ θ π

= =
⋅ Ω ⋅ ⋅ ⋅

 (7) 

The speed of radiation in vacuum, c, takes care of changing a volume to an area specific flux, the 
solid angle of an unit sphere, π4 , takes care in changing an isotropic value to a directional value. The 
derivation is given in [9]. The cosine of the polar angle θ  seen in Equation (7) approaches unity for 
radiation normal to a surface. The spectral directional entropy accompanying the ray of radiation is 
defined in analogy to Equation (7): 

λλ πθλ
sc

At
SK

rad

4ddcosdd
d =

⋅⋅⋅Ω⋅
=

 (8) 
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The corresponding spectral and integral values for the special case of a black body are: 
2

5

2 1
exp[ / ] 1

b hcL
hc k Tλ λ λ

=
−

; 4bL Tσ
π

=  (9) 

( ) ( )4

2 1 ln 1 lnb kcK x x x xλ λ
= + + −� �
 � ; 34

3
bK Tσ

π
=  (10) 

with [ ]
5

2

1
2 exp / 1

Lx
hc hc k T

λ λ
λ

⋅= =
−

 and
 

5 4

2 3

2
15

k
c h

πσ = .
 

The black body spectrum is the only thermal radiation spectrum which can be calculated. All 
spectra radiated from real bodies are modifications from Equation (9) using additional factors like the 
spectral directional emissivity. 

In a nice and valuable recent contribution, Feistel [10] has shown that the entropy flux derived from 
Equation (10) for a black body is perfectly consistent with the Second Law of Thermodynamics. The 
radiation entropy flux as an area specific value is designated as D and is retrieved by integrating 
Equation (10) over the hemispheric solid angle: 

�
Ω

==Ω⋅⋅=
T
ETKD

b
bb

3
4

3
4dcos 3σθ  (11) 

where 4dcos TLE bb σθ =Ω= �
Ω

. 

It should be kept in mind that even if black body radiation is assumed for two bodies having 
different temperatures, there is a non-equilibrium situation resulting in a net energy flux between these 
bodies appearing as an anisotropic photon gas. Feistel suggests a formal flux temperature sT  
associated for example with the radiation exchange between a plan parallel pair of black body plates 
having the temperature hotT  and coldT  respectively. sT  is defined as: 

( )
( )

4 4

3 3

3
4

hot cold
s

hot cold

T T
T

T T

−
=

−
 with cold s hotT T T< <  (12) 

This is also known as a contact temperature of the stationary radiation field between a pair of black 
bodies. Using this contact temperature allows to keep the universal bilinear form seen in all entropy 
production formulas of generalized fluxes times generalized forces. It will be used later in the context 
of entropy generation minimization. 

Changing from the black body assumption to real body radiation profiles, one has to devote more 
attention to the temperatures. For arbitrary radiation spectra it is generally assumed that each spectral 
ray behaves thermodynamically independent as an individual phase. This is because the photons, once 
they leave the emitting surface, do not interact. This is not true for the surface molecules from where 
the photons originate. Each spectral directional radiation energy intensity ),( ΩλλL  can be assigned to 
have an individual temperature: 

2 5ln 2 1
hcT

k hc Lλ
λλ λ

=
� �⋅ ⋅ ⋅ +
 �

 (13) 

and a radiation entropy intensity λK calculated as: 
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4 2 2 2 2

2 1 ln 1 ln
2 2 2 2

L L L LkcK
hc hc hc hc

λ λ λ λ
λ

λ λ λ λ
λ

� �
 � 
 �⋅ ⋅ ⋅ ⋅= + + −� 	� � � �
� � � �
 �

 (14) 

for unpolarized radiation. For polarized or partially polarized radiation additional constraints for the 
radiation entropy has to be taken into account, see for example [11], but only unpolarized radiation 
shall be considered here. The temperature given in Equation (13) is the equivalent black body 
temperature for this given spectral intensity λL  as the Planck equation (1) is used. 

Please note that ( )T K Lλ λ λ≠ ∂ ∂ , also the term ( )T λ∂ ∂  appearing in Equation (3) will not be 
equal to zero for a real radiating flux from real bodies. Thus there is still some doubt on how to 
calculate thermodynamically consistent radiation entropy fluxes, because if the temperature is not a 
thermodynamic safe variable the fundamental thermodynamic formula, Equation (2), may not be 
correct. In this paper, the calculation procedure for the overall radiation energy flux E  and radiation 
entropy flux D : 

� �
Ω

Ω⋅=
λ

λ λθ ddcosLE  (15) 

λθλ ddcos Ω⋅= ��KD  (16) 

will be used with the simplifying assumption that the radiation is unpolarized. 
Other impact on designing the radiation entropy behaviour of a surface will come from the surface 

plasmon theory, which shows how to create partial coherent thermal radiation. When a surface is 
microstructured in a specific way, the normaly unseen surface waves can interfere with the far field 
waves which are responsible for the technical radiative emission of a body. The surface waves show up 
for materials for which the real part of the complex dielectric constant obeys 1reε < −  [12]. These 
surface waves travel in the surface plane of a body and are dampened to zero in less than one 
wavelength distance away from the surface plane. Thus in a standard radiation situation these surface 
waves do not play any role. For specific surface materials and a specific surface structure however, the 
surface waves interfere with the electromagnetic waves leaving the surface in normal direction. This 
interference can leave a fingerprint on the macroscopic emission spectrum of this surface in both 
directional and spectral behaviour [13]. If these electrophysical mechanisms are understood to a larger 
extent the specific design of surface properties to achieve a specific entropy characteristic comes into 
realm. This could lead to designer type surfaces for example in solar energy conversion to give 
favourable energy conversion results [14]. 

3. Entropy Production upon Absorption and Emission of Radiation 

In this section the entropy production rate irrS�  will be analysed for simple absorption and emission 

situations with radiating surfaces involved. Absorption and emission are basic steps in all solar energy 
conversion situations and many other technical applications as well. Thus it is of interest to understand 
the mechanism of entropy generation when radiation is reflected, absorbed or transmitted. 

A standard geometric situation will be analysed. The simple setup is a grey body with a flat surface 
A looking into a hemispheric environment, see Figure 2. The hemisphere is divided into two concentric 
spherical segments, one for representing the incoming radiation from some hot radiating source (the 
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sun for example), the other segment representing the ambient. The radiation source segment is 
concentric to the normal vector n�  of the surface A and it is characterized by a polar (opening) angle 
θin, by a source temperature inT  and by a constant emissivity inε . The second segment around the first 
one is considered as something like an atmosphere environment having a temperature atT  and a polar 
angle range 2in atθ θ π< < . It is considered to be unpolarized grey body radiation homogeneously 

distributed across the spherical segment shown shaded in Figure 2. The concentric arrangement for this 
incoming radiation is chosen because of its simplicity, the radiation situation is shown again in 
Figure 2b for clarity.  

Figure 2. (a) The geometric setting for the (small) plate A used in the example 
calculations. Shown are the two concentric regions of the hemisphere irradiating the plate. 
(b) Cross section of Fig. 2a to clarify the situation under consideration. The plate area A is 
infinitesimally small as compared to the hemisphere envelope. 

 
 

The solid angle Ω  can be combined with the cosine of θ in Equation (6) to give a simple single 
geometry parameter ( )θBB = , which allows to decompose the integration procedure: 

( ) ( ) ( ) ( )θπϕθθθθ
θ π

2

0

2

0

sinddsincos ⋅=⋅⋅⋅= � �B  (17) 

For the special case of a whole homogeneous hemisphere 2πθ =  we get B π= . 
For the more general case 2πθ ≤  the incoming grey radiation energy fluxes can be calculated as: 

( ) ( ) ( ) ( ) 4

0

2

0 0

ddddsincos TBLBLE σε
π
θλθλϕθθθ

λ
λ

π θ

λ �� � � =⋅=⋅⋅⋅⋅⋅=
∞

 (18) 

The entropy formula for grey body radiation is given by Landsberg and Tonge [15] as: 

( ) ( ) ( ) ( ) ( ) 3

0

2

0 0 3
4ddddsincos TXBKBKD σεε

π
θλθλϕθθθ

λ
λ

π θ

λ �� � � =⋅=⋅⋅⋅⋅⋅=
∞

 (19) 

with the grey body entropy function (dilution function):  

( ) ( )2
4

45 1( ) 1 ln 1 ln d
4

X z x x x x zε
π ε

= + + − ⋅� �
 ��  (20) 

in

n

A

θ

radiation source Tin

at

inθ  <θ    <π/2at

in

Βin = π.sin2
in

n

A

θ

θ

atmospheric
enviroment
radiation T

(a) (b)
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and 
( ):

exp 1
x

z
ε=

−
 and : hcz

k Tλ
= . 

An approximation of this function (20) for an error less than 2% value of reads 
1( ) 0,965157 0, 2776566ln 0,05115X ε ε
ε


 �≈ + +� �� �
. 

Landsberg and Tonge introduce this type of radiation as “diluted black body” radiation, because the 
factor ε  dilutes the occupation number �� in the Bose–Einstein statistics for photons, see Equation (1). 

Using a transformation dzd zLL =λλ  and zKK zdd =λλ , an interesting relation between the spectral 
radiation intensity λL  and the spectral radiation entropy intensity λK  for grey body radiation given by 
Equation (14) is shown in Figure 3 for different values of z. This relation reads: 

( )
4

2 3
2 3

2ln 1z
z

L kK z T x
T c h

= + ⋅ ⋅ + ⋅
 

and it shows that from a thermodynamic viewpoint arbitrary radiation is not a heat flux, nor is it 
corresponding to Equation (11). 

Figure 3. A graphic presentation of the relation �� 8 ��/��1 using the variable ; 8 ��</�4&1. 

 
 

Using the grey body approximation for both the plate with surface area A and the incoming 
radiation, the entropy production rate for the plate due to the radiation interaction will be calculated. 

The energy balance equation for the plate which has an emissivity plε  in a stationary state, see 
Figure 4, reads: 

	
�

�
�



�
−−−++⋅= atreflinreflplatin EEE

A
QEEA ,,0
�
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Figure 4. The setting for the energy and entropy balance equation. The system boundary is 
around the plate A, the outgoing radiation energy is atreflinreflplout EEEE ,, ++= . 

 
 

The energy radiation fluxes E for the grey body assumption are given by Equation (18): 

( ) ( )4 4 4 4 41 1in in in in
pl pl pl in in pl at at in in at at

B � B B � BQ � T � � T � � T � T � T
A� � � � �

− −= + − + − − −
�

.
 

Adiabatic Plate 

Assuming the grey plate on the ground to be adiabatic 
( 0)

!
Q =�

 for the first round and letting the 

environmental atmosphere be black ( )1=at�  we get 4440 at
in

plin
in

inplplpl T
�
B��T

�
B��T� −−⋅−= . 

We also assume that the reflection of the incoming radiation from the plate is diffuse. With these 
settings the temperature &�� of the plate can be calculated from the energy balance equation. 

The entropy balance equation reads accordingly with the same simplifying assumptions (adiabatic 
grey plate, black atmosphere in the outer spheric segment): 

[ ]outirratin DDDDA −++⋅=0  (21) 

Inserting the entropy radiation fluxes for the grey body assumption from Equation (19) we get, 
using the index pl for the outgoing radiation flux: 

( ) irrat
in

ininin
in

out DTBTXBD −−−−= 33

3
4

3
40 σ

π
πσεε

π  

or: 

( ) 0
3
4 !

33 >	
�

�
�



� −+−= at
in

ininin
in

outirr TBTXBDD
π

πεε
π

σ  (22) 

with ( ) λθλλ ddcos Ω⋅= �� out
out LKD  using the outgoing intensity outLλ : 

( ) ( ) ( ) ( )	
�

�
�



� −+−+= at
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b
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out TLBTLBTLL λλλλ
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εεε 1  



Entropy 2012, 14  
 

 

728

The entropy of the two incoming radiation fluxes inD  and atD  are additive, as they are not 

correlated to any extent. The entropy of the overall outgoing radiation flux from the plate into the 
hemisphere contains a reflection part and an own emission part. These must be calculated in one step, 
as its constituents are not additive. This is seen when the radiation energy fluxes leaving the plate are 
regarded, the addition of the own emission of the plate and the reflection does not result in grey body 
radiation any more. The radiation entropy flux leaving the plate has to be calculated by using 
Equations (10) and (11).  

Figure 5 shows the spectral radiation energy fluxes ( )E B Lλ λθ= ⋅  involved for the special case of 
an adiabatic plate ( Q�  = 0). For this specific incoming radiation situation ( inT  = 1000 K confined to 

0.01inB π= ⋅ ), the rest of the hemisphere at atT  = 300 K) the plate temperature adjusts to plT  = 371 K. 
Because the (shortwave) reflected part adds to the (longwave) own emission, the outgoing overall 
radiation energy flux from the plate is not grey anymore.  

Figure 5. The spectral radiation energy flux ( )E B Lλ λθ= ⋅  as a function of wavelength � 

for one specific, but arbitrary setting. The incoming radiation flux can be extrapolated from 
the shown reflected radiation. 

 
 
Figure 6 shows the corresponding radiation entropy fluxes ( )D B Kλ λθ= ⋅ . The simple addition of 

these outgoing entropy fluxes, which is shown by the dotted line in Figure 6, is erroneous, as both 
result from the same surface molecules and are thus correlated. If the plate is assumed to be specular 
reflecting instead of diffusive, the emitted radiation entropy would be lower. Reflection from a 
diffusive surface produces more entropy as from a specular surface, as the incoming radiation is 
diluted into the whole hemisphere. As a result of these radiation energy and radiation entropy fluxes 
upon emission and reflection from the plate there is an irreversible entropy production which will be 
discussed below.  
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Figure 6. The spectral radiation entropy flux ( )D B Kλ λθ= ⋅  as a function of wavelength, 

corresponding to Figure 5. The true outgoing entropy flux is less than the simple addition 
of the flux components. 

 
 
The entropy production for an adiabatic plate is calculated by Equation (22). Results are shown in 

Figure 7 and in Figure 8 as a function of the plate emissivity plε  and as a function of the geometric 
solid angle parameter inB  of the incoming radiation, which is given in Equation (17).  

Figure 7. The entropy production rate irrD  for an adiabatic plate shown as a function of the 
geometry parameter ��� and the emissivity of the plate 0��. The incoming radiation 
is black. 
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Figure 8. Cross sections of the 3-dim. plot in Figure 7. Some equilibrium temperatures of 
the plate are given in addition. 

 
 

So first a grey adiabatic plate will be analysed for diffuse reflection. Figures 7 and 8 have the 
following setting: 

The incoming radiation comes from two regions of the hemisphere as described before. The central 
hot radiation source is black radiation with a temperature of inT  = 1000 K, the surrounding 
atmospheric radiation is black at atT  = 300 K. The polar angle for the radiation source, expressed by 
the geometry function inB , is one variable varying from π<< inB0 . 

The plate is a grey radiator, thus showing a diffuse reflection. The overall outgoing radiation 
leaving the plate is non-grey because of the addition of the reflection part to the own (grey) emission.  

The emissivity of the plate is the second variable in those figures, it varies between 0.01 1.0plε< < . 
It is shown in Figure 7 that the polar angle of the incoming radiation has a pronounced effect on the 
entropy production rate. The emissivity has almost no influence. The analysis of the entropy 
production for this simple case hopefully leads to an understanding of the physical basics in radiation 
entropy production. The maximum values in Figure 7 result when the temperature difference between 
incoming radiation and plate as well as the difference between atmospheric temperature and plate are 
largest. The temperature of the (adiabatic) plate plT  is given for some different geometry values inB  in 
Figure 8, which is a cross section of Figure 7 at 5 different values for plε . The entropy production rate 
is zero for 0=inB  and for π=inB , because then there is a “Hohlraum” cavity situation. The 
maximum in the entropy production rate is reached when the plate temperature is closest to a “flux 
temperature” as adapted from Equation (12): 
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As the plate is diffuse reflecting in this case the geometry of the rays (the parallelism) is distorted 
(diluted) in the greatest possible way. More specular reflecting plates will give less entropy production. 
A similar story is true for the dependency of the entropy production in an adiabatic plate on the 
spectral distribution of the incoming radiation. If the incoming radiation would be quasi-monochromatic 
laser radiation and the plate would still be grey the entropy production is larger as compared to the 
case of incoming grey radiation, i.e., a matching between the incoming and outgoing type of radiation 
has to be done for entropy production minimization. The entropy production rate for cases where both 
the incoming radiation and the plate radiation is grey body radiation is shown in Figure 9. 

Figure 9. Extension of Figure 7 to cases were 0�� varies. The plate temperature at some 
maximum points is shown. 

 
 

It is seen again that the solid angle function inB  has a much larger influence on the entropy 
production than the emissivity of the plate plε . When the solid angle function inB  of the radiation 
source approaches 0→inB  or π→inB , the entropy production rate becomes zero as this again is the 
cavity radiation situation. The entropy production rate increases when the temperature of the plate 
differs more and more from the incoming radiation temperature. If inB  is small, the incoming radiation 
is dominated by the atmospheric radiation at 300 K and the plate temperature is also close to 300 K, 
thus the entropy production is small. Similar arguments hold true for large inB . Some plate 
temperatures are again assigned in Figure 9 to underline this argument. So, similar to other heat 
transfer situations, the temperature difference between the source and the recipient of the thermal 
energy is steering the entropy production. 

4. Entropy Production Minimization 

The aim of this analysis is to seek the minimum in entropy production for a given set of incoming 
radiation. If the incoming radiation is fixed, what specific feature and properties of the plate would 
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result in the smallest possible entropy production? The adiabatic case has been analysed above for 
simplicity, now the more interesting cases of withdrawal or the input of heat Q�  into the plate shall be 
analyzed. The conversion of internal energy of a body into radiation energy or vice versa is one of the 
most important energy conversion situations. The properties of the plate which one could adapt for 
optimization are the emissivity plε  and possibly the diffuse or specular reflection property. Later also 
the degree of polarization could be varied, but this out of scope of this study. In the non-adiabatic case 
the temperature of the plate can be adjusted by governing the heat input or heat or heat withdrawal of 
the plate. 

There are two main factors of influence on the radiation entropy flux, the spectral distribution of the 
radiation energy and the distribution within the solid angle. Parallel rays give less entropy than 
diverging rays.  

The entropy production rate in the non-adiabatic case is given for the case inT  = 1000 K in 
Figure 10. There truly is a minimum in the entropy production rate n as a function of the plate 
parameters. There is only a small dependence of the minimum entropy production rate on the 
emissivity of the plate, the geometry parameter inB  again has more effect, as this parameter dominates 
the plate temperature as long as inT and atT  are fixed. 

The incoming radiation is typically fixed, i.e., the parameters inT , inB , inε  and atT  are not free to 
choose. The engineer can take influence on the emissivity of the plate plε  and on the temperature plT  

to minimize the entropy production rate. The temperature of the plate is varied by controlling the heat 
flux to or from the plate, as done in Figure 10. The equation corresponding to this Figure is derived 
from Equation (21), now written for the non-adiabatic case, where heat Q�  is supplied or with drawn 
by conduction: 
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or, with the radiation entropy fluxes from Equation (19): 
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The minimum entropy production rate seen in Figure 10 is evaluated by taking the derivative 
( ) 0=∂∂ plirr TD . For simplicity, all radiation fluxes are assumed to be black. This results in: 
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which is true for 0=Q� . So as to be expected all types of heat fluxes, positive or negative, which keep 
the plate away from its thermal equilibrium create an additional entropy production. The influence of a 
second parameter on the entropy production rate is analysed by taking the derivative ( ) 0=∂∂ inirr BD . 
This results, when again taking all radiation as black radiation, i.e., taking 1=== platin εεε : 
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which gives: 
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With inplat TTT <<  this corresponds to the flux temperature in Equation (12) as suggested by 

Feistel [10]. The dependency of the entropy production rate on the emissivity of the plate plε  is, for a 

constant temperature plT , a continuously decreasing function.  

Figure 10. The entropy production rate irrD  for a non-adiabatic plate as a function of plate 
emissivity 0�� and plate temperature &��. 
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5. Conclusions 

The main contributors to the entropy production in radiation applications are radiation entropy, heat 
flux and temperature, as these are the constituents of the entropy balance equation. The radiation 
entropy itself has the spectral and the directional dependency of the radiant intensity, so the 
characteristics of the radiation spectrum and its geometric distribution across the hemisphere are of 
indirect influence. The influence of the degree of polarization has not been taken into account in 
this paper. 

The temperature difference between, for example, the incoming radiation and the surface onto 
which this radiation is impinging is of pronounced influence on the entropy production during 
absorption. The upper limit for this entropy production rate is given by heat conduction situation: 
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Only black body radiation carries the same content in entropy as a heat flux Q� . Real radiation has 
less entropy, down to monochromatic laser spotlight radiation with quasi zero entropy content. 
Reflection of radiation itself is free of entropy production, only if directed incoming radiation is spread 
into a broader solid angle, entropy will be produced. This is true, for example, when laser radiation is 
reflected by a diffuse surface. 

So the temperature of the surface is the key to minimum entropy production. When the temperature 
of the surface approaches the radiation temperature of the incoming radiation, the entropy production 
vanishes (cavity equilibrium situation). If this is not possible, the flux temperature: 
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gives the best choice, at least in the case of black body radiation. This result will probably be 
extendable to arbitrary radiation by: 
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for each wave length, but this has not been proven yet. 

6. Summary 

The simple case of grey incoming radiation being reflected and absorbed by a grey plate is the first 
step in learning about the entropy production when radiation is interacting with some material. Before 
calculating entropy production rates, the calculation procedure for radiation entropy must be clear. In 
the first part of the paper the radiation entropy calculation has been reviewed. The second part of the 
paper analyses the entropy production rate for a simple setting, where radiation is absorbed, reflected 
and emitted by a grey body surface. The entropy production rate is at an extremum when the plate is in 
a thermal equilibrium and attains a “flux temperature” given by &' 8 KLMN/��� O ��P�1</	�� O 	�P�1Q. 
The simple radiation interaction analysed in this paper can be extended to more complex radiation 
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transfer situations, where the extremum principle for the entropy production rate can help to optimize 
radiation heat transfer problems. 
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