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Abstract: In recent decades, the approach known as Finite-Time Thermodynamics has 
provided a fruitful theoretical framework for the optimization of heat engines operating 
between a heat source (at temperature hsT ) and a heat sink (at temperature csT ). The aim of 
this paper is to propose a more complete approach based on the association of Finite-Time 
Thermodynamics and the Bond-Graph approach for modeling endoreversible heat engines. 
This approach makes it possible for example to find in a simple way the characteristics of 
the optimal operating point at which the maximum mechanical power of the endoreversible 
heat engine is obtained with entropy flow rate as control variable. Furthermore it provides 
the analytical expressions of the optimal operating point of an irreversible heat engine 
where the energy conversion is accompanied by irreversibilities related to internal heat 
transfer and heat dissipation phenomena. This original approach, applied to an analysis of 
the performance of a thermoelectric generator, will be the object of a future publication. 
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Nomenclature 

Variable Unit Description 
hsT  K Temperature of the heat source

csT  K Temperature of the heat sink

hT  K Hot side temperature of the endoreversible converter

cT  K Cold side temperature of the endoreversible converter

hsS�  W/K Entropy flow rate transferred from heat source to endoreversible converter

csS�  W/K Entropy flow rate transferred from endoreversible converter to heat sink
S�  W/K Entropy flow rate involved in energy converter

scS�  W/K Cutoff entropy flow rate

T��  W/K Rate of total entropy generation within the endoreversible heat engine

hK  W/K Global thermal conductance of the heat exchanger at hot side

cK  W/K Global thermal conductance of the heat exchanger at cold side

hQ�  W Thermal power exchanged between the heat source and the endoreversible converter

cQ�  W Thermal power exchanged between the heat sink and the endoreversible converter
W�  W Mechanical power

maxW�  W Maximum mechanical power

1�  -- Energy conversion efficiency 

C�  -- Carnot efficiency

CNCA�  -- Chambadal-Novikov-Curzon-Ahlborn efficiency

1. Introduction 

The energy conversion efficiency of a two-reservoir heat engine is generally compared with the 
theoretical efficiency of the Carnot engine. The Carnot engine assumes that the heat transfers at the 
heat source and at the heat sink occur without entropy production which excludes any thermal gradient 
(cf. Figure 1).

Figure 1. Carnot cycle in T-S diagram. 
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Without thermal gradients between the “working fluid” and the thermostats, the heat flow rate 
involved are zero which according to the first law of thermodynamics leads to the paradoxical fact that 
the Carnot heat engine produces zero mechanical power but with a maximum efficiency C

hs

cs �
T
T� ���11 !

The question is whether there exists a more “realistic” limit of the energy conversion efficiency of 
bi-thermal heat engines besides the theoretical one of the Carnot engine. For this purpose, we have to 
admit that the heat exchange area and thus the global thermal conductances between the “working fluid” 
and the thermostats are finite. We then enter into the framework of a new approach of thermodynamics 
known as Finite-Time Thermodynamics, initiated independently by Chambadal [1] and Novikov [2] in 
1957 and then clarified by Feidt [3] and others [4–8]. The main idea of this approach is the coupling of 
a reversible converter with two heat exchangers which connect the reversible converter to thermostats 
(cf. Figure 2). The heat exchangers are modeled by thermal conductances with finite values. The system 
then forms what we call an “Endoreversible Heat Engine” where only the irreversibilities related to 
external heat transfer between thermostats and the converter are taken into account. But in reality, for a 
real heat engine, in addition to irreversibilities seen previously, there are also internal irreversibilities 
within the converter (internal heat transfer, mechanical dissipation, etc.) [9]. Obtaining an analytical 
solution of such machines is very important for engineers seeking to optimize the design and the control 
of them. This will constitute the subject of our future paper. 

Figure 2. Diagram of endoreversible heat engine. 
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Several studies have been conducted on this basis to optimize heat engines by taking finite 
constraints into account [10–15]. Besides the criterion of maximum conversion efficiency [16], other 
optimization criteria have been proposed: maximum power [17,18], maximum of power density [19], 
thermo-economic optimization [20,21] or ecological optimization [22,23]. 

Our approach detailed below is based on the association of the Finite-Time Thermodynamics 
approach and the Bond Graph Modeling approach [24]. The Bond-Graph Modeling approach  
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(cf. Figure 3) consists in expressing all the powers exchanged between two systems as the product of 
an effort variable e by a flow variable f (cf. Table 1). From a fundamental point of view, it is mainly 
based on the Onsager work [25,26]. In particular, a heat flow rate is the product of the temperature 
(effort variable) by the entropy flow rate (flow variable). The bond between two elements exchanging 
the power is completed by a half arrow indicating the positive direction of the power transfer (e.g., A to 
B, cf. Figure 3) and a so-called causal line indicating the element which imposes the effort on the other 
and receives the flow reaction. 

Figure 3. Bond-Graph representation of power exchange between two physical systems. 
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Table 1. Effort variables and flow variables in the multi-physical bond graph. 

Power Effort Flow 
Electrical Voltage [V] Current [A] 
Mechanical, translation Force [N] Linear velocity [m/s] 
Mechanical, rotation Torque [N.m] Angular velocity [rad/s] 
Fluid Pressure [N/m²] Volumetric flow rate [m3/s]
Thermal Temperature [K] Entropy flow rate [W/K] 
Chemical Chemical potential [J/mol] molar flux [mol/s] 

We will show in this paper that the combination of these two approaches allows one to find the 
natural control variable of the endoreversible heat engine and simplify the modeling of the system. In a 
subsequent paper we will give the analytical expressions of the characteristics of the optimal operating 
point of an irreversible heat engine, in which the energy conversion is accompanied by irreversibilities 
related to internal heat transfer and heat dissipation phenomena. By applying this new approach to a 
thermoelectric generator [27], the energy recovery potential can be expressed according to the physical 
parameters of the system. 

The optimization criterion used here is based on the maximum mechanical power as it is a relevant 
criterion for heat recovery systems in which the heat source is considered “free” such as the exhaust 
gases of a motor vehicle. These heat recovery systems (ORC system, thermoelectric generator) are 
potentially interesting in view of the technical solutions designed to reduce the (Total Cost of 
Ownership) TCO of vehicles and greenhouse gas emissions. 
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2. Modeling of Endoreversible Heat Engine at Steady State 

Figure 4 shows the Bond-Graph diagram of endoreversible heat engine. We assume that the machine 
works at steady state condition and thus, according to the second law of thermodynamics, we obtain the 
conservation of entropy flow rate S� through the reversible part of heat engine. By convention, the 
arrows next to the flow variables indicate the positive direction of power transfer. 

Figure 4. Bond-Graph diagram of an endoreversible heat engine at steady state. 
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2.1. Energy Balance with Finite Heat Transfer Constraint  

We make the following assumptions: 

� The temperatures of heat source and heat sink are constant ( hsT  and csT ).
� Heat exchangers have constant global thermal conductances ( hK  and cK ). 

� The machine operates at steady state. 

In this case, from the energy balances, we obtain: 

� �hhshhhshsh TTKTSTSQ ���� ��� (1)

� �csccccscsc TTKTSTSQ ���� ��� (2)

� � chch QQTTSf.eW ���� ������ (3)

It can be seen that the mechanical power � �ch TTSW �� �� is expressed as the product of a current e

(entropy flow rate) by a difference of potential f (temperatures). This is the advantage of the Bond-Graph 
representation which establishes analogies between different forms of energy. 
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2.2. Choice of the Control Variable of the Endoreversible Heat Engine 

As shown in Figure 4, the endoreversible heat engine receives a flow f  from the external 
environment and reacts with an effort e  which depends on this flow, the conductances hK , cK  and the 
temperatures hsT  and csT scale. Thus, the flow f  represents the natural variable to control the 
endoreversible heat engine. In the case of thermoelectric conversion, the flow f  represents the current 
imposed to the machine which reacts by the voltage (cf. Figure 5).  

Figure 5. Diagram of thermoelectric conversion. 
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In this case, we have the relations f.�S ���  and � �ch TT�e ��  where �  is the Seebeck 

coefficient [27]. As a result, the entropy flow rate S�  can act as control variable since it is the image of 
the flow variable f . This choice has the advantage of describing the operating point of the machine 
only by means of internal variables S� , hT  and cT .

We can now, thanks to the relations (1) to (3), express the temperatures hT  and cT  then the thermal 

flux and the mechanical power as a function of the entropy flow rate S�  inside the converter: 
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The energy conversion efficiency can also be expressed in terms of entropy flow rate S� :
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When we vary the entropy flow rate S� , the operating point of the machine moves. The relations (6) 
and (7) then form the parametric equations of the operating curve of the endoreversible heat engine 
that we are going to study in the [W� , 1� ] diagram. 



Entropy 2012, 14 648

2.3. Operating Range of the Endoreversible Heat Engine 

The range of variation of the entropy flow rate S�  for an endoreversible heat engine is  
implicitly defined by the inequality � � 0�SW �� . Note that the mechanical power � �SW ��  is zero at two 
remarkable points: 

Point (A): zero entropy flow rate: 
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Point (B): cutoff entropy flow rate: 
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At point (A), the entropy flow rate is zero, the machine produces zero mechanical power but gives the 
maximum energy conversion efficiency, i.e., Carnot efficiency. At point (B), with the cutoff entropy 
flow rate scS� , the machine behaves as two thermal resistances in series ( cK/1  and hK/1 ) with the 
only effect that the thermal power scQ� is transferred from the heat source to the heat sink without any 

production of mechanical power. Finally, the parametric representation of the operating curve of the 
endoreversible heat engine (cf. Figure 6) in the [W� , 1� ] diagram is given by the following relations: 
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By deriving the mechanical power given by Equation (10) with regard to the entropy flow rate S�

across the converter, we obtain: 
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Between points (A) and (B), there exists an optimal point (O) corresponding to the maximum 
mechanical power maxW� .
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Figure 6. Operating curve of the endoreversible heat engine. 
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2.4. Determination of the Maximum Mechanical Power and the Associated Efficiency 

The value of the entropy flow rate oS�  at the optimal point (O) can be obtained by solving the 

equation 0�
Sd
Wd
�
�

 [cf. relation (11)]. Given the expressions (4) to (7), we obtain all the characteristics 

of the point (O): 

Point (O): maximum mechanical power: 
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Finally, we obtain in a new way all the classical results and in particular the associated energy 

conversion efficiency at the optimal point 
hs

cs
CNCA T

T� �� 1  which depends only on the temperatures of 

heat source and heat sink [18].
The characteristics of this optimal point (O) can be determined through other ways. For example, 

Chambadal and Novikov chose the temperature hT  as control variable and through the energy and 
entropy balances, they obtained the mechanical power as function of the temperature hT  and then the 

optimal point is determined by a simple derivation [1,2]. The drawback of this method is that one  
can’t directly control the temperature hT . Other authors [18] used a more general method of Lagrange 
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multipliers to determine the optimal point but the inconvenient of this approach is that it doesn’t give 
directly the characteristics of the operating curve of the machine. 

The main advantage of our approach which consists of expressing all the variables of the heat 
engine as function of the entropy flow rate is that the operating range of the machine is explicitly 
defined by the cutoff entropy flow rate and this choice of control variable allows in a simple way to 
draw the operating curve of the machine and to determine the characteristics of the optimal point. 

2.5. Analysis of the Rate of Entropy Generation 

The expressions of the rate of entropy generation attached to heat transfers between the heat source/ 
endoreversible converter and the endoreversible converter/heat sink can be obtained from simple 
entropy balance applied to the two conductances [cf. relation (5)]: 
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The rate of entropy generation can be written as the product of an extensive variable (Q� ) with the 

gradient of an intensive variable associated (
T
1 ). Each transformation is accompanied by certain 

entropy generation. In the absence of gradient of intensive variable (temperature, pressure, 
concentration, etc.), no transformation is possible (Onsager theory). The total rate of entropy 
generation in the case of an endoreversible heat engine becomes:  
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By deriving twice the rate of total entropy generation T��  with regard to the entropy flow rate S� , we 
easily see that it increases faster and faster with the entropy flow rate (cf. Figure 7): 
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In particular, at point (A) corresponding to zero entropy flow rate, the rate of entropy generation as 
well as its derivative are zero. By applying a second order Taylor expansion of the mechanical power 
and the rate of entropy generation around 0�S� , we obtain from Equations (11) and (16): 

� � � �STTSW cshs
��� ��� 0 , � � 2110 S

KK
S�

hc
T

��� 		



�
��



�
��� (17)

By eliminating the entropy flow rate S� between the two expressions (17), we obtain the relation: 
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which shows that in the neighborhood of the origin, the rate of entropy generation is of the second 
order with regard to the mechanical power produced. This result provides an explanation for the 
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paradoxical character of the Carnot engine which gives the best energy conversion efficiency with zero 
production of mechanical power! 

Figure 7. Evolution of the mechanical power and the rate of entropy generation as a 
function of entropy flow rate. 
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3. Conclusions and Outlook 

By associating Finite-Time Thermodynamics and the Bond-Graph approach, we have shown in this 
paper the interest of selecting the entropy flow rate S�  involved in reversible energy conversion as the 
control variable of endoreversible heat engines. Indeed, this choice can be considered as a natural and 
convenient one to draw the operating curve of the machine. Furthermore, this choice allows one to 
obtain in a simple way: 

� The expressions of all the variables as a function of the control variable. 
� The range of variation of the control variable. 
� The parametric equations of the operating curve of the machine. 
� The characteristics of the optimal point according to the maximum mechanical power (CNCA 

efficiency,…). This approach is proposed in opposition to the great majority of existing results, 
using temperature as control variable (that is to say intensive variable and not extensive one). 

In a second paper we will give the analytical expressions of the characteristics of the optimal 
operating point of an irreversible heat engine in which the energy conversion is accompanied by 
irreversibilities related to internal heat transfer and heat dissipation phenomena. By applying this 
proposed approach to a thermoelectric generator, the heat recovery potential can be estimated with 
regard to the physical parameters of thermoelectric cells and heat exchangers. 
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