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Abstract: In this paper, we combine the two universalisms of thermodynamics and

dynamical systems theory to develop a dynamical system formalism for classical

thermodynamics. Specifically, using a compartmental dynamical system energy flow model

we develop a state-space dynamical system model that captures the key aspects of

thermodynamics, including its fundamental laws. In addition, we establish the existence

of a unique, continuously differentiable global entropy function for our dynamical system

model, and using Lyapunov stability theory we show that the proposed thermodynamic

model has finite-time convergent trajectories to Lyapunov stable equilibria determined by

the system initial energies. Finally, using the system entropy, we establish the absence

of Poincaré recurrence for our thermodynamic model and develop clear and rigorous

connections between irreversibility, the second law of thermodynamics, and the entropic

arrow of time.
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1. Introduction

The arrow of time and the second law of thermodynamics is one of the most famous and controversial

problems in physics. The controversy between the course of time (i.e., a timeless universe) and the

arrow of time (i.e., a constantly changing universe) can be traced back to the famous dialogues between

the ancient Greek philosophers Parmenides and Herakleitos on being and becoming. Parmenides, like



Entropy 2012, 14 408

Einstein, insisted that time is an illusion, that there is nothing new, and that everything is (being) and

will forever be. This statement is, of course, paradoxical since the status quo changed after Parmenides

wrote his famous poem. Herakleitos’ aphorism on the other hand is predicated on change (becoming);

namely, the universe is in a constant state of flux and nothing is stationary—T� ����� ��� 	�� o
��� ����.

Furthermore, Herakleitos goes on to state that the universe evolves in accordance with its own laws which

are the only unchangeable things in the universe (i.e., universal conservation and nonconservation laws).

His statements that everything is in a state of flux—T� ����� ���—and that man cannot step into the

same river twice, because neither the man nor the river is the same—�o����� �o�� ���o�� �����o��

�� 	�� o�	 �����o��� ���� �� 	�� o�	 ����—give the earliest perception of irreversibility of nature

and the universe along with time’s arrow. The idea that the universe is in constant change and there is an

underlying order to this change—the Logos (���o�)—postulates the existence of entropy as a physical

property of matter permeating the whole of nature and the universe.

Herakleitos’ statements are completely consistent with the laws of thermodynamics which are

intimately connected to the irreversibility of dynamical processes in nature. In addition, his aphorisms

go beyond the worldview of thermodynamics and have deep relativistic ramifications to the space-time

fabric of the cosmos. Specifically, Herakleitos’ profound statement—All matter is exchanged for energy,

and energy for all matter (����� �� ����o��� �� ����� 	�� ��� �������)—is a statement of the law of

conservation of mass-energy and is a precursor to the principle of relativity. In describing the nature of

the universe Herakleitos postulates that nothing can be created out of nothing, and nothing that disappears

ceases to exist. This totality of forms, or mass-energy equivalence, is eternal and unchangeable in a

constantly changing universe.

Energy is a concept that underlies our understanding of all physical phenomena and is a measure of

the ability of a dynamical system to produce changes (motion) in its own system state as well as changes

in the system states of its surroundings. Thermodynamics is a physical branch of science that deals

with laws governing energy flow from one body to another and energy transformations from one form

to another. These energy flow laws are captured by the fundamental principles known as the first and

second laws of thermodynamics. The first law of thermodynamics gives a precise formulation of the

equivalence between heat and work and states that among all system transformations, the net system

energy is conserved. Hence, energy cannot be created out of nothing and cannot be destroyed; it can

merely be transformed from one form to another.

The law of conservation of energy is not a mathematical truth, but rather the consequence of an

immeasurable culmination of observations over the chronicle of our civilization, and is a fundamental

axiom of the science of heat. The first law does not tell us whether any particular process can actually

occur, that is, it does not restrict the ability to convert work into heat or heat into work, except that

energy must be conserved in the process. The second law of thermodynamics asserts that, while the

system energy is always conserved, it will be degraded to a point where it cannot produce any useful

work. Hence, it is impossible to extract work from heat without at the same time discarding some heat,

giving rise to an increasing quantity known as entropy.

As discussed in the recent monograph [1], there have been many different presentations of classical

thermodynamics with varying hypotheses and conclusions. To exacerbate matters, the careless and

considerable differences in the definitions of two of the key notions of thermodynamics—namely, the
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notions of reversibility and irreversibility—have contributed to the widespread confusion and lack of

clarity in the exposition of classical thermodynamics over the past one and a half centuries. For example,

the concept of a reversible process as defined by Clausius, Kelvin, Planck, and Carathéodory has very

different meanings. In particular, Clausius defines a reversible (umkehrbar) process as a slowly varying

process wherein successive states of this process differ by infinitesimals from the equilibrium system

states. Such system transformations are commonly referred to as quasistatic transformations in the

thermodynamic literature.

Alternatively, Kelvin’s notions of reversibility involve the ability of a system to completely recover

its initial state from the final system state. Planck introduced several notions of reversibility. His main

notion of reversibility is one of complete reversibility and involves recoverability of the original state

of the dynamical system while at the same time restoring the environment to its original condition.

Unlike Clausius’ notion of reversibility, Kelvin’s and Planck’s notions of reversibility do not require the

system to exactly retrace its original trajectory in reverse order. Carathéodory’s notion of reversibility

involves recoverability of the system state in an adiabatic process [2–4], resulting in yet another definition

of thermodynamic reversibility. These subtle distinctions of (ir)reversibility are often unrecognized in

the thermodynamic literature. Notable exceptions to this fact include [1,5,6], with [1,6] providing an

excellent exposition of the relation between irreversibility, the second law of thermodynamics, and the

arrow of time.

The arrow of time [7] remains one of physics’ most perplexing enigmas [8–13]. Even though time is

one of the most familiar concepts humankind has ever encountered, it is the least understood. Puzzling

questions of time’s mysteries have remained unanswered throughout the centuries—questions such as,

Where does time come from? What would our universe look like without time? Can there be more than

one dimension to time? Is time truly a fundamental appurtenance woven into the fabric of the universe,

or is it just a useful edifice for organizing our perception of events? Why is the concept of time hardly

ever found in the most fundamental physical laws of nature and the universe? Can we go back in time?

And if so, can we change past events?

Human experience perceives time flow as unidirectional; the present is forever flowing toward the

future and away from a forever fixed past. Many scientists have attributed this emergence of the direction

of time flow to the second law of thermodynamics due to its intimate connection to the irreversibility of

dynamical processes [14]. In this regard, thermodynamics is disjoint from Newtonian and Hamiltonian

mechanics (including Einstein’s relativistic and Schrödinger’s quantum extensions), since these theories

are invariant under time reversal, that is, they make no distinction between one direction of time and the

other. Such theories possess a time-reversal symmetry, wherein, from any given moment of time, the

governing laws treat past and future in exactly the same way [15]. For example, a film run backward of

a harmonic oscillator over a full period or a planet orbiting the Sun would represent possible events. In

contrast, a film run backward of water in a glass coalescing into a solid ice cube or ashes self-assembling

into a log of wood would immediately be identified as an impossible event. Over the centuries, many

philosophers and scientists shared the views of a Parmenidean frozen river time theory. However, since

the advent of the science of thermodynamics in the 19th century, philosophy and science took a different

point of view with the writings of Hegel, Bergson, Heidegger, Clausius, Kelvin, and Boltzmann; one

involving time as our existential dimension. The idea that the second law of thermodynamics provides
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a physical foundation for the arrow of time has been postulated by many authors [9,16,17]. However, a

convincing argument of this claim has never been given [1,6,10,12,18].

In this paper, we use energy flow compartmental dynamical system theory to place thermodynamics

on a system-theoretic foundation so as to harmonize it with classical mechanics. In particular, we

develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as

compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale

dynamical system models that bridge the gap between classical and statistical thermodynamics.

Specifically, since thermodynamic models are concerned with energy flow among subsystems, we

use a state space formulation to develop a nonlinear compartmental dynamical system model that

is characterized by energy conservation laws capturing the exchange of energy between coupled

macroscopic subsystems. Furthermore, using graph-theoretic notions, we state two thermodynamic

axioms consistent with the zeroth and second laws of thermodynamics, which ensure that our large-scale

dynamical system model gives rise to a thermodynamically consistent energy flow model. Specifically,

using a large-scale dynamical systems theory perspective for thermodynamics, we show that our

compartmental dynamical system model leads to a precise formulation of the equivalence between work

energy and heat in a large-scale dynamical system.

Next, we give a deterministic definition of entropy for a large-scale dynamical system that is consistent

with the classical thermodynamic definition of entropy, and we show that it satisfies a Clausius-type

inequality leading to the law of entropy nonconservation. However, unlike classical thermodynamics,

wherein entropy is not defined for arbitrary states out of equilibrium, our definition of entropy holds

for nonequilibrium dynamical systems. Then, using Lyapunov stability theory, we show that in

the absence of energy exchange with the environment our thermodynamically consistent large-scale

nonlinear dynamical system model possesses a continuum of equilibria and is semistable, that is, it

has subsystem energies convergent to Lyapunov stable energy equilibria determined by the large-scale

system’s initial subsystem energies.

For our thermodynamically consistent dynamical system model, we further establish the existence

of a unique continuously differentiable global entropy function for all equilibrium and nonequilibrium

states. Using this global entropy function, we go on to establish a clear connection between

thermodynamics and the arrow of time. Specifically, we rigorously show the state irrecoverability and

hence the state irreversibility [6,19] nature of thermodynamics. In particular, we show that for every

nonequilibrium system state and corresponding system trajectory of our thermodynamically consistent

large-scale nonlinear dynamical system, there does not exist a state such that the corresponding system

trajectory completely recovers the initial system state of the dynamical system and at the same time

restores the energy supplied by the environment back to its original condition. This, along with the

existence of a global strictly increasing entropy function on every nontrivial system trajectory, gives a

clear time-reversal asymmetry characterization of thermodynamics, establishing the emergence of the

direction of time flow. Finally, since for every physical system energy and temperature equipartition

is achieved in finite time rather than merely asymptotically, we merge the theories of semistability

and finite-time stability developed in [20–22] to develop a mathematically rigorous framework for

finite-time thermodynamics.
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2. Dynamical System Model

In this section, we establish notation and provide a general axiomatic definition of a dynamical system.

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers, Z+

(respectively, Z+) denotes the set of nonnegative (respectively, positive) integers, Rq denotes the set of

q× 1 column vectors, (·)T denotes transpose, and Iq or I denotes the q× q identity matrix. For z ∈ Rq we

write z ≥≥ 0 (respectively, z >> 0) to indicate that every component of z is nonnegative (respectively,

positive). In this case we say that z is nonnegative or positive, respectively. Furthermore, let R
q
+ and

R
q
+ denote the nonnegative and positive orthants of Rq, that is, if z ∈ Rq, then z ∈ Rq

+ and z ∈ Rq
+ are

equivalent, respectively, to z ≥≥ 0 and z >> 0. Finally, let ∂S,
◦
S, and S denote the boundary, the interior,

and the closure of the set S, respectively.

We write ‖ · ‖ for the Euclidean vector norm, V ′(z) for the Fréchet derivative of V at z, Bε(α), α ∈ Rq,

ε > 0, for the open ball centered at α with radius ε, and z(t) → M as t → ∞ to denote that z(t)
approaches the set M (that is, for each ε > 0 there exists T > 0 such that dist(z(t),M) < ε for all

t > T , where dist(p,M) � infz∈M ‖p − z‖). Finally, the notions of openness, convergence, continuity,

and compactness that we use throughout the paper refer to the topology generated on D ⊆ Rq by the

norm ‖ · ‖.
Next, we define a dynamical system as a precise mathematical object satisfying a set of axioms. For

this definition, let U denote an input space that consists of bounded continuous U-valued functions on

[0,∞). The set U ⊆ Rm contains the set of input values, that is, at any time t ≥ t0, u(t) ∈ U. The space

U is assumed to be closed under the shift operator, that is, if u ∈ U, then the function uT defined by

uT (t) � u(t + T ) is contained in U for all T ≥ 0. Furthermore, we let Y denote an output space that

consists of continuous Y-valued functions on [0,∞). The set Y ⊆ Rl contains the set of output values,

that is, each value of y(t) ∈ Y , t ≥ t0. The space Y is assumed to be closed under the shift operator, that

is, if y ∈ Y, then the function yT defined by yT (t) � y(t + T ) is contained in Y for all T ≥ 0.

Definition 2.1 Let D be a Euclidean space with norm ‖ · ‖. A dynamical system on D is the octuple
(D,U,U,Y,Y, [0,∞), s, h), where s : [0,∞) × D × U → D and h : D × U → Y are such that the
following axioms hold:

(i) (Continuity): s(·, ·, u) is jointly continuous for all u ∈ U.
(ii) (Consistency): s(t0, x0, u) = x0 for all t0 ∈ R, x0 ∈ D, and u ∈ U.
(iii) (Determinism): s(t, x0, u1) = s(t, x0, u2) for all t ∈ [t0,∞), x0 ∈ D, and u1, u2 ∈ U satisfying

u1(τ) = u2(τ), τ ≤ t.
(iv) (Semigroup property): s(τ, s(t, x0, u), u) = s(t + τ, x0, u) for all x0 ∈ D, u ∈ U, and τ, t ∈ [t0,∞).
(v) (Read-out map): For every x0 ∈ D, u ∈ U, and t0 ∈ R, there exists y ∈ Y such that

y(t) = h(s(t, x0, u), u(t)) for all t ≥ t0.

We denote the dynamical system (D,U,U,Y,Y, [0,∞), s, h) by G. Furthermore, we refer to the map

s(·, ·, ·) as the flow or trajectory of G corresponding to x0 ∈ D, and for a given s(t, x0, u), t ≥ t0, u ∈ U,

we refer to x0 ∈ D as an initial condition of G. Given t ∈ R, we denote the map s(t, ·, ·) : D ×U → D
by st(x0, u). Hence, for a fixed t ∈ R the set of mappings defined by st(x0, u) = s(t, x0, u) for every

x0 ∈ D and u ∈ U gives the flow of G. In particular, if D0 is a collection of initial conditions such that
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D0 ⊂ D, then the flow st : D0 × U → D is the motion of all points x0 ∈ D0 or, equivalently, the image

ofD0 ⊂ D under the flow st, that is, st(D0,U) ⊂ D, where st(D0,U) � {y : y = st(x0, u) for all x0 ∈ D
and u ∈ U}. Alternatively, if the initial condition x0 ∈ D is fixed and we let [t0, t1] ⊂ R and u ∈ U, then

the mapping s(·, x0, u) : [t0, t1] → D defines the solution curve or trajectory of the dynamical system G.

Hence, the mapping s(·, x0, u) generates a graph in [t0, t1]×D identifying the trajectory corresponding to

the motion along a curve through the point x0 with input u ∈ U in a subset D of the state space. Given

x ∈ D and u ∈ U, we denote the map s(·, x, u) : R→ D by sx(t, u).

In general, the output of G depends on both the present input of G and the past history of G. Hence,

the output at some time t1 depends on the state s(t1, x0, u) ofG, which effectively serves as an information

storage (memory) of past history. Furthermore, the determinism axiom ensures that the state and thus

the output before some time t1 are not influenced by the values of the output after time t1. Hence, future

inputs to G do not affect past and present outputs of G. This is simply a statement of causality that holds

for all physical systems. Finally, we note that the read-out map is memoryless in the sense that outputs

only depend on the instantaneous (present) values of the state and input.

The dynamical system G is isolated if u(t) ≡ 0. Furthermore, an equilibrium point of the isolated

dynamical system G is a point xe ∈ D satisfying s(t, xe, 0) = xe, t ≥ t0. An equilibrium point

xe ∈ Dc ⊆ D of the isolated dynamical system G is Lyapunov stable with respect to the positively

invariant setDc if, for every relatively open subsetNε ofDc containing xe, there exists a relatively open

subset Nδ of Dc containing xe such that st(Nδ,U) ⊂ Nε for all t ≥ t0, where U = {u : R → Rm :

u(t) ≡ 0}. An equilibrium point xe ∈ Dc of the isolated dynamical system G is called semistable if

it is Lyapunov stable and there exists a relatively open subset N of Dc containing xe such that for all

initial conditions in N , the trajectory of G converges to a Lyapunov stable equilibrium point, that is,

‖s(t, x, 0)− y‖ → 0 as t → ∞, where y ∈ Dc is a Lyapunov stable equilibrium point of G and x ∈ N . The

isolated dynamical system G is said to be semistable if every equilibrium point of G is semistable.

Finally, for a given interval [t0, t1], where 0 ≤ t0 < t1 < ∞, letW[t0,t1] denote the set of all possible

trajectories of G given by

W[t0,t1]

= {sx : [t0, t1] ×U → D : sx(·, u(·)) satisfies Axioms (i)–(iv)

of Definition 2.1, x ∈ D, and u(·) ∈ U} (1)

where sx(·, u(·)) denotes the solution curve or trajectory of G for a given fixed initial condition x ∈ D
and input u(·) ∈ U.

3. Reversibility, Irreversibility, Recoverability and Irrecoverability

The notions of reversibility, irreversibility, recoverability, and irrecoverability all play a central

role in thermodynamic processes. In this section, we define the notions of R-state reversibility, state
reversibility, and state recoverability of a dynamical system G. R-state reversibility concerns the

existence of a system state with the property that a transformed system trajectory through an involution

operator R is an image of a given system trajectory of G on a specified finite time interval. State

reversibility concerns the existence of a system state with the property that the resulting system trajectory

is the time-reversed image of a given system trajectory of G on a specified finite time interval. Finally,
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state recoverability concerns the existence of a system state with the property that the resulting system

trajectory completely recovers the initial state of the dynamical system over a finite time interval.

For the results of this section we use the definition of a dynamical system given in Definition 2.1.

We start by establishing the notions of (ir)reversibility and (ir)recoverability of a dynamical system G
defined on a Euclidean spaceD.

Definition 3.1 Consider the dynamical system G defined on D. Let R : D → D be an involutive
operator (that is, R2 = ID, where ID denotes the identity operator on D) and let sx(·, u(·)) ∈ W[t0,t1],
where u(·) ∈ U. The function s−x : [t0, t1] ×U → D is an R-reversed trajectory of sx(·, u(·)) if there exist
an input u−(·) ∈ U and a continuous, strictly increasing function τ : [t0, t1]→ [t0, t1] such that τ(t0) = t0,
τ(t1) = t1, and

s−x(t, u−(t)) = Rsx(t0 + t1 − τ(t), u(t0 + t1 − τ(t))), t ∈ [t0, t1] (2)

Definition 3.2 Consider the dynamical system G defined on D. Let R : D → D be an involutive
operator, let r : U × Y → R, and let sx(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U. sx(·, u(·)) is an R-reversible

trajectory of G if there exists an input u−(·) ∈ U such that s−x(·, u−(·)) ∈ W[t0,t1] and
∫ t1

t0
r(u(t), y(t))dt +

∫ t1

t0
r(u−(t), y−(t))dt = 0 (3)

where y−(·) denotes the read-out map for the R-reversed trajectory of sx(·, u(·)). Furthermore, G is an
R-state reversible dynamical system if for every x ∈ D, sx(·, u(·)), where u(·) ∈ U is an R-reversible
trajectory of G.

In classical mechanics, R is a transformation that reverses the sign of all system momenta and

magnetic fields, whereas in classical reversible thermodynamics R can be taken to be the identity

operator. Note that if R = ID, then sx(·, u(·)), where u(·) ∈ U is an ID-reversible trajectory or, simply,

sx(·, u(·)) is a reversible trajectory. Furthermore, we say that G is a state reversible dynamical system
if and only if for every x ∈ D, sx(·, u(·)), where u(·) ∈ U is a reversible trajectory of G. Note that

unlike state reversible systems, R-state reversible dynamical systems need not retrace every stage of the

original system trajectory in reverse order, nor is it necessary for the dynamical system to recover the

initial system state.

The function r(u, y) in Definition 3.2 is a generalized power supply from the environment to the

dynamical system through the system’s input-output ports (u, y). Hence, Equation (3) ensures that the

total generalized energy supplied to the dynamical system G by the environment is returned to the

environment over a given R-reversible trajectory starting and ending at any given (not necessarily the

same) state x ∈ D. Furthermore, Equation (3) ensures that a reversible process completely restores the

original dynamic state of a system and at the same time restores the energy supplied by the environment

back to its original condition. The following result provides sufficient conditions for the existence of an

R-reversible trajectory of a nonlinear dynamical system G, and hence, establishes sufficient conditions

for R-state reversibility of the dynamical system G.

Theorem 3.1 Consider the dynamical systemG defined onD. Let R : D → D be an involutive operator,
and let sx(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U. Assume there exist a continuous function V : D → R and
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a function r : U × Y → R such that V(x) = V(Rx), x ∈ D, and for every x ∈ D and all t̂0, t̂1,
t0 ≤ t̂0 < t̂1 ≤ t1,

V(sx(t̂1, u(t̂1))) ≥ V(sx(t̂0, u(t̂0))) +

∫ t̂1

t̂0
r(u(t), y(t))dt (4)

Furthermore, assume there existsM ⊂ D such that for all t̂0, t̂1, t0 ≤ t̂0 < t̂1 ≤ t1, and sx(t, u(t)) � M,
t ∈ [t̂0, t̂1], Equation (4) holds as a strict inequality. If sx(·, u(·)) is an R-reversible trajectory of G, then
sx(t, u(t)) ∈ M, t ∈ [t0, t1].

Proof. Let sx(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U, be an R-reversible trajectory of G so that there exists

u−(·) ∈ U such that s−x(·, u−(·)) ∈ W[t0,t1]. Suppose, ad absurdum, there exists t ∈ [t0, t1] such that

sx(t, u(t)) �M. Now, it follows that there exists an interval [t̂0, t̂1] ⊂ [t0, t1] such that for t0 ≤ t̂0 < t̂1 ≤ t1,

V(sx(t̂1, u(t̂1))) > V(sx(t̂0, u(t̂0))) +

∫ t̂1

t̂0
r(u(t), y(t))dt (5)

which further implies that

V(sx(t1, u(t1))) > V(sx(t0, u(t0))) +

∫ t1

t0
r(u(t), y(t))dt (6)

Next, since s−x(·, u−(·)) ∈ W[t0,t1], where u−(·) ∈ U, it follows that

V(s−x(t1, u−(t1))) ≥ V(s−x(t0, u−(t0))) +

∫ t1

t0
r(u−(t), y−(t))dt (7)

Now, adding Equations (6) and (7), using the definition of s−x(·, u−(·)), using the fact that V(x) = V(Rx),

x ∈ D, and using Equation (3) yields

V(sx(t0, u(t0))) + V(sx(t1, u(t1))) > V(sx(t0, u(t0))) + V(sx(t1, u(t1)))

which is a contradiction. Hence, sx(t, u(t)) ∈ M, t ∈ [t0, t1]. �

It is important to note that since V : D → R in Theorem 3.1 is not sign definite, Theorem 3.1

also holds for the case where the inequality in Equation (4) is reversed. The following corollary to

Theorem 3.1 is immediate.

Corollary 3.1 Consider the dynamical system G defined on D. Let R : D → D be an involutive
operator, let M ⊂ D, and let sx(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U. Assume there exists a continuous
function V : D → R such that V(x) = V(Rx), x ∈ D, and for sx(t, u(t)) �M, t ∈ [t1, t2], V(s(t, x0, u(·))) is
a strictly increasing (respectively, decreasing) function of time. If sx(·, u(·)) is an R-reversible trajectory
of G, then sx(t, u(t)) ∈ M, t ∈ [t0, t1].

Proof. The proof is a direct consequence of Theorem 3.1 with r(u, y) ≡ 0 and the fact that Theorem 3.1

also holds for the case when the inequality in Equation (4) is reversed. �

It follows from Corollary 3.1 that if, for a given dynamical system G, there exists an R-reversible

trajectory of G, then there does not exist a function of the state of the system that strictly decreases or
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strictly increases in time on any trajectory of G lying inM. In this case, the existence of a completely

ordered time set having a topological structure involving a closed set homeomorphic to the real line

cannot be established. Such systems, which include lossless Newtonian and Hamiltonian systems, are

time-reversal symmetric and hence lack an inherent time direction. However, that is not the case with

thermodynamic systems.

Next, we present a notion of state recoverability of a dynamical system G.

Definition 3.3 Consider the dynamical system G defined onD. Let r : U ×Y → R, and let sx(·, u(·)) ∈
W[t0,t1], where u(·) ∈ U. sx(·, u(·)) is a recoverable trajectory of G if there exist u−(·) ∈ U and t2 > t1

such that u− : [t1, t2]→ U,

s(t2, sx(t1, u(t1)), u−(t2)) = sx(t0, u(t0)) (8)

and ∫ t1

t0
r(u(t), y(t))dt +

∫ t2

t1
r(u−(t), y−(t))dt = 0 (9)

where y−(·) denotes the read-out map for the trajectory s(·, sx(t1, u(t1)), u−(·)). Furthermore, G is a state

recoverable dynamical system if for every x ∈ D, sx(·, u(·)) is a recoverable trajectory of G.

It follows from the definition of state recoverability that the way in which the initial dynamical

system state is restored may be chosen freely so long as Equation (9) is satisfied. Hence, unlike R-state

reversibility, it is not necessary for the dynamical system to recover the initial state of the system through

an involutive transformation of the system trajectory. Furthermore, unlike state reversibility, it is not

necessary for the dynamical system to retrace every stage of the original trajectory in the reverse order.

However, Equation (9) ensures that the recoverable process completely restores the original dynamic

state and at the same time restores the energy supplied by the environment back to its original condition.

This notion of recoverability is closely related to Planck’s notion of complete reversibility, wherein the

initial system state is restored in the totality of nature (“die gesamte Natur”). The following result

provides a sufficient condition for the existence of a recoverable trajectory of a nonlinear dynamical

system G, and hence, establishes sufficient conditions for state recoverability of G.

Theorem 3.2 Consider the dynamical system G defined on D. Let sx(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U.
Assume there exist a continuous function V : D → R and a function r : U ×Y → R such that for every
x ∈ D and all t̂0, t̂1, t0 ≤ t̂0 < t̂1 ≤ t1,

V(sx(t̂1, u(t̂1))) ≥ V(sx(t̂0, u(t̂0))) +

∫ t̂1

t̂0
r(u(t), y(t))dt (10)

Furthermore, assume there existsM ⊂ D such that for all t̂0, t̂1, t0 ≤ t̂0 < t̂1 ≤ t1, and sx(t, u(t)) � M,
t ∈ [t̂0, t̂1], Equation (10) holds as a strict inequality. If sx(·, u(·)) is a recoverable trajectory of G, then
sx(t, u(t)) ∈ M, t ∈ [t0, t1].

Proof. Let sx(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U, be a recoverable trajectory of G so that there exist

u−(·) ∈ U and t2 > t1 such that s(t2, sx(t1, u(t1)), u−(t2)) = sx(t0, u(t0)). Suppose, ad absurdum, there
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exists t ∈ [t0, t1] such that sx(t, u(t)) � M. Now, it follows that there exists an interval [t̂0, t̂1] ⊂ [t0, t1]

such that for t0 ≤ t̂0 < t̂1 ≤ t1,

V(sx(t̂1, u(t̂1))) > V(sx(t̂0, u(t̂0))) +

∫ t̂1

t̂0
r(u(t), y(t))dt (11)

which further implies that

V(sx(t1, u(t1))) > V(sx(t0, u(t0))) +

∫ t1

t0
r(u(t), y(t))dt (12)

Next, it follows from Equation (10) with t2 > t1 that

V(s(t2, sx(t1, u(t1)), u−(t2))) ≥ V(s(t1, sx(t1, u(t1)), u−(t1))) +

∫ t2

t1
r(u−(t), y−(t))dt (13)

Now, adding Equations (12) and (13), using the definition of s(t2, sx(t1, u(t1), u−(t2))), and using

Equation (9) yields

V(sx(t0, u(t0))) + V(sx(t1, u(t1))) > V(sx(t0, u(t0))) + V(sx(t1, u(t1)))

which is a contradiction. Hence, sx(t, u(t)) ∈ M, t ∈ [t0, t1]. �

The following corollary to Theorem 3.2 is immediate.

Corollary 3.2 Consider the dynamical system G defined onD. LetM ⊂ D, and let sx(·, u(·)) ∈ W[t0,t1],
where u(·) ∈ U. Assume there exists a continuous function V : D → R such that for sx(t, u(t)) � M,
t ∈ [t0, t1], V(s(t, x0, u(·)) is a strictly increasing (respectively, decreasing) function of time. If sx(·, u(·))
is a recoverable trajectory of G, then sx(t, u(t)) ∈ M, t ∈ [t0, t1].

Proof. The proof is a direct consequence of Theorem 3.2 with r(u, y) ≡ 0 and the fact that Theorem 3.2

also holds for the case when the inequality in Equation (10) is reversed. �

As in the case of R-state reversibility and state reversibility, state recoverability can be used to

establish a connection between a dynamical system evolving on a manifold M ⊂ D and the arrow

of time. However, in the case of state recoverability, the recoverable dynamical system trajectory need

not involve an involutive transformation of the system trajectory, nor is it required to retrace the original

system trajectory in recovering the original dynamic state. It should be noted here that state recoverability

is not implied by the concepts of reachability and controllability, which play a central role in control

theory [1]. For example, one might envision, albeit with a considerable stretch of the imagination,

perfectly controlled inputs that could reassemble a broken egg or even fuse water into solid cubes of

ice. However, in all such cases, an external source of energy from the environment would be required

to operate such an immaculate state recoverable mechanism and would violate Equation (9). Clearly,

state recoverability is a weaker notion than that of state reversibility since state reversibility implies state

recoverability; the converse, however, is not true. Conversely, state irrecoverability is a logically stronger

notion than state irreversibility since state irrecoverability implies state irreversibility. However, as we

see in Section 8, these notions are equivalent for thermodynamic systems.
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4. Reversible Dynamical Systems, Volume-Preserving Flows and Poincaré Recurrence

The notion of R-state reversibility introduced in Section 3 is one of the fundamental symmetries that

arises in natural science. This notion can also be characterized by the flow of a dynamical system. In

particular, consider the dynamical system given by

ẋ(t) = f (x(t)), x(t0) = x0, t ∈ Ix0
(14)

where x(t) ∈ D ⊆ Rq, t ∈ Ix0
, is the system state vector, D is an open subset of Rq, f : D → Rq

is locally Lipschitz continuous on D, and Ix0
= [t0, τx0

), t0 < τx0
≤ ∞, is the maximal interval of

existence for the solution x(·) of Equation (14). Note that since f (·) is locally Lipschitz continuous

on D, it follows from Theorem 3.1 of ([23], p. 18) that the solution to Equation (14) is unique for

every initial condition in D and jointly continuous in t and x0. In this case, the semigroup property

s(t + τ, x0) = s(t, s(τ, x0)), t, τ ∈ Ix0
, and the continuity of s(t, ·) on D, t ∈ Ix0

, hold. Given t ∈ R, we

denote the flow s(t, ·) : D → D of Equation (14) by st(x0) for x0 ∈ D, and given x ∈ D, we denote

the trajectory s(·, x) : R → D of Equation (14) by sx(t). Now, in terms of the flow st : D → D of

Equation (14), the consistency and semigroup properties of Equation (14) can be equivalently written

as s0(x0) = x0 and (sτ ◦ st)(x0) = sτ(st(x0)) = st+τ(x0), where “◦” denotes the composition operator.

Next, it follows from continuity of solutions and the semigroup property that the map st : D → D is a

continuous function with a continuous inverse s−t. Thus, st, t ∈ Ix0
, generates a one-parameter family of

homeomorphisms onD forming a commutative group under composition.

To show that R-state reversibility can be characterized by the flow of Equation (14), let R : D → D
be a continuous map of Equation (14) such that

Ṙ(x(t)) = − f (R(x(t))), R(x(t0)) = R(x0), t ∈ IR(x0) (15)

Now, it follows from Equation (15) that

R ◦ st = s−t ◦ R, t ∈ Ix0
(16)

Equation (16), with R(·) satisfying Equation (15), defines an R-reversed trajectory of Equation (14) in

the sense of Definition 3.1 with τ(t) = t.
In the context of classical mechanics involving the configuration manifold (space of generalized

positions) Q = Rn, with governing equations given by

q̇(t) =
(
∂H(q(t), p(t))
∂p(t)

)T

, q(t0) = q0, t ≥ t0 (17)

ṗ(t) = −
(
∂H(q(t), p(t))
∂q(t)

)T

, p(t0) = p0 (18)

where q ∈ Rn denotes generalized system positions, p ∈ Rn denotes generalized system momenta,

H : Rn × Rn → R is the system Hamiltonian given by H(q, p) � q̇T p − L(q, q̇), L(q, q̇) is the system

Lagrangian, [24,25] and p(q, q̇) �
(
∂L(q,q̇)

∂q̇

)T
, the reversing symmetry R : Rn × Rn → Rn × Rn is such

that R(q, p) = (q,−p) and satisfies Equation (15). In this case, R is an involution. This implies that if

(q(t), p(t)), t ≥ t0, is a solution to Equations (17) and (18), then (q(−t),−p(−t)), t ≥ t0, is also a solution
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to Equations (17) and (18) with initial condition (q0,−p0). In the configuration space this clearly shows

the time-reversal nature of lossless mechanical systems.

Reversible dynamical systems tend to exhibit a phenomenon known as Poincaré recurrence [26].

Poincaré recurrence states that if a dynamical system has a fixed total energy that restricts its dynamics

to bounded subsets of its state space, then the dynamical system will eventually return arbitrarily close

to its initial system state infinitely often. More precisely, Poincaré [27] established the fact that if the

flow of a dynamical system preserves volume and has only bounded orbits, then for each open set there

exist orbits that intersect the set infinitely often. In order to state the Poincaré recurrence theorem, the

following definitions are needed.

Definition 4.1 LetV ⊂ Rq be a bounded set. The volumeVvol ofV is defined as

Vvol �
∫
V

dV (19)

where the integration in Equation (19) is the Lebesgue integral overV.

Definition 4.2 LetV ⊂ Rq be a bounded set. A map g : V → Q, where Q ⊂ Rq, is volume preserving if
for everyV0 ⊂ V, the volume of g(V0) is equal to the volume ofV0.

The following theorem, known as Liouville’s theorem [26], establishes sufficient conditions for

volume-preserving flows. For the statement of this theorem, consider the nonlinear dynamical system

given by Equation (14) and define the divergence of f = [ f1, . . . , fq]T : D → Rq by

∇ · f (x) �
q∑

i=1

∂ fi(x)

∂xi
(20)

where ∇ denotes the nabla operator, “ · ” denotes the dot product in Rq, and xi denotes the ith component

of x.

Theorem 4.1 Consider the nonlinear dynamical system given by Equation (14). If ∇ · f (x) ≡ 0, then the
flow st : D → D of Equation (14) is volume preserving.

Proof. Let V ⊂ Rq be a compact set such that its image at time t under the mapping st(·) is given by

st(V). In addition, let dSV denote an infinitesimal surface element of the boundary of the setV and let

n̂(z), z ∈ ∂V, denote an outward normal vector to the boundary of V. Then the change in volume of

st(V) at t = t0 is given by

dst(V)vol =

∫
∂V

( f (x) · n̂(x))dtdSV (21)

which, using the divergence theorem, implies that

dst(V)vol

dt

∣∣∣∣∣
t=t0
=

∫
∂V

( f (x) · n̂(x))dSV =
∫
V
∇ · f (x)dV (22)

Hence, if ∇ · f (x) ≡ 0, then st(·) is a volume-preserving map. �

Volume preservation is the key conservation law underlying statistical mechanics. The flows of

volume-preserving dynamical systems belong to one of the Lie pseudogroups [28] of diffeomorphisms.
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These systems arise in incompressible fluid dynamics, classical mechanics, and acoustics. Next, we

state the well-known Poincaré recurrence theorem. For this result, let g(n)(x), n ∈ Z+, denote the n-time

composition operator of g(x) with itself and define g(0)(x) � x.

Theorem 4.2 Let D ⊂ Rq be an open bounded set, and let g : D → D be a continuous,
volume-preserving bijective (one-to-one and onto) map. Then for every open set N ⊂ D, there exists
n ∈ Z+ such that g(n)(N) ∩ N � Ø. Furthermore, there exists a point x ∈ N which returns to N , that is,
g(n)(x) ∈ N for some n ∈ Z+.
Proof. The proof of this result is standard; see for example ([26], p. 72). For completeness of exposition,

however, we provide a proof here. First, note that the images g(p)(N), p ∈ Z+, under the mapping g(·) of

the neighborhood N ⊂ D have the same volume and are all contained in D. Next, define the union of

all the images of N by

V �
∞⋃

p=0

g(p)(N) ⊂ D (23)

Since the volume of a union of disjoint sets is the sum of the individual set volumes, it follows that if

g(p)(N), p ∈ Z+ are disjoint, then Vvol = ∞. However, V ⊂ D and D is a bounded set by assumption.

Hence, there exist k, l ∈ Z+, with k > l, such that g(k)(N)∩g(l)(N) � Ø. Now, applying the inverse g(−1) to

this relation l times and using the fact that g(·) is a bijective map, it follows that g(k−l)(N)∩N � Ø. Thus,

g(n)(N)∩N � Ø, where n = k− l. Hence, there exists a point x ∈ N such that g(n)(x) ∈ g(n)(N)∩N ⊆ N .

�

The next result establishes the existence of a point x inD ⊂ Rq such that limi→∞ g(ni)(x) = x for some

sequence {ni}∞i=1, with ni → ∞ as i → ∞, under a continuous, volume-preserving bijective mapping g(·)
which maps a bounded regionD of a Euclidean space onto itself. Hence, x returns infinitely often to any

open neighborhood of itself under the mapping g(·).
Theorem 4.3 Let D ⊂ Rq be an open bounded set, and let g : D → D be a continuous,
volume-preserving bijective map. Then for every open neighborhood N ⊂ D, there exists a point x ∈ N
such that limi→∞ g(ni)(x) = x for some sequence {ni}∞i=1, with ni → ∞ as i → ∞. Hence, x ∈ N returns to
N infinitely often, that is, there exists a sequence {ni}∞i=1, with ni → ∞ as i → ∞, such that g(ni)(x) ∈ N
for all i ∈ Z+.
Proof. Let N ⊂ D be an open set, and let N1 � Bδ1(x1) be such that N1 ⊂ N for some δ1 > 0 and

x1 ∈ N . Applying Theorem 4.2, with g(·) replaced by g(−1)(·), it follows that there exists n1 ∈ Z+ such

that g(−n1)(N1) ∩ N1 � Ø, which implies that g(−n1)(N1) ∩ N1 � Ø. Now, let N2 = Bδ2(x2) be such that

N2 ⊂ g(−n1)(N1)∩N1 for some δ2 > 0 and x2 ∈ g(−n1)(N1)∩N1. Repeating the above arguments it follows

that there exists n2 ∈ Z+, n2 > n1, such that g(−n2)(N2) ∩ N2 � Ø and g(−n2)(N2) ∩ N2 � Ø. Repeating

this process recursively, it follows that there exist sequences {ni}∞i=1 and {δi}∞i=1, with ni → ∞ as i → ∞,

δi → 0 as i → ∞, and δi > δi+1, i = 1, 2, . . . , such that Ni ⊃ Ni+1, i = 1, 2, . . . , and g(−ni)(Ni) ∩ Ni � Ø,

whereNi = Bδi(xi) for some xi ∈ g(−ni−1)(Ni−1)∩Ni−1 and where n0 � 0 andN0 � N . Now, sinceNi � Ø,

i ∈ Z+, it follows from the Cantor intersection theorem ([29], p. 56) thatZ � ⋂∞
i=1N i � Ø. Furthermore,

since δi → 0 as i→ ∞, it follows thatZ is a singleton. Next, let x ∈ Z = {x}, and since for every i ∈ Z+,
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N i+1 ⊂ Ni, it follows that x ∈ Ni, i ∈ Z+. Now, note that x ∈ Ni+1 ⊂ g(−ni)(Ni) ∩ Ni for all i ∈ Z+, which

implies that g(ni)(z) ∈ Ni, i ∈ Z+. Hence, since δi → 0 as i→ ∞, it follows that limi→∞ g(ni)(x) = x. �

The next theorem strengthens Poincaré’s theorem by showing that for every open neighborhood N
of D ⊂ Rq, there exists a subset of N that is dense [30] in N so that almost every moving point in N
returns repeatedly to the vicinity of its initial position under a continuous, volume-preserving bijective

mapping which maps the bounded regionD onto itself.

Theorem 4.4 Let D ⊂ Rq be an open bounded set, and let g : D → D be a continuous,
volume-preserving bijective map. Then for every open neighborhoodN ⊂ D, there exists a dense subset
V ⊂ N such that for every point z ∈ V, limi→∞ g(ni)(x) = x for some sequence {ni}∞i=1, with ni → ∞
as i→ ∞.

Proof. Let N ⊂ D be an open neighborhood and defineV ⊂ N by

V � {x ∈ N : there exists a sequence {ni}∞i=1, with ni → ∞
as i→ ∞, such that limi→∞ g(ni)(x) = x} (24)

Now, let x ∈ N and let {δi}∞i=1 be a strictly decreasing positive sequence with δi → 0 as i → ∞ and

Bδ1(x) ⊂ N . It follows from Theorem 4.3 that for every i ∈ Z+, there exists xi ∈ Bδi(x) such that

limk→∞ g(nk)(xi) = xi for some sequence {nk}∞k=1, with nk → ∞ as k → ∞, which implies that xi ∈ V,

i ∈ Z+. Next, since limi→∞ xi = x, it follows that x ∈ V, which implies thatV ⊆ N ⊂ V, and hence,V
is a dense subset of N . �

It follows from Theorem 4.4 that almost every point in D ⊂ Rq will return infinitely many times to

any open neighborhood of itself under a continuous, volume-preserving bijective mapping which maps

a bounded regionD of a Euclidean space onto itself. The following theorem provides several equivalent

statements for establishing Poincaré recurrence.

Theorem 4.5 Let D ⊂ Rq be an open bounded set, and let g : D → D be a continuous, bijective map.
Then the following statements are equivalent:

(i) For every open set N ⊂ D, there exists a dense subsetV ⊂ N such that, for every point z ∈ V,
limi→∞ g(ni)(x) = x for some sequence {ni}∞i=1, with ni → ∞ as i→ ∞.

(ii) For every open set N ⊂ D, there exists a point x ∈ N such that limi→∞ g(ni)(x) = x for some
sequence {ni}∞i=1, with ni → ∞ as i→ ∞.

(iii) For every open setN ⊂ D, there exists a point x ∈ N which returns toN infinitely often, that is,
g(ni)(x) ∈ N , i ∈ Z+, for some sequence {ni}∞i=1, with ni → ∞ as i→ ∞.

(iv) For every open set N ⊂ D, there exists a point x ∈ N which returns to N , that is, g(n)(x) ∈ N
for some n ∈ Z+.

(v) For every open set N ⊂ D, there exists n ∈ Z+ such that g(n)(N) ∩ N � Ø.

Proof. The implication (i) implies (ii) follows trivially and the proof of (ii) implies (i) is identical to that

of Theorem 4.4. The implications (ii) implies (iii), (iii) implies (iv), and (iv) implies (v) follow trivially.

The proof of (v) implies (ii) is identical to that of Theorem 4.3. �
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Note that it follows from Theorems 4.2, 4.3, and 4.4 that a continuous, bijective map g : D → D
exhibits Poincaré recurrence (that is, the statements in Theorem 4.5 hold) if g(·) is volume preserving.

For the remainder of this section we consider the nonlinear dynamical system given by Equation (14)

and assume that the solutions to Equation (14) are defined for all t ∈ R. Recall that if all solutions

to Equation (14) are bounded, then it follows from the Peano–Cauchy theorem ([23], pp. 16–17) that

Ix0
= R. The following theorem shows that if a dynamical system preserves volume, then almost all

trajectories return arbitrarily close to their initial position infinitely often.

Theorem 4.6 Consider the nonlinear dynamical system given by Equation (14). Assume that the flow
st : D → D of Equation (14) is volume preserving and maps an open bounded set Dc ⊂ Rq onto itself,
that is,Dc is an invariant set with respect to Equation (14). Then the nonlinear dynamical system given
by Equation (14) exhibits Poincaré recurrence, that is, almost every point x ∈ Dc returns to every open
neighborhood N ⊂ Dc of x infinitely many times.

Proof. Since f : D → Rq is locally Lipschitz continuous on D and st(·) maps an open bounded set

Dc ⊂ Rn onto itself, it follows that the solutions to Equation (14) are bounded and unique for all t ∈ R
and x0 ∈ Dc. Thus, the mapping st(·) is bijective. Furthermore, since the solutions of Equation (14) are

continuously dependent on the system’s initial conditions, it follows that st(·) is continuous. Now, the

result follows as a direct consequence of Theorem 4.4 with g(·) = st(·) for every t ≥ t0. �

It follows from Theorem 4.6 that a nonlinear dynamical system exhibits Poincaré recurrence if one of

the statements in Theorem 4.5 holds with g(·) = st(·) for every t ≥ t0. Note that in this case it follows

from (ii) of Theorem 4.5 that Poincaré recurrence is equivalent to the existence of a point x ∈ N ⊂ Dc

such that x belongs to its positive limit set ω(x), that is, x ∈ ω(x).

All Hamiltonian dynamical systems of the form given by Equations (17) and (18) exhibit Poincaré

recurrence since they possess volume-preserving flows and are conservative in the sense that the

Hamiltonian function H(q, p) remains constant along system trajectories. To see this, note that with

x � [qT, pT]T, Equations (17) and (18) can be rewritten as

ẋ(t) = J
(
∂H
∂x

(x(t))
)T

, x(t0) = x0, t ≥ t0 (25)

where x0 � [qT
0 , p

T
0 ]T ∈ R2n and

J �
⎡⎢⎢⎢⎢⎢⎣ 0n In

−In 0n

⎤⎥⎥⎥⎥⎥⎦ (26)

Now, since

Ḣ(x) =

(
∂H
∂x

(x)

)
J

(
∂H
∂x

(x)

)T

= 0, x ∈ R2n (27)

the Hamiltonian function H(·) is conserved along the flow of Equation (25). If H(·) is bounded from

below and is radially unbounded, then every trajectory of the Hamiltonian system given by Equation (25)

is bounded. Hence, by choosing the bounded regionD � {x ∈ R2n : H(x) ≤ η}, where η ∈ R and η > 0,

it follows that the flow st(·) of Equation (25) maps the bounded region D onto itself. Since η > 0
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is arbitrary, the region D can be chosen arbitrarily large. Furthermore, since Equation (25) possesses

unique solutions over R, it follows that the mapping st(·) is one-to-one and onto. Moreover,

∇ · J
(
∂H
∂x

(x)

)T

=

n∑
i=1

∂2H(q, p)

∂qi∂pi
−

n∑
i=1

∂2H(q, p)

∂pi∂qi
= 0, x ∈ R2n (28)

which, by Theorem 4.1, shows that the flow st(·) of Equation (25) is volume preserving. Finally, since

the flow st(·) of Equation (25) is volume preserving, continuous, and bijective, and st(·) maps a bounded

region of a Euclidean space onto itself, it follows from Theorem 4.6 that the Hamiltonian dynamical

system given by Equation (25) exhibits Poincaré recurrence. That is, in every open neighborhood N of

every point x0 ∈ R2n there exists a point y ∈ N such that the trajectory s(t, y), t ≥ t0, of Equation (25)

will return to N infinitely many times.

Poincaré recurrence has been the main source for the long and fierce debate between the microscopic

and macroscopic points of view of thermodynamics [1]. In thermodynamic models predicated on

statistical mechanics, an isolated dynamical system will return arbitrarily close to its initial state of

molecular positions and velocities infinitely often. If the system entropy is determined by the state

variables, then it must also return arbitrarily close to its original value, and hence, undergo cyclical

changes. This apparent contradiction between the behavior of a mechanical system of particles and the

second law of thermodynamics remains one of the hardest and most controversial problems in statistical

physics. The resolution of this paradox lies in the controversial statement that as system dimensionality

increases, the recurrence time increases at an extremely fast rate. Nevertheless, the shortcoming of the

mechanistic world view of thermodynamics is the absence of the emergence of damping in lossless

mechanical systems. The emergence of damping is, however, ubiquitous in isolated [31] thermodynamic

systems. Hence, the development of a viable dynamical system model for thermodynamics must

guarantee the absence of Poincaré recurrence. The next set of results presents sufficient conditions

for the absence of Poincaré recurrence for the nonlinear dynamical system given by Equation (14). First,

however, define the set of equilibria for the nonlinear dynamical system given by Equation (14) inD by

Me � {x ∈ D : f (x) = 0}.

Theorem 4.7 Consider the nonlinear dynamical system given by Equation (14) and assume that
D\Me � Ø. Assume that there exists a continuous function V : D → R such that for every x0 ∈ D\Me,
V(s(t, x0)), t ≥ t0, is a strictly increasing (respectively, decreasing) function of time. Then the nonlinear
dynamical system given by Equation (14) does not exhibit Poincaré recurrence on D \Me. That is, for
some x ∈ D \Me, there exists a neighborhood N ⊂ D \Me such that for every y ∈ N , y � ω(y).

Proof. Suppose, ad absurdum, there exists z ∈ D \ Me such that for every open neighborhood N
containing x, there exists a point y ∈ N such that y ∈ ω(y). Now, let {ti}∞i=1 be such that ti → ∞ as i→ ∞
and s(ti, y) → y as i → ∞. Since V(·) is continuous, it follows that limi→∞ V(s(ti, y)) = V(y). However,

since V(s(·, y)) is strictly increasing, it follows that V(s(ti, y)) > V(y), i ∈ Z+, which is a contradiction.

The proof for the case where V(s(t, x0)), t ≥ t0 is strictly decreasing is identical. �

For the remainder of this section let Dc ⊆ D be a closed invariant set with respect to the nonlinear

dynamical system given by Equation (14). The following definition for convergence is needed.
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Definition 4.3 The nonlinear dynamical system given by Equation (14) is convergent with respect toDc

if limt→∞ s(t, x) exists for every x ∈ Dc.

If the system given by Equation (14) is convergent with respect to Dc, then the ω-limit set ω(x) of

Equation (14) for the trajectory sx(t) starting at x ∈ Dc is a singleton. Furthermore, it follows from

continuity of solutions that for every h ≥ 0, sh(ω(x)) � limt→∞ s(t + h, x) = ω(x). Thus, dsh(ω(x))

dh

∣∣∣
h=0
= 0

and hence ω(x) is an equilibrium point of Equation (14) for all x ∈ Dc. The next result relates the

continuity of the function ω(·) at a point x to the stability of the equilibrium point ω(x).

Proposition 4.1 Suppose the nonlinear dynamical system given by Equation (14) is convergent with
respect to Dc. If ω(x) is a Lyapunov stable equilibrium point for some x ∈ Dc, then ω : Dc → Dc is
continuous at x.

Proof. A proof of this result appears in [32]. For completeness of exposition, we provide an alternative

proof here. Suppose ω(x) is Lyapunov stable for some x ∈ Dc, and let Nε be an open neighborhood

of ω(x). Moreover, choose open neighborhoods N and Nδ of ω(x) such that N ⊂ Nε and st(Nδ) ⊆ N
for all t ≥ t0, and let {xi}∞n=1 be a sequence in Dc converging to x. The existence of such neighborhoods

follows from the Lyapunov stability of ω(x). Next, there exists h > 0 such that s(h, x) ∈ Nδ and, since

the solutions to Equation (14) are continuously dependent on the system initial conditions, it follows

that there exists an open neighborhood Nδ̂ � Bδ̂(x), δ̂ > 0 of x such that s(h, y) ∈ Nδ for all y ∈ Nδ̂.
Furthermore, it follows from the Lyapunov stability of ω(x) that s(t+h, y) ∈ N , y ∈ Nδ̂, t ≥ 0, and hence,

ω(y) ∈ N ⊂ Nε, y ∈ Nδ̂, which proves that ω : Dc → Dc is continuous at x. �

The next result gives an alternative sufficient condition for the absence of Poincaré recurrence in a

dynamical system.

Theorem 4.8 Consider the nonlinear dynamical system given by Equation (14). Assume thatDc \Me �
Ø and assume Equation (14) is convergent and semistable in Dc. Then the nonlinear dynamical system
given by Equation (14) does not exhibit Poincaré recurrence inDc \Me. That is, for some x ∈ Dc \Me,
there exists an open neighborhood N ⊂ Dc \ Me such that for every y ∈ N the trajectory s(t, y), t ≥ t0,
does not return to N infinitely many times.

Proof. Let x ∈ Dc \ Me and let ω(x) ∈ Me be a limiting point for the trajectory s(t, x), t ≥ t0, so that

limt→∞ s(t, x) = ω(x). Since Equation (14) is convergent and semistable, it follows from Proposition 4.1

that ω(x), x ∈ Dc \ Me, is continuous. Hence, for every ε > 0 there exists δ = δ(ε) > 0 such that

ω(y) ∈ Bε(ω(x)) for all y ∈ Bδ(x). Choose ε > 0 and δ > 0 such that Bδ(x)∩Bε(ω(x)) = Ø. Furthermore,

choose ε̂ > 0 to be sufficiently small such that

⋃
y∈Bδ(x)

Bε̂(ω(y)) ∩ Bδ(x) = Ø (29)

Since the dynamical system given by Equation (14) is convergent in Dc, it follows that for all y ∈ Bδ(x)

and ε̂ > 0, there exists T (ε̂, y) > t0 such that s(t, y) ∈ Bε̂(ω(y)) for all t > T (ε̂, y). Moreover, it follows

from Equation (29) that, for all y ∈ Bδ(x), s(t, y), t ≥ t0, does not return to Bδ(x) infinitely many times,

which proves the result with N = Bδ(x). �
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5. Finite-Time Semistability of Nonlinear Dynamical Systems

The notion of semistability addressed in Section 2 implies convergence of the system trajectories to an

equilibrium state over the infinite horizon. In physical thermodynamic systems, however, the dynamical

system possesses the property that trajectories converge to a Lyapunov stable equilibrium in finite time

rather than merely asymptotically. The key in achieving finite-time convergence versus asymptotic

convergence of the system trajectories can be traced back to the structure of the thermodynamic system

vector field characterizing energy flow between subsystem interconnections.

In particular, if the system vector field is Lipschitz continuous, which implies uniqueness of system

solutions in forward and backward times, then convergence to an equilibrium state is achieved over an

infinite time interval. Alternatively, in order to achieve convergence in finite time, the system dynamics

need to be non-Lipschitzian giving rise to non-uniqueness of solutions in backward time. Uniqueness

of solutions in forward time, however, can be preserved in the case of finite-time convergence.

Sufficient conditions that ensure uniqueness of solutions in forward time in the absence of Lipschitz

continuity are given in [33,34]. In addition, it is shown in ([35], Theorem 4.3, p. 59) that uniqueness

of solutions in forward time along with continuity of the system dynamics ensure that the system

solutions are continuous functions of the system initial conditions even when the dynamics are not

Lipschitz continuous.

In this section, we merge the theories of semistability and finite-time stability developed in [20–22]

to allow us to develop a rigorous framework for finite-time thermodynamics. First, we present the

notions of finite-time convergence and finite-time semistability for nonlinear dynamical systems, and

develop several sufficient Lyapunov stability theorems for finite-time semistability. Following [36],

we exploit homogeneity as a means for verifying finite-time convergence. Our main result in this

direction asserts that a homogeneous system is finite-time semistable if and only if it is semistable

and has a negative degree of homogeneity. This main result depends on a converse Lyapunov result

for homogeneous semistable systems, which we develop. While our converse result resembles a related

result for asymptotically stable systems given in [36,37], the proof of our result is rendered more difficult

by the fact that it does not hold under the notions of homogeneity considered in [36,37].

More specifically, while previous treatments of homogeneity involved Euler vector fields representing

asymptotically stable dynamics, our results involve homogeneity with respect to a semi-Euler vector field

representing a semistable system having the same equilibria as the dynamics of interest. Consequently,

our theory precludes the use of dilations commonly used in the literature on homogeneous systems

(such as [37]), and requires us to adopt a more geometric description of homogeneity (see [36] and

references therein).

In this section, we consider nonlinear dynamical systems of the form

ẋ(t) = f (x(t)), x(0) = x0, t ∈ Ix0
(30)

where x(t) ∈ D ⊆ Rn
+, t ∈ Ix0

, is the system state vector, D is a relatively open set with respect to R
n
+,

f : D → Rn is continuous and essentially nonnegative on D, that is, fi(x) ≥ 0 for all i = 1, . . . , n and

x ∈ Rn
+, such that xi = 0, f −1(0) � {x ∈ D : f (x) = 0} is nonempty, and Ix0

= [0, τx0
), 0 ≤ τx0

≤ ∞, is

the maximal interval of existence for the solution x(·) of Equation (30). The continuity of f implies that,

for every x0 ∈ D, there exist τ0 < 0 < τ1 and a solution x(·) of Equation (30) defined on (τ0, τ1) such
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that x(0) = x0. A solution x is said to be right maximally defined if x cannot be extended on the right

(either uniquely or non-uniquely) to a solution of Equation (30). Here, we assume that for every initial

condition x0 ∈ D, Equation (30) has a unique right maximally defined solution, and this unique solution

is defined on [0,∞).

Under these assumptions, the solutions of Equation (30) define a continuous global semiflow on D,

that is, s : [0,∞)×D → D is a jointly continuous function satisfying the consistency property s(0, x) = x
and the semigroup property s(t, s(τ, x)) = s(t + τ, x) for every x ∈ D and t, τ ∈ [0,∞). Furthermore, we

assume that for every initial condition x0 ∈ D\ f −1(0), Equation (30) has a local unique solution for

negative time. The image of U ⊂ D under the flow st is defined as st(U) � {y : y = st(x0) for all

x0 ∈ U}. Finally, a set E ⊆ Rn
+ is connected if and only if every pair of open sets Ui ⊆ Rn

+, i = 1, 2,

satisfying E ⊆ U1 ∪U2 andUi ∩ E � Ø, i = 1, 2, has a nonempty intersection. A connected component
of the set E ⊆ Rn

+ is a connected subset of E that is not properly contained in any connected subset of E.

Next, we establish the notion of finite-time semistability and develop sufficient Lyapunov stability

theorems for finite-time semistability.

Definition 5.1 An equilibrium point xe ∈ f −1(0) of Equation (30) is said to be finite-time semistable if
there exist a relatively open neighborhood Q ⊆ D of xe and a function T : Q\ f −1(0) → (0,∞), called
the settling-time function, such that the following statements hold:

(i) For every x ∈ Q\ f −1(0), s(t, x) ∈ Q\ f −1(0) for all t ∈ [0,T (x)), and limt→T (x) s(t, x) exists and is
contained in Q ∩ f −1(0).

(ii) xe is semistable.

An equilibrium point xe ∈ f −1(0) of Equation (30) is said to be globally finite-time semistable if it is
finite-time semistable with D = Q = Rn

+. The system given by Equation (30) is said to be finite-time

semistable if every equilibrium point in f −1(0) is finite-time semistable. Finally, Equation (30) is said to
be globally finite-time semistable if every equilibrium point in f −1(0) is globally finite-time semistable.

It is easy to see from Definition 5.1 that, for all x ∈ Q,

T (x) = inf{t ∈ R+ : f (s(t, x)) = 0} (31)

where T (Q ∩ f −1(0)) = {0}.
Lemma 5.1 Suppose Equation (30) is finite-time semistable. Let xe ∈ f −1(0) be an equilibrium point of
Equation (30) and let Q ⊆ D be as in Definition 5.1. Furthermore, let T : Q → R+ be the settling-time
function. Then T is continuous on Q if and only if T is continuous at each ze ∈ Q ∩ f −1(0).

Proof. Necessity is immediate. To prove sufficiency, suppose that T is continuous at each ze ∈ Q∩ f −1(0).

Let z ∈ Q\ f −1(0) and consider a sequence {zm}∞m=1 in Q that converges to z. Let τ− = lim infm→∞ T (zm)

and τ+ = lim supm→∞ T (zm). Note that both τ− and τ+ are in R+ and

τ− ≤ τ+ (32)

Next, let {z+l }∞l=1 be a subsequence of {zm}∞m=1 such that T (z+l ) → τ+ as l → ∞. The sequence

{(T (z), z+l )}∞l=1 converges in R+ × Q to (T (z), z). By continuity and

s(T (x) + t, x) = s(T (x), x) (33)
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for all x ∈ Q and t ∈ R+, s(T (z), z+l ) → s(T (z), z) = ze as l → ∞, where ze ∈ Q ∩ f −1(0). Since T is

assumed to be continuous at each ze ∈ Q ∩ f −1(0), T (s(T (z), z+l ))→ T (ze) = 0 as l→ ∞. Note that

T (s(t, x)) = max{T (x) − t, 0} (34)

for all x ∈ Q and t ∈ R+. Using Equation (34) with t = T (z) and x = z+l , we obtain max{T (z+l )−T (z), 0} →
0 as l→ ∞. Hence, max{τ+ − T (z), 0} = 0, that is,

τ+ ≤ T (z) (35)

Now, let {z−l }∞l=1 be a subsequence of {zm}∞m=1 such that T (z−l ) → τ− as l → ∞. It follows from

Equations (32) and (35) that τ− ∈ R+. Therefore, the sequence {(T (z−l ), z−l )}∞l=1 converges in R+ × Q to

(τ−, z). Since s is continuous, it follows that s(T (z−l ), z−l )→ s(τ−, z) as l→ ∞. Equation (33) implies that

s(T (z−l ), z−l ) ∈ Q ∩ f −1(0) for each l. Hence, s(τ−, z) = ze, ze ∈ Q ∩ f −1(0) and, by Equation (31),

T (z) ≤ τ− (36)

It follows from Equations (32), (35), and (36) that τ− = τ+ = T (z), and hence, T (zm)→ T (z) as m→ ∞. �

Next, we introduce a new definition which is weaker than finite-time semistability and is needed for

the next result.

Definition 5.2 The system given by Equation (30) is said to be finite-time convergent toM ⊆ f −1(0) for
D0 ⊆ D if, for every x0 ∈ D0, there exists a finite-time T = T (x0) > 0 such that x(t) ∈ M for all t ≥ T.

The next result gives a sufficient condition for characterizing finite-time convergence. For the

statement of this result, define

V̇(x) � lim
h→0+

1

h
[V(s(h, x)) − V(x)] , x ∈ D (37)

for a given continuous function V : D → R and for every x ∈ D such that the limit in

Equation (37) exists.

Proposition 5.1 Let D0 ⊆ D be positively invariant and M ⊆ f −1(0). Assume that there exists a
continuous function V : D0 → R such that V̇(·) is defined everywhere on D0, V(x) = 0 if and only if
x ∈ M ⊂ D0, and

− c1|V(x)|α ≤ V̇(x) ≤ −c2|V(x)|α, x ∈ D0\M (38)

where c1 ≥ c2 > 0 and 0 < α < 1. Then Equation (30) is finite-time convergent to M for {x ∈ D0 :

V(x) ≥ 0}. Alternatively, if V is nonnegative and

V̇(x) ≤ −c3(V(x))α, x ∈ D0\M (39)

where c3 > 0, then Equation (30) is finite-time convergent toM forD0.



Entropy 2012, 14 427

Proof. Note that Equation (38) is also true for x ∈ M. Application of the comparison lemma

(Theorems 4.1 and 4.2 of [34]) to Equation (38) yields μ(t,V(x), c1) ≤ V(s(t, x)) ≤ μ(t,V(x), c2),

x ∈ {z ∈ D0 : V(z) ≥ 0}, where μ is given by

μ(t, z, c) �

⎧⎪⎪⎨⎪⎪⎩
(|z|1−α − c(1 − α)t)

1
1−α , 0 ≤ t < |z|1−α

c(1−α)
, α < 1

0, t ≥ |z|1−α
c(1−α)
, α < 1

(40)

Hence, V(s(t, x)) = 0 for t ≥ |V(x)|1−α
c2(1−α)

, which implies that s(t, x) ∈ M for t ≥ |V(x)|1−α
c2(1−α)

. The assertion follows.

The second part of the assertion can be proved similarly. �

The next result establishes a relationship between finite-time convergence and finite-time semistability.

Theorem 5.1 Assume that there exists a continuous nonnegative function V : D → R+ such that V̇(·) is
defined everywhere onD, V−1(0) = f −1(0), and there exists a relatively open neighborhood Q ⊆ D such
that Q ∩ f −1(0) is nonempty and

V̇(x) ≤ w(V(x)), x ∈ Q\ f −1(0) (41)

where w : R+ → R is continuous, w(0) = 0, and

ż(t) = w(z(t)), z(0) = z0 ∈ R+, t ≥ 0 (42)

has a unique solution in forward time. If Equation (42) is finite-time convergent to the origin for R+
and every point in Q ∩ f −1(0) is a Lyapunov stable equilibrium point of Equation (30), then every
point in Q ∩ f −1(0) is finite-time semistable. Moreover, the settling-time function of Equation (30) is
continuous on a relatively open neighborhood of Q ∩ f −1(0). Finally, if Q = D, then Equation (30) is
finite-time semistable.

Proof. Consider xe ∈ Q ∩ f −1(0). Since x(t) ≡ xe is Lyapunov stable, it follows that there exists a

relatively open positively invariant set S ⊆ Q containing xe. Next, it follows from Equation (41) that

V̇(s(t, x)) ≤ w(V(s(t, x))), x ∈ S, t ≥ 0 (43)

Now, application of the comparison lemma (Theorem 4.1 of [34]) to the inequality Equation (43) with

the comparison system given by Equation (42) yields

V(s(t, x)) ≤ ψ(t,V(x)), t ≥ 0, x ∈ S (44)

where ψ : [0,∞) × R → R is the global semiflow of Equation (42). Since Equation (42) is finite-time

convergent to the origin for R+, it follows from Equation (44) and the nonnegativity of V(·) that

V(s(t, x)) = 0, t ≥ T̂ (V(x)), x ∈ S (45)

where T̂ (·) denotes the settling-time function of Equation (42).

Next, since s(0, x) = x, s(·, ·) is jointly continuous, and V(s(t, x)) = 0 is equivalent to f (s(t, x)) = 0

on S, it follows that inf{t ∈ R+ : f (s(t, x)) = 0} > 0 for x ∈ S\ f −1(0). Furthermore, it follows from

Equation (45) that inf{t ∈ R+ : f (s(t, x)) = 0} < ∞ for x ∈ S. Define T : S\ f −1(0) → R+ by
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T (x) = inf{t ∈ R+ : f (s(t, x)) = 0}. Then it follows that every point in S∩ f −1(0) is finite-time semistable

and T is the settling-time function on S. Furthermore, it follows from Equation (45) that T (x) ≤ T̂ (V(x)),

x ∈ S. Since the settling-time function of a one-dimensional finite-time stable system is continuous at

the equilibrium, it follows that T is continuous at each point in S ∩ f −1(0). Since xe ∈ Q ∩ f −1(0) was

chosen arbitrarily, it follows that every point in Q ∩ f −1(0) is finite-time semistable, while Lemma 5.1

implies that T is continuous on a relatively open neighborhood of Q ∩ f −1(0).

The last statement follows by noting that, if Q = D, then Q is positively invariant by our assumptions

on Equation (30), and hence, the preceding arguments hold with S = Q. �

Theorem 5.2 Assume that there exists a continuous nonnegative function V : D → R+ such that V̇(·) is
defined everywhere onD, V−1(0) = f −1(0), and there exists a relatively open neighborhood Q ⊆ D such
that Q ∩ f −1(0) is nonempty and Equation (39) holds for all x ∈ Q\ f −1(0). Furthermore, assume that
there exists a continuous nonnegative function W : Q → R+ such that Ẇ(·) is defined everywhere on Q,
W−1(0) = Q ∩ f −1(0), and

‖ f (x)‖ ≤ −c0Ẇ(x), x ∈ Q\ f −1(0) (46)

where c0 > 0. Then every point in Q ∩ f −1(0) is finite-time semistable.

Proof. For any xe ∈ Q∩ f −1(0), since W(x) ≥ 0 = W(xe) for all x ∈ Q, it follows from (i) of Theorem 5.2

of [20] that xe is a Lyapunov stable equilibrium and, hence, every point in Q∩ f −1(0) is Lyapunov stable.

Now, it follows from the second assertion of Proposition 5.1 and Theorem 5.1, with w(x) = −c3sgn(x)|x|α,
that every point in Q ∩ f −1(0) is finite-time semistable. �

6. Homogeneity and Finite-Time Semistability

In this section, we develop necessary and sufficient conditions for finite-time semistability of

homogeneous dynamical systems. In the sequel, we will need to consider a complete vector field ν

on R
n
+ such that the solutions of the differential equation ẏ(t) = ν(y(t)) define a continuous global flow

ψ : R × Rn
+ → R

n
+ on R

n
+, where ν−1(0) = f −1(0). For each τ ∈ R, the map ψτ(·) = ψ(τ, ·) is a

homeomorphism and ψ−1
τ = ψ−τ. We define a function V : R

n
+ → R to be homogeneous of degree l ∈ R

with respect to ν if and only if (V ◦ ψτ)(x) = elτV(x), τ ∈ R, x ∈ Rn
+. Our assumptions imply that every

connected component of R
n
+\ f −1(0) is invariant under ν. The Lie derivative of a continuous function

V : R
n
+ → R with respect to ν is given by LνV(x) � limt→0+

1
t [V(ψ(t, x)) − V(x)], whenever the limit

on the right-hand side exists. If V is a continuous homogeneous function of degree l > 0, then LνV is

defined everywhere and satisfies LνV = lV . We assume that the vector field ν is a semi-Euler vector field,

that is, the dynamical system

ẏ(t) = −ν(y(t)), y(0) = y0, t ≥ 0 (47)

is globally semistable with respect to R
n
+. Thus, for each x ∈ Rn

+, limτ→∞ ψ(−τ, x) = x∗ ∈ ν−1(0), and for

each xe ∈ ν−1(0), there exists z ∈ Rn
+ such that xe = limτ→∞ ψ(−τ, z). Finally, we say that the vector field

f is homogeneous of degree k ∈ R with respect to ν if and only if ν−1(0) = f −1(0) and, for every t ∈ R+
and τ ∈ R,

st ◦ ψτ = ψτ ◦ sekτt (48)
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Note that if V : R
n
+ → R is a homogeneous function of degree l such that Lf V(x) is defined everywhere,

then Lf V(x) is a homogeneous function of degree l + k [37,38]. Finally, note that if ν and f are

continuously differentiable in a neighborhood of x ∈ Rn
+, then Equation (48) holds at x for sufficiently

small t and τ if and only if [ν, f ](x) = k f (x) in a neighborhood of x ∈ Rn
+, where the Lie bracket [ν, f ] of

ν and f can be computed by using [ν, f ] =
∂ f
∂xν − ∂ν∂x f .

The following lemmas are needed for the main results of this section.

Lemma 6.1 Consider the dynamical system given by Equation (47). Let Dc ⊂ Rn
+ be a relatively

compact set satisfying Dc ∩ ν−1(0) = Ø. Then for every relatively open set Q satisfying ν−1(0) ⊂ Q,
there exist τ1, τ2 > 0 such that ψ−t(Dc) ⊂ Q for all t > τ1 and ψτ(Dc) ∩ Q = Ø for all τ > τ2.

Proof. Let Q be a relatively open neighborhood of ν−1(0) with respect to R
n
+. Since every z ∈ ν−1(0) is

Lyapunov stable under ν, it follows that there exists a relatively open neighborhoodVz containing z such

that ψ−t(Vz) ⊆ Q for all t ≥ 0. Hence, V � ⋃
z∈ν−1(0)Vz is relatively open and ψ−t(V) ⊆ Q for all t ≥ 0.

Next, consider the collection of nested sets {Dt}t>0, where Dt = {x ∈ Dc : ψh(x) � V, h ∈ [−t, 0]} =
Dc ∩ (R

n
+\(

⋃
h∈[−t,0] ψ

−1
h (V))), t > 0. For each t > 0, Dt is a relatively compact set. Therefore, if Dt is

nonempty for each t > 0, then there exists x ∈ ⋂
t>0Dt, that is, there exists x ∈ Dc such that ψ−t(x) � V

for all t > 0, which contradicts the fact that the domain of semistability [39] of Equation (47) is R
n
+.

Hence, there exists τ > 0 such that Dτ = Ø, that is, Dc ⊂ ⋃
h∈[−τ,0] ψ

−1
h (V). Therefore, for every t > τ,

ψ−t(Dc) ⊂ ⋃
h∈[−τ,0] ψ−t(ψ

−1
h (V)) =

⋃
h∈[−τ,0] ψ−t−h(V) ⊆ Q. The second conclusion follows using similar

arguments as above. �

Lemma 6.2 Suppose f : R
n
+ → Rn is homogeneous of degree k ∈ R with respect to ν and Equation (30)

is (locally) semistable. Then the domain of semistability of Equation (30) is R
n
+.

Proof. Let A ⊆ Rn
+ be the domain of semistability [39] and x ∈ Rn

+. Note that A is a relatively

open neighborhood of ν−1(0) with respect to R
n
+. Since every point in ν−1(0) is a globally semistable

equilibrium under −ν with respect to R
n
+, there exists τ > 0 such that z = ψ−τ(x) ∈ A. Then it follows

from Equation (48) that s(t, x) = s(t, ψτ(z)) = ψτ(s(ekτt, z)). Since limt→∞ s(t, z) = x∗ ∈ f −1(0), it follows

that limt→∞ s(t, x) = limt→∞ ψτ(s(ekτt, z)) = ψτ(limt→∞ s(ekτt, z)) = ψτ(x∗) = x∗, which implies that

x ∈ A. Since x ∈ Rn
+ is arbitrary,A = Rn

+. �

The following theorem presents a converse Lyapunov result for homogenous semistable systems.

Theorem 6.1 Suppose f : R
n
+ → Rn is homogeneous of degree k ∈ R with respect to ν and Equation (30)

is semistable. Then for every l > max{−k, 0}, there exists a continuous nonnegative function V : R
n
+ → R+

that is homogeneous of degree l with respect to ν, continuously differentiable on R
n
+\ f −1(0), and satisfies

V−1(0) = f −1(0), V ′(x) f (x) < 0, x ∈ Rn
+\ f −1(0), and for each xe ∈ f −1(0) and each bounded, relatively

open neighborhood D0 containing xe with respect to R
n
+, there exist c1 = c1(D0) ≥ c2 = c2(D0) > 0

such that

− c1[V(x)]
l+k

l ≤ V ′(x) f (x) ≤ −c2[V(x)]
l+k

l , x ∈ D0 (49)

Proof. Choose l > max{−k, 0}. First, we prove that there exists a continuous Lyapunov function V on

R
n
+ that is homogeneous of degree l with respect to ν, continuously differentiable on R

n
+\ f −1(0), and
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V ′(x) f (x) < 0 for x ∈ Rn
+\ f −1(0). Choose any nondecreasing smooth function g : R+ → [0, 1] such that

g(s) = 0 for s ≤ a, g(s) = 1 for s ≥ b, and g′(s) > 0 on (a, b), where 0 < a < b are constants. It follows

from Theorem 4.21 of [40] and Lemma 6.2 that there exists a continuously differentiable Lyapunov

function U(·) on R
n
+ satisfying all of the properties in Theorem 4.21 of [40].

Next, define

V(x) �
∫ +∞

−∞
e−lτg(U(ψ(τ, x)))dτ, x ∈ Rn

+ (50)

Let Q be a bounded, relatively open set satisfying Q ∩ f −1(0) = Ø. Since every point in ν−1(0) is

a globally semistable equilibrium point under −ν with respect to R
n
+, it follows that for each x ∈ Q,

limτ→+∞U(ψ(τ, x)) = +∞ and limτ→+∞U(ψ(−τ, x)) = 0. Now, it follows from Lemma 6.1 that there

exist time instants τ1 < τ2 such that for each x ∈ Q, U(ψ(τ, x)) ≤ a for all τ ≤ τ1 and U(ψ(τ, x)) ≥ b for

all τ ≥ τ2. Hence,

V(x) =

∫ τ2

τ1

e−lτg(U(ψ(τ, x)))dτ +
e−lτ2

l
, x ∈ Q (51)

which implies that V is well defined, positive, and continuously differentiable on Q.

Next, since U(·) satisfies (i) and (ii) of Theorem 4.21 of [40] it follows from Equations (50) and (51)

that V−1(0) = f −1(0). Since for any σ ∈ R and x ∈ Rn
+,

V(ψ(σ, x)) =

∫ +∞

−∞
e−lτg(U(ψ(τ + σ, x)))dτ = elσV(x) (52)

by definition, V is homogeneous of degree l. In addition, it follows from Equations (48) and (51) that

V ′(x) f (x) =

∫ τ2

τ1

e−lτg′(U(ψ(τ, x)))
d

dt
U(s(e−kτt, ψ(τ, x)))

∣∣∣∣
t=0

dτ

=

∫ τ2

τ1

e−(l+k)τg′(U(ψ(τ, x)))U′(ψ(τ, x)) f (ψ(τ, x))dτ

< 0, x ∈ Q

(53)

which implies that V ′ f is negative and continuous on Q. Now, since Q is arbitrary, it follows that V is

well defined and continuously differentiable, and V ′ f is negative and continuous on R
n
+\ f −1(0).

Next, to show continuity at points in f −1(0), we define T : R
n
+\ f −1(0) → R by T (x) = sup{t ∈ R :

U(ψ(τ, x)) ≤ a for all τ ≤ t}, and note that the continuity of U implies that U(ψ(T (x), x)) = a for all

x ∈ Rn
+\ f −1(0). Let xe ∈ f −1(0), and consider a sequence {xk}∞k=1 in R

n
+\ f −1(0) converging to xe. We

claim that the sequence {T (xk)}∞k=1 has no bounded subsequence so that limk→∞ T (xk) = ∞. To prove our

claim by contradiction, suppose, ad absurdum, that {T (xki)}∞i=1 is a bounded subsequence. Without loss

of generality, we may assume that the sequence {T (xki)}∞i=1 converges to h ∈ R. Then, by joint continuity

of ψ, limi→∞ ψ(T (xki), xki) = ψ(h, xe) = xe, so that limi→∞U(ψ(T (xki), xki)) = U(xe) = 0. However, this

contradicts our observation above that U(ψ(T (x), x)) = a for all x ∈ Rn
+\ f −1(0). The contradiction leads

us to conclude that limk→∞ T (xk) = ∞. Now, for each k = 1, 2, . . . , it follows that

V(xk) =

∫ ∞

T (xk)

e−lτg(U(ψ(τ, xk)))dτ ≤
∫ ∞

T (xk)

e−lτdτ = l−1e−lT (xk)
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so that limk→∞ V(xk) = 0 = V(xe). Since xe was chosen arbitrarily, it follows that V is continuous at

every xe ∈ f −1(0).

To show that V possesses the last property, let xe ∈ f −1(0), and choose a bounded, relatively

open neighborhood D0 of xe with respect to R
n
+. Let W = ψ(R+ × D0). For every ε > 0, denote

Wε = W ∩ V−1(ε). For every ε > 0, define the continuous map τε : R
n
+\ f −1(0) → R by

τε(x) � l−1 ln(ε/V(x)), and note that, for every x ∈ Rn
+\ f −1(0), ψ(t, x) ∈ V−1(ε) if and only if t = τε(x).

Next, define βε : R
n
+\ f −1(0) → Rn

+ by βε � ψ(τε(x), x). Note that, for every ε > 0, βε is continuous, and

βε(x) ∈ V−1(ε) for every x ∈ Rn
+\ f −1(0).

Consider ε > 0. Wε is the union of the images of connected components of D0\ f −1(0) under the

continuous map βε. Since every connected component of R
n
+\ f −1(0) is invariant under ν, it follows that

the image of each connected component Q of R
n
+\ f −1(0) under βε is contained in Q itself. In particular,

the images of connected components of D0\ f −1(0) under βε are all disjoint. Thus, each connected

component ofWε is the image of exactly one connected component ofD0\ f −1(0) under βε. Finally, if ε

is small enough so that V−1(ε) ∩ D0 is nonempty, then V−1(ε) ∩ D0 ⊆ Wε, and hence, every connected

component ofWε has a nonempty intersection withD0\ f −1(0).

We claim that Wε is bounded for every ε > 0. It is easy to verify that, for every ε1, ε2 ∈ (0,∞),

Wε2 = ψh(Wε1) with h = l−1 ln(ε2/ε1). Hence, it suffices to prove that there exists ε > 0 such thatWε

is bounded. To arrive at a contradiction, suppose, ad absurdum, thatWε is unbounded for every ε > 0.

Choose a bounded relatively open neighborhoodV ofD0 and a sequence {εi}∞i=1 in (0,∞) converging to 0.

By our assumption, for every i = 1, 2, . . . , at least one connected component ofWεi must contain a point

in R
n
+\V. On the other hand, for i sufficiently large, every connected component ofWεi has a nonempty

intersection with D0 ⊂ V. It follows thatWεi has a nonempty intersection with the boundary of V for

every i sufficiently large. Hence, there exists a sequence {xi}∞i=1 in D0, and a sequence {ti}∞i=1 in (0,∞)

such that yi � ψti(xi) ∈ V−1(εi) ∩ ∂V for every i = 1, 2, . . . . Since V is bounded, we can assume that

the sequence {yi}∞i=1 converges to y ∈ ∂V. Continuity implies that V(y) = limi→∞ V(yi) = limi→∞ εi = 0.

Since V−1(0) = f −1(0) = ν−1(0), it follows that y is Lyapunov stable under −ν. Since y � D0, there exists

a relatively open neighborhood Q of y such that Q ∩ D0 = Ø. The sequence {yi}∞i=1 converges to y while

ψ−ti(yi) = xi ∈ D0 ⊂ Rn
+\Q, which contradicts Lyapunov stability. This contradiction implies that there

exists ε > 0 such thatWε is bounded. It now follows thatWε is bounded for every ε > 0.

Finally, consider x ∈ D0\ f −1(0). Choose ε > 0 and note that ψτε(x)(x) ∈ Wε. Furthermore, note that

V ′(x) f (x) < 0 for all x ∈ Rn
+\ f −1(0), V ′(x) f (x) is continuous on R

n
+\ f −1(0), andWε∩ f −1(0) = Ø. Then,

by homogeneity, V(ψτε(x)(x)) = ε, and hence,

min
z∈Wε

V ′(z) f (z) ≤ V ′(ψτε(x)(x)) f (ψτε(x)(x)) ≤ max
z∈Wε

V ′(z) f (z) (54)

Since V ′(ψτε(x)(x)) f (ψτε(x)(x)) is homogeneous of degree l + k, it follows that

V ′(ψτε(x)(x)) f (ψτε(x)(x)) = e(l+k)τε(x)V ′(x) f (x) = ε
l+k

l V(x)−
l+k

l V ′(x) f (x)

Let c1 � −ε− l+k
l minz∈Wε

V ′(z) f (z) and c2 � −ε− l+k
l maxz∈Wε

V ′(z) f (z). Note that c1 and c2 are positive

and well defined sinceWε is compact. Hence, the theorem is proved. �

The following result represents the main application of homogeneity [36] to finite-time semistability.



Entropy 2012, 14 432

Theorem 6.2 Suppose f is homogeneous of degree k ∈ R with respect to ν. Then Equation (30) is
finite-time semistable if and only if Equation (30) is semistable and k < 0. In addition, if Equation (30)
is finite-time semistable, then the settling-time function T (·) is homogeneous of degree −k with respect to
ν and T (·) is continuous on R

n
+.

Proof. Since finite-time semistability implies semistability, it suffices to prove that if Equation (30) is

semistable, then Equation (30) is finite-time semistable if and only if k < 0. Suppose Equation (30) is

finite-time semistable and let l > max{−k, 0}. Then for each xe ∈ f −1(0), it follows from Theorem 6.1

that there exist a bounded, relatively open, and positively invariant set S containing xe, and a continuous

nonnegative function V : S → R+ that is homogeneous of degree l + k and is such that V ′(x) f (x) is

continuous, negative on S\ f −1(0), homogeneous of degree l + k, and Equation (49) holds. Now, ad
absurdum, if k ≥ 0 and x ∈ S\ f −1(0), then application of the comparison lemma (Theorem 4.2 in [34])

to the first inequality in Equation (49) yields V(s(t, x)) ≥ π(t,V(x)), where π is given by

π(t, x) =

⎧⎪⎪⎨⎪⎪⎩ sgn(x)
(

1
|x|α−1 + c1(α − 1)t

)− 1
α−1
, α > 1

e−c1t x, α = 1
(55)

and where sgn (x) � x/|x|, x � 0, and sgn (0) � 0, with α = 1+ k/l ≥ 1. Since, in this case, π(t,V(x)) > 0

for all t ≥ 0, we have s(t, x) � S ∩ f −1(0) for every t ≥ 0; that is, xe is not a finite-time semistable

equilibrium under f , which is a contradiction. Hence, k < 0.

Conversely, if k < 0, choose xe ∈ f −1(0) and choose a relatively open neighborhood D0 of xe such

that Equation (50) holds. Next, Sxe
is chosen to be a bounded, positively invariant neighborhood of

xe contained in D0. Then it follows from Theorem 6.1 that there exists a continuous nonnegative

function V(·) such that Equation (49) holds on Sxe
. Now, with c = c2 > 0, 0 < α = 1 + k/l < 1,

D0 = Sxe
, and w(x) = −csgn(x)|x|α, it follows from Proposition 5.1 and Theorem 5.1 that xe is finite-time

semistable on Sxe
. Define S � ⋃

xe∈ f −1(0) Sxe
. Then S is a relatively open neighborhood of f −1(0) such

that every solution in S converges in finite time to a Lyapunov stable equilibrium. Hence, Equation (30)

is finite-time semistable. Lemma 6.2 then implies that Equation (30) is globally finite-time semistable,

and T (·) is defined on R
n
+. By Proposition 5.1 with D0 = Sxe

, and Theorem 5.1, it follows that T (·) is

continuous on Sxe
. Next, since xe ∈ f −1(0) was chosen arbitrarily, it follows from Lemma 5.1 that T (·)

is continuous on R
n
+.

Finally, let x ∈ Rn
+ and note that, since every point in ν−1(0) = f −1(0) is a globally semistable

equilibrium under −ν with respect to R
n
+, there exists τ > 0 such that z � ψ−τ(x) ∈ S. Then it follows

from Equation (48) that s(t, x) = s(t, ψτ(z)) = ψτ(s(ekτt, z)), and hence, f (s(t, x)) = 0 if and only if

f (s(ekτt, z)) = 0. Now, it follows that for x ∈ S, T (ψ−τ(x)) = T (z) = ekτT (x). By definition, it follows

that T (·) is homogeneous of degree −k with respect to ν. �

In order to use Theorem 6.2 to prove finite-time semistability of a homogeneous system, a priori
information of semistability for the system is needed, which is not easy to obtain. To overcome this, we

need to develop some sufficient conditions to establish finite-time semistability. Recall that a function

V : R
n
+ → R is said to be weakly proper if and only if for every c ∈ R, every connected component of

the set {x ∈ Rn
+ : V(x) ≤ c} = V−1((−∞, c]) is compact [21]. Furthermore, the following lemma giving a

sufficient condition for a trajectory of Equation (30) to converge to a limit is needed.
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Lemma 6.3 Consider the nonlinear dynamical system given by Equation (30) where f is essentially
nonnegative and let x ∈ Rn

+. If the positive limit set ω(x) of Equation (30) contains a Lyapunov stable
(with respect to R

n
+) equilibrium point y, then y = limt→∞ s(t, x), that is, ω(x) = {y}.

Proof. Suppose y ∈ ω(x) is Lyapunov stable with respect to R
n
+ and let Nε ⊆ Rn

+ be a relatively

open neighborhood of y. Since y is Lyapunov stable with respect to R
n
+, there exists a relatively open

neighborhood Nδ ⊂ Rn
+ of y such that st(Nδ) ⊆ Nε for every t ≥ 0. Now, since y ∈ ω(x), it follows

that there exists τ ≥ 0 such that s(τ, x) ∈ Nδ. Hence, s(t + τ, x) = st(s(τ, x)) ∈ st(Nδ) ⊆ Nε for every

t > 0. Since Nε ⊆ Rn
+ is arbitrary, it follows that y = limt→∞ s(t, x). Thus, limn→∞ s(tn, x) = y for every

sequence {tn}∞n=1, and hence, ω(x) = {y}. �

Proposition 6.1 Assume f is homogeneous of degree k < 0 with respect to ν. Furthermore, assume that
there exists a weakly proper, continuous function V : R

n
+ → R such that V̇ is defined on R

n
+ and satisfies

V̇(x) ≤ 0 for all x ∈ Rn
+. If every point in the largest invariant subset N of V̇−1(0) is a Lyapunov stable

equilibrium point of Equation (30), then Equation (30) is finite-time semistable.

Proof. Since V(·) is weakly proper, it follows from Proposition 3.1 of [21] that the positive orbit

sx([0,∞)) of x ∈ Rn
+ is bounded in R

n
+. Since every solution is bounded, it follows from the hypotheses

on V(·) that for every x ∈ Rn
+, the omega limit set ω(x) is nonempty and contained in the largest

invariant subset N of V̇−1(0). Since every point in N is a Lyapunov stable equilibrium point, it follows

from Lemma 6.3 that the omega limit set ω(x) contains a single point for every x ∈ Rn
+. And since

limt→∞ s(t, x) ∈ N is Lyapunov stable for every x ∈ Rn
+, by definition, the system given by Equation (30)

is semistable. Hence, it follows from Theorem 6.2 that Equation (30) is finite-time semistable. �

7. A State Space Formalism for Thermodynamics

The fundamental and unifying concept in the analysis of thermodynamic systems is the concept of

energy. The energy of a state of a dynamical system is the measure of its ability to produce changes

(motion) in its own system state as well as changes in the system states of its surroundings. These

changes occur as a direct consequence of the energy flow between different subsystems within the

dynamical system. Heat (energy) is a fundamental concept of thermodynamics involving the capacity

of hot bodies (more energetic subsystems) to produce work. As in thermodynamic systems, dynamical

systems can exhibit energy (due to friction) that becomes unavailable to do useful work. This in turn

contributes to an increase in system entropy, a measure of the tendency of a system to lose the ability to

do useful work. In this section, we use the state space formalism to construct a mathematical model of a

thermodynamic system that is consistent with basic thermodynamic principles.

Specifically, we consider a large-scale system model with a combination of subsystems

(compartments or parts) that is perceived as a single entity. For each subsystem (compartment) making

up the system, we postulate the existence of an energy state variable such that the knowledge of these

subsystem state variables at any given time t = t0, together with the knowledge of any inputs (heat fluxes)

to each of the subsystems for time t ≥ t0, completely determines the behavior of the system for any given

time t ≥ t0. Hence, the (energy) state of our dynamical system at time t is uniquely determined by the

state at time t0 and any external inputs for time t ≥ t0 and is independent of the state and inputs before

time t0.
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More precisely, we consider a large-scale dynamical system composed of a large number of units

with aggregated (or lumped) energy variables representing homogenous groups of these units. If

all the units comprising the system are identical (that is, the system is perfectly homogeneous),

then the behavior of the dynamical system can be captured by that of a single plenipotentiary

unit. Alternatively, if every interacting system unit is distinct, then the resulting model constitutes

a microscopic system. To develop a middle-ground thermodynamic model placed between complete

aggregation (classical thermodynamics) and complete disaggregation (statistical thermodynamics), we

subdivide the large-scale dynamical system into a finite number of compartments, each formed by a large

number of homogeneous units. Each compartment represents the energy content of the different parts of

the dynamical system, and different compartments interact by exchanging heat. Thus, our compartmental

thermodynamic model utilizes subsystems or compartments to describe the energy distribution among

distinct regions in space with intercompartmental flows representing the heat transfer between these

regions. Decreasing the number of compartments results in a more aggregated or homogeneous model,

whereas increasing the number of compartments leads to a higher degree of disaggregation resulting in

a heterogeneous model.

To formulate our state space thermodynamic model, consider the large-scale dynamical system G
shown in Figure 1 involving energy exchange between q interconnected subsystems. Let xi : [0,∞) →
R+ denote the energy (and hence a nonnegative quantity) of the ith subsystem, let ui : [0,∞)→ R denote

the external power (heat flux) supplied to (or extracted from) the ith subsystem, let σi j : R
q
+ → R+,

i � j, i, j = 1, . . . , q, denote the instantaneous rate of energy (heat) flow from the jth subsystem to

the ith subsystem, and let σii : R
q
+ → R+, i = 1, . . . , q, denote the instantaneous rate of energy (heat)

dissipation from the ith subsystem to the environment. In this and the next two sections, we assume that

σi j : R
q
+ → R+, i, j = 1, . . . , q, are locally Lipschitz continuous on R

q
+ and ui : [0,∞) → R, i = 1, . . . , q

are bounded piecewise continuous functions of time.

Figure 1. Large-scale dynamical system G.
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An energy balance for the ith subsystem yields

xi(T ) = xi(t0) +

q∑
j=1, j�i

∫ T

t0
[σi j(x(t)) − σ ji(x(t))]dt −

∫ T

t0
σii(x(t))dt +

∫ T

t0
ui(t)dt, T ≥ t0 (56)

or, equivalently, in vector form,

x(T ) = x(t0) +

∫ T

t0
f (x(t))dt −

∫ T

t0
d(x(t))dt +

∫ T

t0
u(t)dt, T ≥ t0

(57)

where x(t) � [x1(t), . . . , xq(t)]T, d(x(t)) � [σ11(x(t)), . . . , σqq(x(t))]T, u(t) � [u1(t), . . . , uq(t)]T, t ≥ t0, and

f = [ f1, . . . , fq]T : R
q
+ → Rq is such that

fi(x) =

q∑
j=1, j�i

[σi j(x) − σ ji(x)], x ∈ Rq
+ (58)

It is important to note that the exchange of energy between subsystems in Equation (56) is assumed

to be a nonlinear function of all the subsystems, that is, σi j = σi j(x), x ∈ Rq
+, i � j, i, j = 1, . . . , q.

This assumption is made for generality and would depend on the complexity of the diffusion process.

For example, thermal processes may include evaporative and radiative heat transfer as well as thermal

conduction giving rise to complex heat transport mechanisms. However, for simple diffusion processes

it suffices to assume that σi j(x) = σi j(x j), wherein the energy flow from the jth subsystem to the ith
subsystem is only dependent (possibly nonlinearly) on the energy in the jth subsystem, resulting in a

donor-controlled compartmental model. Similar comments apply to system dissipation.

Note that Equation (56) yields a conservation of energy equation and implies that the energy stored

in the ith subsystem is equal to the external energy supplied to (or extracted from) the ith subsystem

plus the energy gained by the ith subsystem from all other subsystems due to subsystem coupling minus

the energy dissipated from the ith subsystem to the environment. Equivalently, Equation (56) can be

rewritten as

ẋi(t) =
q∑

j=1, j�i

[σi j(x(t)) − σ ji(x(t))] − σii(x(t)) + ui(t), xi(t0) = xi0, t ≥ t0 (59)

or, in vector form,

ẋ(t) = f (x(t)) − d(x(t)) + u(t), x(t0) = x0, t ≥ t0 (60)

where x0 � [x10, . . . , xq0]T, yielding a power balance equation that characterizes energy flow between

subsystems of the large-scale dynamical system G. Equation (59) shows that the rate of change of

energy, or power, in the ith subsystem is equal to the power input (heat flux) to the ith subsystem plus

the energy (heat) flow to the ith subsystem from all other subsystems minus the power dissipated from

the ith subsystem to the environment. Furthermore, since f (·) − d(·) is locally Lipschitz continuous

on R
q
+ and u(·) is a bounded piecewise continuous function of time, it follows that Equation (60) has a

unique solution over the finite time interval [t0, τx0
). If, in addition, the power balance Equation (60) is

input-to-state stable [40], then τx0
= ∞.
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Equation (57) or, equivalently, Equation (60) is a statement of the first law of thermodynamics as

applied to isochoric transformations (i.e., constant subsystem volume transformations) for each of the

subsystems Gi, i = 1, . . . , q, with xi(·), ui(·), σi j(·), i � j, and σii(·), i, j = 1, . . . , q, playing the role of

the ith subsystem internal energy, rate of heat supplied to (or extracted from) the ith subsystem, heat

flow between subsystems due to coupling, and the rate of energy (heat) dissipated to the environment,

respectively. To further elucidate that Equation (57) is essentially the statement of the principle of the

conservation of energy, let the total energy in the large-scale dynamical system G be given by U � eTx,

where eT � [1, . . . , 1] and x ∈ Rq
+, and let the net energy received by the large-scale dynamical system G

over the time interval [t1, t2] be given by

Q �
∫ t2

t1
eT[u(t) − d(x(t))]dt (61)

where x(t), t ≥ t0, is the solution to Equation (60). Then, premultiplying Equation (57) by eT and using

the fact that eT f (x) ≡ 0, it follows that

ΔU = Q (62)

where ΔU � U(t2) − U(t1) denotes the variation in the total energy of the large-scale dynamical system

G over the time interval [t1, t2]. This is a statement of the first law of thermodynamics for isochoric

transformations of the large-scale dynamical systemG and gives a precise formulation of the equivalence

between the variation in system internal energy and heat.

It is important to note that the large-scale dynamical system model given by Equation (60) does not

consider work done by the system on the environment nor work done by the environment on the system.

Hence, Q can be physically interpreted as the net amount of energy that is received by the system in

forms other than work. The extension of addressing work performed by and on the system can be

easily addressed by including an additional state equation, coupled to the power balance Equation (60),

involving volume (deformation) states for each subsystem. Since this extension does not alter any of the

conceptual results of this paper, it is not considered here for simplicity of exposition. Work performed by

the system on the environment and work done by the environment on the system is addressed in [1,41].

For our large-scale dynamical system model G, we assume that σi j(x) = 0, x ∈ Rq
+, whenever

x j = 0, i, j = 1, . . . , q. In this case, f (x)−d(x), x ∈ Rq
+, is essentially nonnegative, that is, fi(x)−di(x) ≥ 0

for all i = 1, . . . , q and x ∈ Rq
+ such that xi = 0. The above constraint implies that if the energy of the jth

subsystem of G is zero, then this subsystem cannot supply any energy to its surroundings nor dissipate

energy to the environment. Moreover, we assume that ui(t) ≥ 0 whenever xi(t) = 0, t ≥ t0, i = 1, . . . , q,

which implies that when the energy of the ith subsystem is zero, then no energy can be extracted from

this subsystem. Under these assumptions, it can be shown (see [1] for details) that the solution x(t),
t ≥ t0, to Equation (60) is nonnegative for all nonnegative initial conditions x0 ∈ Rq

+.

8. Entropy and Irreversibility

The nonlinear power balance Equation (60) can exhibit a full range of nonlinear behavior, including

bifurcations, limit cycles, and even chaos. However, a thermodynamically consistent energy flow

model should ensure that the evolution of the system energy is diffusive (parabolic) in character with
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convergent subsystem energies. As established in Section 4, such a system model would guarantee

the absence of Poincaré recurrence. Otherwise, the thermodynamic model would violate the second

law of thermodynamics, since subsystem energies (temperatures) would be allowed to return to their

starting state and thereby subverting the diffusive character of the dynamical system. Hence, to ensure

a thermodynamically consistent energy flow model, we require the following axioms. For the statement

of these axioms [42], we first recall the following graph-theoretic notions.

Definition 8.1 ([43]) A directed graph G(C) associated with the connectivity matrix C ∈ Rq×q has
vertices {1, 2, . . . , q} and an arc from vertex i to vertex j, i � j, if and only if C( j,i) � 0. A graph G(C)

associated with the connectivity matrix C ∈ Rq×q is a directed graph for which the arc set is symmetric,
that is, C = CT. We say that G(C) is strongly connected if for any ordered pair of vertices (i, j), i � j,
there exists a path (i.e., a sequence of arcs) leading from i to j.

Recall that the connectivity matrix C ∈ Rq×q is irreducible, that is, there does not exist a permutation

matrix such that C is cogradient to a lower-block triangular matrix, if and only if G(C) is strongly

connected (see Theorem 2.7 of [43]). Let φi j(x) � σi j(x) − σ ji(x), x ∈ Rq
+, denote the net energy flow

from the jth subsystem G j to the ith subsystem Gi of the large-scale dynamical system G.

Axiom (i) The connectivity matrix C ∈ Rq×q associated with the large-scale dynamical system G is

defined by

C(i, j) �

⎧⎪⎪⎨⎪⎪⎩
0, if φi j(x) ≡ 0,

1, otherwise,
i � j, i, j = 1, . . . , q (63)

and

C(i,i) � −
q∑

k=1, k�i

C(k,i), i = 1, . . . , q (64)

and satisfies rank C = q − 1. Moreover, for every i � j such that C(i, j) = 1, φi j(x) = 0 if and only

if xi = x j.

Axiom (ii) For i, j = 1, . . . , q, (xi − x j)φi j(x) ≤ 0, x ∈ Rq
+.

The fact that φi j(x) = 0 if and only if xi = x j, i � j, implies that subsystems Gi and G j of G
are connected; alternatively, φi j(E) ≡ 0 implies that Gi and G j are disconnected. Axiom (i) implies

that if the energies in the connected subsystems Gi and G j are equal, then energy exchange between

these subsystems is not possible. This statement is consistent with the zeroth law of thermodynamics,

which postulates that temperature equality is a necessary and sufficient condition for thermal equilibrium.

Furthermore, it follows from the fact that C = CT and rank C = q − 1 that the connectivity matrix

C is irreducible, which implies that for every pair of subsystems Gi and G j, i � j, of G there exists

a sequence of connectors (arcs) of G that connect Gi and G j. Axiom (ii) implies that energy flows

from more energetic subsystems to less energetic subsystems and is consistent with the second law of
thermodynamics, which states that heat (energy) must flow in the direction of lower temperatures [44].

Furthermore, note that φi j(x) = −φ ji(x), x ∈ Rq
+, i � j, i, j = 1, . . . , q, which implies conservation

of energy between lossless subsystems. With u(t) ≡ 0, Axioms (i) and (ii) along with the fact that

φi j(x) = −φ ji(x), x ∈ Rq
+, i � j, i, j = 1, . . . , q, imply that at a given instant of time, energy can only
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be transported, stored, or dissipated but not created, and the maximum amount of energy that can be

transported and/or dissipated from a subsystem cannot exceed the energy in the subsystem.

Next, we show that the classical Clausius equality and inequality for reversible and irreversible

thermodynamics over cyclic motions are satisfied for our thermodynamically consistent energy flow

model. For this result
∮

denotes a cyclic integral evaluated along an arbitrary closed path of Equation (60)

in R
q
+; that is,

∮
�

∫ tf
t0

with tf ≥ t0 and u(·) ∈ U such that x(tf) = x(t0) = x0 ∈ Rq
+.

Proposition 8.1 Consider the large-scale dynamical system G with power balance Equation (60), and
assume that Axioms (i) and (ii) hold. Then, for all x0 ∈ Rq

+, tf ≥ t0, and u(·) ∈ U such that x(tf) = x(t0) = x0,

∫ tf

t0

q∑
i=1

ui(t) − σii(x(t))
c + xi(t)

dt =
∮ q∑

i=1

dQi(t)
c + xi(t)

≤ 0 (65)

where c > 0, dQi(t) � [ui(t) − σii(x(t))]dt, i = 1, . . . , q, is the amount of net energy (heat) received or
dissipated by the ith subsystem over the infinitesimal time interval dt, and x(t), t ≥ t0, is the solution to
Equation (60) with initial condition x(t0) = x0. Furthermore,

∮ q∑
i=1

dQi(t)
c + xi(t)

= 0 (66)

if and only if there exists a continuous function α : [t0, tf]→ R+ such that x(t) = α(t)e, t ∈ [t0, tf].

Proof. Since x(t) ≥≥ 0, t ≥ t0, and φi j(x) = −φ ji(x), x ∈ Rq
+, i � j, i, j = 1, . . . , q, it follows from

Equation (60) and Axiom (ii) that

∮ q∑
i=1

dQi(t)
c + xi(t)

=

∫ tf

t0

q∑
i=1

ẋi(t) −∑q
j=1, j�i φi j(x(t))

c + xi(t)
dt

=

q∑
i=1

loge

(
c + xi(tf)

c + xi(t0)

)
−

∫ tf

t0

q∑
i=1

q∑
j=1, j�i

φi j(x(t))
c + xi(t)

dt

= −
∫ tf

t0

q−1∑
i=1

q∑
j=i+1

(
φi j(x(t))
c + xi(t)

− φi j(x(t))
c + x j(t)

)
dt

= −
∫ tf

t0

q−1∑
i=1

q∑
j=i+1

φi j(x(t))(x j(t) − xi(t))
(c + xi(t))(c + x j(t))

dt

≤ 0

(67)

which proves Equation (65).

To show Equation (66), note that it follows from Equation (67), Axiom (i), and Axiom (ii) that

Equation (66) holds if and only if xi(t) = x j(t), t ∈ [t0, tf], i � j, i, j = 1, . . . , q, or, equivalently,

there exists a continuous function α : [t0, tf]→ R+ such that x(t) = α(t)e, t ∈ [t0, tf]. �

The inequality given by Equation (65) is a generalization of Clausius’ inequality for reversible

and irreversible thermodynamics as applied to large-scale dynamical systems and restricts the manner

in which the system dissipates (scaled) heat over cyclic motions. It follows from Axiom (i) and

Equation (60) that for the adiabatically isolated large-scale dynamical system G (that is, u(t) ≡ 0
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and d(x(t)) ≡ 0), the energy states given by xe = αe, α ≥ 0, correspond to the equilibrium energy

states of G. Thus, as in classical thermodynamics, we can define an equilibrium process as a process

in which the trajectory of the large-scale dynamical system G moves along the equilibrium manifold

Me � {x ∈ Rq
+ : E = αe, α ≥ 0} corresponding to the set of equilibria of the isolated [45] system G.

The power input that can generate such a trajectory can be given by u(t) = d(x(t)) + û(t), t ≥ t0, where

û(·) ∈ U is such that ûi(t) ≡ û j(t), i � j, i, j = 1, . . . , q. Our definition of an equilibrium transformation

involves a continuous succession of intermediate states that differ by infinitesimals from equilibrium

system states and thus can only connect initial and final states, which are states of equilibrium. This

process need not be slowly varying, and hence, equilibrium and quasistatic processes are not synonymous

in this paper. Alternatively, a nonequilibrium process is a process that does not lie on the equilibrium

manifold Me. Hence, it follows from Axiom (i) that for an equilibrium process φi j(x(t)) = 0, t ≥ t0,

i � j, i, j = 1, . . . , q, and thus, by Proposition 8.1, the inequality given by Equation (65) is satisfied

as an equality. Alternatively, for a nonequilibrium process it follows from Axioms (i) and (ii) that

Equation (65) is satisfied as a strict inequality.

Next, we give a deterministic definition of entropy for the large-scale dynamical system G that is

consistent with the classical thermodynamic definition of entropy.

Definition 8.2 For the large-scale dynamical system G with power balance Equation (60), a function
S : R

q
+ → R satisfying

S(x(t2)) ≥ S(x(t1)) +

∫ t2

t1

q∑
i=1

ui(t) − σii(x(t))
c + xi(t)

dt (68)

for every t2 ≥ t1 ≥ t0 and u(·) ∈ U is called the entropy function of G.

Next, we establish the existence of a unique, continuously differentiable entropy function for G for

equilibrium and nonequilibrium processes. This result answers the long-standing question of how the

entropy of a nonequilibrium state of a dynamical process should be defined [46,47], and establishes its

global existence and uniqueness.

Theorem 8.1 Consider the large-scale dynamical system G with power balance Equation (60), and
assume that Axioms (i) and (ii) hold. Then the function S : R

q
+ → R

q
+ given by

S(x) = eTloge(ce + x) − q loge c, x ∈ Rq
+ (69)

where loge(ce + x) � [loge(c + x1), . . . , loge(c + xq)]T and c > 0, is a unique (modulo a constant of
integration), continuously differentiable entropy function of G. Furthermore, for x(t) � Me, t ≥ t0,
where x(t), t ≥ t0, denotes the solution to Equation (60) and Me = {x ∈ Rq

+ : x = αe, α ≥ 0},
Equation (69) satisfies

S(x(t2)) > S(x(t1)) +

∫ t2

t1

q∑
i=1

ui(t) − σii(x(t))
c + xi(t)

dt (70)

for every t2 ≥ t1 ≥ t0 and u(·) ∈ U.
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Proof. Since x(t) ≥≥ 0, t ≥ t0, and φi j(x) = −φ ji(x), x ∈ Rq
+, i � j, i, j = 1, . . . , q, it follows that

Ṡ(x(t)) =
q∑

i=1

ẋi(t)
c + xi(t)

=

q∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎣ui(t) − σii(x(t))
c + xi(t)

+

q∑
j=1, j�i

φi j(x(t))
c + xi(t)

⎤⎥⎥⎥⎥⎥⎥⎦

=

q∑
i=1

ui(t) − σii(x(t))
c + xi(t)

+

q−1∑
i=1

q∑
j=i+1

(
φi j(x(t))
c + xi(t)

− φi j(x(t))
c + x j(t)

)

=

q∑
i=1

ui(t) − σii(x(t))
c + xi(t)

+

q−1∑
i=1

q∑
j=i+1

φi j(x(t))(x j(t) − xi(t))
(c + xi(t))(c + x j(t))

≥
q∑

i=1

ui(t) − σii(x(t))
c + xi(t)

, t ≥ t0

(71)

Now, integrating Equation (71) over [t1, t2] yields Equation (68). Furthermore, in the case where x(t) �
Me, t ≥ t0, it follows from Axiom (i), Axiom (ii), and Equation (71) that Equation (70) holds.

To show that Equation (69) is a unique, continuously differentiable entropy function of G, let S(x) be

a continuously differentiable entropy function of G so that S(x) satisfies Equation (68) or, equivalently,

Ṡ(x(t)) ≥ μT(x(t))[u(t) − d(x(t))], t ≥ t0 (72)

where μT(x) = [ 1
c+x1
, . . . , 1

c+xq
], x ∈ Rq

+, x(t), t ≥ t0, denotes the solution to the power balance

Equation (60), and Ṡ(x(t)) denotes the time derivative of S(x) along the solution x(t), t ≥ t0. Hence,

it follows from Equation (72) that

S′(x)[ f (x) − d(x) + u] ≥ μT(x)[u − d(x)], x ∈ Rq
+, u ∈ Rq (73)

which implies that there exist continuous functions � : R
q
+ → Rp andW : R

q
+ → Rp×q such that

0 = S′(x)[ f (x) − d(x) + u] − μT(x)[u − d(x)]

−[�(x) +W(x)u]T[�(x) +W(x)u], x ∈ Rq
+, u ∈ Rq

(74)

Now, equating coefficients of equal powers (of u), it follows thatW(x) ≡ 0, S′(x) = μT(x), x ∈ Rq
+, and

0 = S′(x) f (x) − �T(x)�(x), x ∈ Rq
+ (75)

Hence, S(x) = eTloge(ce + x) − q loge c, x ∈ Rq
+, and

0 = μT(x) f (x) − �T(x)�(x), x ∈ Rq
+ (76)

Thus, Equation (69) is a unique, continuously differentiable entropy function for G. �

Note that it follows from Axiom (i), Axiom (ii), and the last equality in Equation (71) that the entropy

function given by Equation (69) satisfies Equation (68) as an equality for an equilibrium process and as

a strict inequality for a nonequilibrium process. Hence, it follows from Theorem 4.7 that the isolated

(i.e., u(t) ≡ 0 and d(x) ≡ 0) large-scale dynamical system G does not exhibit Poincaré recurrence in
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R
q
+\Me. Furthermore, for any entropy function ofG, it follows from Proposition 8.1 that if Equation (68)

holds as an equality for some transformation starting and ending at equilibrium points of the isolated

system G, then this transformation must lie on the equilibrium manifoldMe. However, Equation (68)

may hold as an equality for nonequilibrium processes starting and ending at nonequilibrium states. The

entropy expression given by Equation (69) is identical in form to the Boltzmann entropy for statistical

thermodynamics. Due to the fact that the entropy given by Equation (69) is indeterminate to the extent

of an additive constant, we can set the constant of integration q loge c to zero by taking c = 1. Since

S(x) given by Equation (69) achieves a maximum when all the subsystem energies xi, i = 1, . . . , q, are

equal [1], the entropy of G can be thought of as a measure of the tendency of a system to lose the ability

to do useful work, lose order, and settle to a more homogenous state.

Recalling that dQi(t) = [ui(t) − σii(x(t))]dt, i = 1, . . . , q, is the infinitesimal amount of the net heat

received or dissipated by the ith subsystem of G over the infinitesimal time interval dt, it follows from

Equation (68) that

dS(x(t)) ≥
q∑

i=1

dQi(t)
c + xi(t)

, t ≥ t0 (77)

The inequality given by Equation (77) is analogous to the classical thermodynamic inequality for

the variation of entropy during an infinitesimal irreversible transformation with the shifted subsystem

energies c+xi playing the role of the ith subsystem thermodynamic (absolute) temperatures. Specifically,

note that since dSi
dxi
= 1

c+xi
, where Si = loge(c + xi) − loge c denotes the unique continuously differentiable

ith subsystem entropy, it follows that dSi
dxi
, i = 1, . . . , q, defines the reciprocal of the subsystem

thermodynamic temperatures. That is,

1

Ti
�

dSi

dxi
(78)

and Ti > 0, i = 1, . . . , q. Hence, in our formulation, temperature is a function derived from entropy and

does not involve the primitive subjective notions of hotness and coldness.

Finally, using the system entropy function given by Equation (69) we show that our large-scale

dynamical system G with power balance Equation (60) is state irreversible for every nontrivial

(nonequilibrium) trajectory of G. For this result, let W[t0,t1] denote the set of all possible energy

trajectories of G over the time interval [t0, t1] given by

W[t0,t1] � {sx : [t0, t1] ×U → Rq
+ : sx(·, u(·)) satisfies Equation (60)} (79)

and letMe ⊂ Rq
+ denote the set of equilibria of the isolated systemGgiven byMe = {x ∈ Rq

+ : αe, α ≥ 0}.

Theorem 8.2 Consider the large-scale dynamical system G with power balance Equation (60), and
assume Axioms (i) and (ii) hold. Furthermore, let sx(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U. Then sx(·, u(·)) is
an Iq-reversible trajectory of G if and only if sx(t, u(t)) ∈ Me, t ∈ [t0, t1].

Proof. First, note that it follows from Theorem 8.1 that if x(t) � Me, t ≥ t0, then there exists an

entropy function S(x), x ∈ Rq
+, for G such that Equation (70) holds. Now, sufficiency follows as a

direct consequence of Theorem 3.1 with R = Iq, V(x) = S(x), and r(u, y) = r(u, d(x)) =
∑q

i=1
ui−σii(x)

c+xi
.
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To show necessity, assume that sx(t, u(t)) ∈ Me, t ∈ [t0, t1]. In this case, it can be shown that

u(t) = d(x(t)) + û(t), t ≥ t0, where û(·) ∈ U is such that ûi(t) ≡ û j(t), i � j, i, j = 1, . . . , q. Now,

with u−(t) = d(x(t))+ û−(t), t ≥ t0, where û−(t) = −û(t1 + t0 − t), t ∈ [t0, t1], it follows that sx(t, u(t)) is an

Iq-reversible trajectory of G. �

Theorem 8.2 establishes an equivalence between (non)equilibrium and state (ir)reversible

thermodynamic systems. Furthermore, Theorem 8.2 shows that for every x0 � Me, the large-scale

dynamical system G is state irreversible. In addition, since state irrecoverability implies state

irreversibility and, by Theorem 8.2, state irreversibility is equivalent to x(t) � Me, t ≥ t0, it

follows from Theorem 3.2 that state (ir)reversibility and state (ir)recoverability are equivalent for

our thermodynamically consistent large-scale dynamical system G. Hence, in the remainder of the

paper we use the notions of (non)equilibrium, state (ir)reversible, and state (ir)recoverable dynamical

processes interchangeably.

9. Semistability and the Entropic Arrow of Time

For the isolated large-scale dynamical system G, Equation (71) yields the fundamental inequality

S(x(t2)) ≥ S(x(t1)), t2 ≥ t1 (80)

The inequality given by Equation (80) implies that, for any dynamical change in an isolated large-scale

dynamical system G, the entropy of the final state can never be less than the entropy of the initial state.

Equation (80) is often identified with the second law of thermodynamics as a statement about entropy

increase. Furthermore, it follows from Equation (70) that for an isolated large-scale dynamical system

G the entropy function Equation (69) is a strictly increasing function of time along the trajectories of

Equation (60) with initial conditions in R
q
+ \ Me. Hence, it follows from Theorem 4.7 that the isolated

large-scale dynamical system G does not exhibit Poincaré recurrence in R
q
+ \ Me. This result can

also be arrived at using the fact that our thermodynamically consistent large-scale dynamical system

G is semistable.

Since our thermodynamic compartmental model involves intercompartmental flows representing

energy transfer between compartments, we can use graph-theoretic notions with undirected graph
topologies (i.e., bidirectional energy flows) to capture the compartmental system interconnections. Graph

theory [48,49] can be useful in the analysis of the connectivity properties of compartmental systems.

In particular, a directed graph can be constructed to capture a compartmental model in which the

compartments are represented by nodes and the flows are represented by edges or arcs. In this case,

the environment must also be considered as an additional node. Specifically, let G = (V,E,A) be a

directed graph (or digraph) denoting the compartmental network with the set of nodes (or compartments)

V = {1, . . . , q} involving a finite nonempty set denoting the compartments, the set of edges E ⊆ V ×V
involving a set of ordered pairs denoting the direction of energy flow, and an adjacency matrixA ∈ Rq×q

such that A(i, j) = 1, i, j = 1, . . . , q, if ( j, i) ∈ E, while A(i, j) = 0 if ( j, i) � E. The edge ( j, i) ∈ E denotes

that compartment j can obtain energy from compartment i, but not necessarily vice versa. Moreover, we

assume A(i,i) = 0 for all i ∈ V. A graph or undirected graph G associated with the adjacency matrix

A ∈ Rq×q is a directed graph for which the arc set is symmetric, that is, A = AT. Weighted graphs can
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also be considered here; however, since this extension does not alter any of the conceptual results in this

paper we do not consider this extension for simplicity of exposition. Finally, we denote the energy of the

compartment i ∈ {1, . . . , q} at time t by xi(t) ∈ R+.
Proposition 9.1 Consider the large-scale dynamical system G with power balance Equation (60) with
d(x) ≡ 0 and u(t) ≡ 0, and assume Axioms (i) and (ii) hold. Then fi(x) = 0 for all i = 1, . . . , q if and only
if x1 = · · · = xq. Furthermore, αe, α ≥ 0, is an equilibrium state of Equation (60).

Proof. If xi = x j for all (i, j) ∈ E, then fi(x) = 0 for all i = 1, . . . , q is immediate from Axiom (i). Next,

we show that fi(x) = 0 for all i = 1, . . . , q implies that x1 = · · · = xq. If fi(x) = 0 for all i = 1, . . . , q, then

it follows from Axiom (ii) that

0 =

q∑
i=1

xi fi(x)

=

q∑
i=1

q∑
j=1

xiφi j(x)

=

q−1∑
i=1

q∑
j=i+1

(xi − x j)φi j(x)

≤ 0

where we have used the fact that φi j(x) = −φ ji(x) for all i, j = 1, . . . , q. Hence, (xi − x j)φi j(x) = 0 for all

i, j = 1, . . . , q. Now, the result follows from Axiom (i).

Alternatively, the proof can also be shown using graph-theoretic concepts. Specifically, if xi = x j

for all (i, j) ∈ E, then fi(x) = 0 for all i = 1, . . . , q is immediate from Axiom (i). Next, we show that

fi(x) = 0 for all i = 1, . . . , q implies that x1 = · · · = xq. If the values of all nodes are equal, then the

result is immediate. Hence, assume there exists a node i∗ such that xi∗ ≥ x j for all j � i∗, j ∈ {1, . . . , q}.
If (i, j) ∈ E, then we define a neighbor of node i to be node j, and vice versa.

Define the initial node set J (0) � {i∗} and denote the indices of all the first neighbors of node i∗ by

J (1) = Ni∗ . Then, fi∗(x) = 0 implies that
∑

j∈Ni∗ φi∗ j(xi∗ , x j) = 0. Since x j ≤ xi∗ for all j ∈ Ni∗ and, by

Axiom (ii), φi j(zi, z j) ≤ 0 for all zi ≥ z j, it follows that xi∗ = x j for all the first neighbors j ∈ J (1). Next,

we define the kth neighbor of node i∗ and show that the value of node i∗ is equal to the values of all kth

neighbors of node i∗ for k = 1, . . . , q − 1. The set of kth neighbors of node i∗ is defined by

J (k) � J (k−1) ∪ NJ (k−1) , k ≥ 1, J (0) = {i∗} (81)

where NJ denotes the set of neighbors of the node set J ⊆ V. By definition, {i∗} ⊂ J (k) ⊆ V for all

k ≥ 1 and J (k) is a monotonically increasing sequence of node sets in the sense of set inclusions.

Next, we show that J (q−1) = V. Suppose, ad absurdum, V\J (q−1) � Ø. Then, by definition, there

exists one node m ∈ {1, . . . , q}, disconnected from all the other nodes. Hence, C(m,i) = C(i,m) = 0,

i = 1, . . . , q, which implies that the connectivity matrix C has a row and a column of zeros. Without loss

of generality, assume that C has the form

C =
⎡⎢⎢⎢⎢⎢⎣ Cs 0(q−1)×1

01×(q−1) 0

⎤⎥⎥⎥⎥⎥⎦
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where Cs ∈ R(q−1)×(q−1) denotes the connectivity matrix for the new undirected graph G which excludes

node m from the undirected graph G. In this case, since rank Cs ≤ q − 2, it follows that rank C < q − 1,

which contradicts Axiom (i).

Using mathematical induction, we show that the values of all the nodes in J (k) are equal for k ≥ 1.

This statement holds for k = 1. Assuming that the values of all the nodes in J (k) are equal to the value

of node i∗, we show that the values of all the nodes in J (k+1) are equal to the value of node i∗ as well.

Note that since G is strongly connected, Ni � Ø for all i ∈ V. If Ni ∩ (J (k+1)\J (k)) = Ø for all i,
then it follows that J (k+1) = J (k), and hence, the statement holds. Thus, it suffices to show that xi = xi∗

for an arbitrary node i ∈ J (k) with Ni ∩ (J (k+1)\J (k)) � Ø. For node i, note that
∑

j∈Ni
φi j(xi, x j) = 0.

Furthermore, note thatNi = (Ni∩J (k))∪ (Ni∩ (V\J (k))),V\J (k) = V\J (k+1)∪ (J (k+1)\J (k)),J (k) ⊆ V
for all k, and J (k+1) contains the set of first neighbors of node i, or Ni ⊆ J (k+1). Then it follows that

Ni ∩ (V\J (k)) = Ni ∩ (J (k+1)\J (k)) and∑
j∈Ni∩J (k)

φi j(xi, x j) +
∑

j∈Ni∩(J (k+1)\J (k))

φi j(xi, x j) = 0 (82)

Since x j = xi for all nodes j ∈ Ni ∩ J (k) ⊆ J (k), it follows that
∑

j∈Ni∩J (k) φi j(xi, x j) = 0, and hence,∑
j∈Ni∩(J (k+1)\J (k)) φi j(xi, x j) = 0. However, since xi∗ = xi ≥ x j for all i ∈ J (k) and j ∈ V\J (k), it follows

that the values of all nodes in Ni ∩ (J (k+1)\J (k)) are equal to xi∗ . Hence, the values of all nodes i in the

node set
⋃

i∈J (k) Ni ∩ (J (k+1)\J (k)) = J (k+1) ∩ (J (k+1)\J (k)) = J (k+1)\J (k) are equal to xi∗ , that is, the

values of all the nodes in J (k+1) are equal. Combining this result with the fact that J (q−1) = V, it follows

that the values of all the nodes inV are equal.

The second assertion is a direct consequence of the first assertion. �

Theorem 9.1 Consider the large-scale dynamical system G with power balance Equation (60) with
u(t) ≡ 0 and d(x) ≡ 0, and assume that Axioms (i) and (ii) hold. Then for every α ≥ 0, αe is a
semistable equilibrium state of Equation (60). Furthermore, x(t)→ 1

qeeTx(t0) as t → ∞ and 1
qeeTx(t0) is

a semistable equilibrium state.

Proof. It follows from Proposition 9.1 that αe ∈ Rq
+, α ≥ 0, is an equilibrium state of Equation (60). To

show Lyapunov stability of the equilibrium state αe, consider the function V(x) = 1
2
(x − αe)T(x − αe)

as a Lyapunov function candidate. Now, since φi j(x) = −φ ji(x), x ∈ Rq
+, i � j, i, j = 1, . . . , q, and

eT f (x) = 0, x ∈ Rq
+, it follows from Axiom (ii) that

V̇(x) = (x − αe)T ẋ

= (x − αe)T f (x)

= xT f (x)

=

q∑
i=1

xi

⎡⎢⎢⎢⎢⎢⎢⎣
q∑

j=1, j�i

φi j(x)

⎤⎥⎥⎥⎥⎥⎥⎦

=

q−1∑
i=1

q∑
j=i+1

(xi − x j)φi j(x)

=

q∑
i=1

∑
j∈Ki

(xi − x j)φi j(x)
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≤ 0, x ∈ Rq
+

where Ki � Ni \ ∪i−1
l=1
{l} and Ni � { j ∈ {1, . . . , q} : φi j(x) = 0 if and only if xi = x j}, i = 1, . . . , q, which

establishes Lyapunov stability of the equilibrium state αe.

To show that αe is semistable, let R � {x ∈ Rq
+ : V̇(x) = 0} = {x ∈ Rq

+ : (xi − x j)φi j(x) = 0, i =
1, . . . , q, j ∈ Ki}. Now, by Axiom (i) the directed graph associated with the connectivity matrix C for the

large-scale dynamical system G is strongly connected, which implies that R = {x ∈ Rq
+ : x1 = · · · = xq}.

Since the set R consists of the equilibrium states of Equation (60), it follows that the largest invariant set

M contained in R is given byM = R. Hence, it follows from the Krasovskii–LaSalle theorem [40] that

for every initial condition x(t0) ∈ Rq
+, x(t) → M as t → ∞, and hence, αe is a semistable equilibrium

state of Equation (60). Next, note that since eTx(t) = eTx(t0) and x(t) → M as t → ∞, it follows that

x(t) → 1
qeeTx(t0) as t → ∞. Hence, with α = 1

qeTx(t0), αe = 1
qeeTx(t0) is a semistable equilibrium state

of Equation (60). �

Theorem 9.1 shows that the isolated (i.e., u(t) ≡ 0 and d(x) ≡ 0) large-scale dynamical system

G is semistable. Hence, it follows from Theorem 4.8 that the isolated large-scale dynamical system

G does not exhibit Poincaré recurrence in R
q
+ \ Me. Next, using the system entropy function given

by Equation (69), we show that our large-scale isolated dynamical system G with power balance

Equation (60) is state irreversible for all nonequilibrium trajectories of G establishing a clear connection

between our thermodynamic model and the arrow of time.

Theorem 9.2 Consider the large-scale dynamical system G with power balance Equation (60) with
u(t) ≡ 0 and d(x) ≡ 0, and assume Axioms (i) and (ii) hold. Furthermore, let sx(·, 0) ∈ W[t0,t1]. Then for
every x0 � Me, there exists a continuously differentiable function S : R

q
+ → R such that S(sx(t, 0)) is a

strictly increasing function of time. Furthermore, sx(·, 0) is an Iq-reversible trajectory of G if and only if
sx(t, 0) ∈ Me, t ∈ [t0, t1].

Proof. The existence of a continuously differentiable function S : R
q
+ → R, which strictly increases

on all nonequilibrium trajectories of G, is a restatement of Theorem 8.1 with u(t) ≡ 0 and d(x) ≡ 0.

Now, necessity is immediate, while sufficiency is a direct consequence of Corollary 3.1 with R = Iq and

V(x) = S(x). �

Theorem 9.2 shows that for every x0 � Me, the isolated dynamical system G is state irreversible.

This gives a clear connection between our thermodynamic model and the arrow of time. In particular,

it follows from Corollary 3.1 and Theorem 9.2 that there exists a function of the system state that

strictly increases in time on every nonequilibrium trajectory of G if and only if there does not exist

a nonequilibrium reversible trajectory of G. Thus, the existence of the continuously differentiable

entropy function given by Equation (69) for G establishes the existence of a completely ordered time

set having a topological structure involving a closed set homeomorphic to the real line. This fact

follows from the inverse function theorem of mathematical analysis and the fact that a continuous strictly

monotonic function is a topological mapping (i.e., a homeomorphism), and conversely every topological

mapping of a strictly monotonic function’s domain onto its codomain must be strictly monotonic. This

topological property gives a clear time-reversal asymmetry characterization of our thermodynamic model

establishing an emergence of the direction of time flow.
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10. Monotonicity of System Energies in Thermodynamic Processes

Even though Theorem 9.1 gives sufficient conditions under which the subsystem energies in

the large-scale dynamical system G converge, these subsystem energies may exhibit an oscillatory

(hyperbolic) or nonmonotonic behavior prior to convergence. For certain thermodynamical processes,

it is desirable to identify system models that guarantee monotonicity of the system energy flows. It

is important to note that monotonicity of solutions does not necessarily imply Axiom (ii), nor does

Axiom (ii) imply monotonicity of solutions. These are two disjoint notions. In this section, we give

necessary and sufficient conditions under which the solutions to Equation (60) are monotonic.

To develop necessary and sufficient conditions for monotonicity of solutions, note that the power

balance Equation (60) for the large-scale dynamical system G can be written as

ẋ(t) = [J(x(t)) −D(x(t))]
(
∂H
∂x

(x(t))
)T

+Gu(t), x(t0) = x0, t ≥ t0 (83)

where x(t) ∈ Rq
+, H(x) = eTx, u(t) = [u1(t), . . . , uq(t)]T, t ≥ t0, J(x) is a skew-symmetric matrix

function with J(i,i)(x) = 0 and J(i, j)(x) = σi j(x) − σ ji(x), i � j, i, j = 1, . . . , q, D(x) = diag[σ11(x),

. . . , σqq(x)] ≥ 0, and G ∈ Rq×q is a diagonal input matrix that has been included for generality

and contains zeros and ones as its entries. Hence, the power balance equation of the large-scale

dynamical system G has a port-controlled Hamiltonian structure [50] with a Hamiltonian function

H(x) = eTx =
∑q

i=1
xi representing the sum of all subsystem energies, D(x) representing power

dissipation in the subsystems, J(x) = −JT(x) representing energy-conserving subsystem coupling,

and u(t), t ≥ t0, representing supplied system power. As noted in Section 8, the nonlinear power balance

Equation (83) can exhibit a full range of nonlinear behavior, including bifurcations, limit cycles, and

even chaos. However, a thermodynamically consistent energy flow model ensures that the evolution of

the system energy is diffusive in character with convergent subsystem energies. As shown in Section 8,

Axioms (i) and (ii) guarantee a thermodynamically consistent energy flow model.

In order to guarantee a thermodynamically consistent energy flow model, we assume Axiom (ii) holds

and seek solutions to Equation (83) that exhibit a monotonic behavior of the subsystem energies. This

would physically imply that the energy of a subsystem whose initial energy is greater than the average

system energy will decrease, while the energy of a subsystem whose initial energy is less than the average

system energy will increase. This of course is consistent with the second law of thermodynamics with

the additional constraint of monotonic heat flows. The following definition is needed.

Definition 10.1 Consider the large-scale dynamical system G with power balance Equation (83). The
subsystem energies x(t), t ≥ t0, of G are monotonic for all x0 ∈ Dc ⊆ Rq

+, where Dc is a positively
invariant set with respect to Equation (83), if there exists a weighting matrix R ∈ Rq×q such that R =
diag[r1, . . . , rq], ri = ±1, i = 1, . . . , q, and, for every x0 ∈ Dc ⊆ Rq

+, Rx(t2) ≤≤ Rx(t1), t0 ≤ t1 ≤ t2.

The following result presents necessary and sufficient conditions that guarantee that the subsystem

energies of the large-scale dynamical system G are monotonic. It is important to note that this result

holds whether or not Axiom (ii) holds.

Theorem 10.1 Consider the large-scale dynamical system G with power balance Equation (83). Then
the following statements hold:
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(i) If u(t) ≥≥ 0, t ≥ t0, and there exists a matrix R ∈ Rq×q such that R = diag[r1, . . . , rq], ri = ±1,
i = 1, . . . , q, R[J(x) − D(x)](∂H

∂x (x))T ≤≤ 0, x ∈ Rq
+, and RG ≤≤ 0, then the subsystem energies

x(t), t ≥ t0, of G are monotonic for all x0 ∈ Rq
+.

(ii) Let u(t) ≡ 0 and let Dc ⊆ Rq
+ be a positively invariant set with respect to Equation (83). Then

the subsystem energies x(t), t ≥ t0, of G are monotonic for all x0 ∈ Dc ⊆ Rq
+ if and only

if there exists a matrix R ∈ Rq×q such that R = diag[r1, . . . , rq], ri = ±1, i = 1, . . . , q, and
R[J(x) −D(x)](∂H

∂x (x))T ≤≤ 0, x ∈ Dc ⊆ Rq
+.

Proof. (i) Let u(t) ≥≥ 0, t ≥ t0, and assume there exists R = diag[r1, . . . , rq], ri = ±1, i = 1, . . . , q, such

that R[J(x) −D(x)] ·(∂H
∂x (x))T ≤≤ 0, x ∈ Rq

+. Now, it follows from Equation (83) that

Rẋ(t) = R[J(x(t)) −D(x(t))]
(
∂H
∂x

(x(t))
)T

+ RGu(t), x(t0) = x0, t ≥ t0 (84)

which further implies that

Rx(t2) = Rx(t1) +

∫ t2

t1
R[J(x(t)) −D(x(t))]

(
∂H
∂x

(x(t))
)T

dt +
∫ t2

t1
RGu(t)dt (85)

Next, since [J(x) − D(x)](∂H
∂x (x))T is essentially nonnegative and u(t) ≥≥ 0, t ≥ t0, it follows from

Proposition 4.3 of [51] that x(t) ≥≥ 0, t ≥ t0, for all x0 ∈ Rq
+. Hence, since R[J(x)−D(x)](∂H

∂x (x))T ≤≤ 0,

x ∈ Rq
+, and RG ≤≤ 0, it follows that

R[J(x(t)) −D(x(t))]
(
∂H
∂x

(x(t))
)T

+ RGu(t) ≤≤ 0, t ≥ t0 (86)

which implies that, for every x0 ∈ Rq
+, Rx(t2) ≤≤ Rx(t1), t0 ≤ t1 ≤ t2.

(ii) To show sufficiency, note that since by assumption Dc is positively invariant, then R[J(x(t)) −
D(x(t))](∂H

∂x (x(t)))T ≤≤ 0, t ≥ t0, for all x0 ∈ Dc ⊆ Rq
+. Now, the result follows by using identical

arguments as in (i) with u(t) ≡ 0 and x0 ∈ Dc ⊆ Rq
+. To show necessity, assume that Equation (83) with

u(t) ≡ 0 is monotonic for all x0 ∈ Dc ⊆ Rq
+. In this case, Equation (84) implies that for every τ > t0,

Rx(τ) = Rx0 +

∫ τ

t0
R[J(x(t)) −D(x(t))]

(
∂H
∂x

(x(t))
)T

dt (87)

Now, suppose, ad absurdum, there exist J ∈ {1, . . . , q} and x0 ∈ Dc ⊆ Rq
+ such that [R[J(x0) −

D(x0)](∂H
∂x (x0))T]J > 0. Since the mapping R[J(·) − D(·)](∂H

∂x (·))T and the solution x(t), t ≥ t0, to

Equation (83) are continuous, it follows that there exists τ > t0 such that

[
R[J(x(t)) −D(x(t))]

(∂H
∂x

(x(t))
)T]

J
> 0, t0 ≤ t ≤ τ (88)

which implies that [Rx(τ)]J > [Rx0]J, leading to a contradiction. Hence, R[J(x) −D(x)](∂H
∂x (x))T ≤≤ 0,

x ∈ Dc ⊆ Rq
+. �

It follows from (i) of Theorem 10.1 that if G = Iq (that is, external power (heat flux) can be injected

to all subsystems), then R = −Iq, and hence, [J(x) − D(x)](∂H
∂x (x))T ≥≥ 0, x ∈ Rq

+. This case would

correspond to a power balance equation whose states are all increasing and can only be achieved if



Entropy 2012, 14 448

D(x) = 0, x ∈ Rq
+. This, of course, implies that the dynamical system G cannot dissipate energy, and

hence, the transfer of energy (heat) from a lower energy (temperature) level (source) to a higher energy

(temperature) level (sink) requires the input of additional heat or energy. This is consistent with Clausius’

statement of the second law of thermodynamics.

The following result is a direct consequence of Theorem 10.1 and provides sufficient conditions for

convergence of the subsystem energies of the isolated large-scale dynamical system G. Once again, this

result holds whether or not Axiom (ii) holds.

Theorem 10.2 Consider the large-scale dynamical system G with power balance Equation (83) and
u(t) ≡ 0. Let Dc ⊆ Rq

+ be a positively invariant set. If there exists a matrix R ∈ Rq×q such that
R = diag[r1, . . . , rq], ri = ±1, i = 1, . . . , q, and R[J(x) − D(x)](∂H

∂x (x))T ≤≤ 0, x ∈ Dc ⊆ Rq
+, then, for

every x0 ∈ Dc ⊆ Rq
+, limt→∞ x(t) exists.

Proof. SinceH(x) = eTx, x ∈ Rq
+, it follows that

Ḣ(x) =
∂H
∂x

ẋ =
∂H
∂x

[J(x) −D(x)]

(
∂H
∂x

)T
= −∂H
∂x
D(x)

(
∂H
∂x

)T
≤ 0, x ∈ Rq

+ (89)

and hence, Ḣ(x(t)) ≤ 0, t ≥ t0, where x(t), t ≥ t0, denotes the solution of Equation (83). This implies that

H(x(t)) ≤ H(x0) = eTx0, t ≥ t0, and hence, for every x0 ∈ Rq
+, the solution x(t), t ≥ t0, of Equation (83)

is bounded. Hence, for every i ∈ {1, . . . , q}, xi(t), t ≥ t0, is bounded. Furthermore, it follows from

Theorem 10.1 that xi(t), t ≥ t0, is monotonic for all x0 ∈ Dc ⊆ Rq
+. Now, since xi(·), i ∈ {1, . . . , q}, is

continuous and every bounded nonincreasing or nondecreasing scalar sequence converges to a finite real

number, it follows from the monotone convergence theorem ([40], p. 37) that limt→∞ xi(t), i ∈ {1, . . . , q},
exists. Hence, limt→∞ x(t) exists for all x0 ∈ Dc ⊆ Rq

+. �

11. Finite-Time Thermodynamics

As discussed in the Introduction, thermodynamic systems achieve energy and temperature

equipartition in finite time rather than merely asymptotically. In this section, we use the results of

Sections 5 and 6 to develop continuous non-Lipschitzian intercompartmental flow laws that guarantee

finite-time semistability and energy equipartition for the thermodynamically consistent dynamical

system model developed in Section 7. Specifically, consider the dynamical system G given by

ẋi(t) =
q∑

j=1, j�i

φi j(xi(t), x j(t)), xi(t0) = xi0, t ≥ t0, i = 1, . . . , q (90)

where φi j(x), x ∈ Rq
+, denotes the net energy flow from the jth compartment to the ith compartment

defined in Section 7. In vector form, Equation (90) becomes

ẋ(t) = f (x(t)), x(t0) = x0, t ≥ t0 (91)

where x(t) � [x1(t), . . . , xq(t)]T ∈ Rq
+, t ≥ t0, and f = [ f1, . . . , fq]T : R

q
+ → R

q is such that

fi(x) =
∑q

j=1, j�i φi j(xi, x j).
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Theorem 11.1 Consider the dynamical system given by Equation (91) and assume that Axioms (i) and
(ii) hold. Furthermore, assume that φi j(xi, x j) = −φ ji(x j, xi) for all i, j = 1, . . . , q, i � j. Then for every
α ∈ R+, αe is a semistable equilibrium state of Equation (91). Furthermore, x(t) → 1

qeeTx(t0) as t → ∞
and 1

qeeTx(t0) is a semistable equilibrium state.

Proof. The result is a direct consequence of Proposition 9.1 and Theorem 9.1. �

Theorem 11.1 implies that the steady-state values of the state in each compartmentGi of the dynamical

system G are equal, that is, the steady-state value of the dynamical system G given by

x∞ =
1

q
eeTx(t0) =

⎡⎢⎢⎢⎢⎢⎣1

q

q∑
i=1

xi(t0)

⎤⎥⎥⎥⎥⎥⎦ e

is uniformly distributed over all compartments of G.

Next, we use the results of Section 6 to develop a compartmental model for finite-time

thermodynamics. Specifically, consider the dynamical system given by

ẋi(t) =
q∑

j=1, j�i

φi j(xi(t), x j(t)), xi(0) = xi0, t ≥ 0 (92)

where for each i ∈ {1, . . . , q}, xi(t) ∈ R+ denotes an energy state for all t ≥ 0, φi j(·, ·) satisfies Axioms (i)

and (ii), and φi j(xi, x j) = −φ ji(x j, xi) for all i, j = 1, . . . , q, i � j. Furthermore, we assume φi j(·, ·) for all

i, j = 1, . . . , q, i � j, are continuous and not Lipschitz continuous.

Theorem 11.2 Consider the dynamical system G given by Equation (92). Assume that Axioms (i) and
(ii) hold, and φi j(xi, x j) = −φ ji(x j, xi) for all i, j = 1, . . . , q, i � j. Furthermore, assume that the vector
field f of the dynamical system given by Equation (92) is homogeneous of degree k ∈ R with respect
to [52] ν(x) = −∑q

i=1

[∑q
j=1, j�i μi j(xi, x j)

]
∂
∂xi

, where x � [x1, . . . , xq]T ∈ Rq
+ and μi j(·, ·) satisfies Axiom

(ii), μi j(xi, x j) = −μ ji(x j, xi), and μi j(xi, x j) = 0 if and only if xi = x j for all i, j = 1, . . . , q, i � j. Then, for
every xe ∈ R+, xee is a finite-time semistable equilibrium state of G if and only if k < 0. Furthermore, if
k < 0, then x(t) = 1

qeeTx(0) for all t ≥ T (x(0)) and 1
qeeTx(0) is a finite-time semistable equilibrium state,

where T (x(0)) ≥ 0.

Proof. Suppose k < 0. It follows from Theorem 11.1 that xee ∈ Rq
+, xe ∈ R+, is a semistable equilibrium

state of the homogeneous system given by Equation (92). Furthermore, x(t) → 1
qeeTx(0) as t → ∞ and

1
qeeTx(0) is a semistable equilibrium state. Next, it can be shown using similar arguments as in the proof

of Theorem 11.1 that Equation (47) is globally semistable with ν(x) = −∑q
i=1

[∑q
j=1, j�i μi j(xi, x j)

]
∂
∂xi

.

Now, it follows from Theorem 6.2 that xee is a finite-time semistable equilibrium state by noting that

the vector field
∑q

j=1, j�i φi j(xi, x j) is homogeneous of degree k < 0 with respect to the semi-Euler vector

field ν(x) = −∑q
i=1

[∑q
j=1, j�i μi j(xi, x j)

]
∂
∂xi

. Hence, with xe =
1
qeTx(0), xee = 1

qeeTx(0) is a finite-time

semistable equilibrium state. The converse follows as a direct consequence of Theorem 6.2. �

The following corollary to Theorem 11.2 gives a concrete form for the energy flow function φi j(xi, x j),

i, j = 1, . . . , q, i � j.
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Corollary 11.1 Consider the dynamical system G given by Equation (92) with energy flow function

φi j(xi, x j) = C(i, j) sgn(x j − xi)|x j − xi|α (93)

where α > 0 and C(i, j) is as in Equation (63) with C = CT. Assume that Axioms (i) and (ii) hold. Then for
every xe ∈ R+, xee is a finite-time semistable equilibrium state of G if and only if α < 1. Furthermore, if
α < 1, then x(t) = 1

qeeTx(0) for all t ≥ T (x(0)) and 1
qeeTx(0) is a finite-time semistable equilibrium state,

where T (x(0)) ≥ 0.

Proof. First, note that the vector field f of G is essentially nonnegative. Next, the Lie bracket of ν(x) =

−∑q
i=1

[∑q
j=1, j�i(x j − xi)

]
∂
∂xi

and the vector field f of the dynamical system given by Equation (92) with

φi j(xi, x j) given by Equation (93) is given by [ν, f ] =
[∑q

i=1

∂ f1
∂xi
νi − ∂ν1∂xi

fi, . . . ,
∑q

i=1

∂ fq
∂xi
νi − ∂νq∂xi

fi

]T
. Since

for each i, j = 1, . . . , q,

∂ f j

∂xi
νi − ∂ν j

∂xi
fi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C( j,i)α|xi − x j|α−1

⎡⎢⎢⎢⎢⎢⎢⎣
q∑

s=1,s�i

(xi − xs)

⎤⎥⎥⎥⎥⎥⎥⎦
+

q∑
k=1,k�i

C(i,k)sgn(xk − xi)|xk − xi|α,
i � j

⎡⎢⎢⎢⎢⎢⎢⎣
q∑

k=1,k� j

C( j,k)α|xk − x j|α−1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

q∑
s=1,s� j

(xs − x j)

⎤⎥⎥⎥⎥⎥⎥⎦
− (q − 1)

q∑
k=1,k� j

C( j,k)sgn(xk − x j)|xk − x j|α,
i = j

(94)

and noting that C(i, j) = C( j,i), i, j = 1, . . . , q, i � j, it follows that for each j = 1, . . . , q,

q∑
i=1

∂ f j

∂xi
νi − ∂ν j

∂xi
fi

=
∂ f j

∂x j
ν j − ∂ν j

∂x j
f j +

q∑
i=1,i� j

∂ f j

∂xi
νi − ∂ν j

∂xi
fi

=

⎡⎢⎢⎢⎢⎢⎢⎣
q∑

k=1,k� j

C( j,k)α|xk − x j|α−1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

q∑
s=1,s� j

(xs − x j)

⎤⎥⎥⎥⎥⎥⎥⎦ − (q − 1)

q∑
k=1,k� j

C( j,k)sgn(xk − x j)|xk − x j|α

+

q∑
i=1,i� j

C( j,i)α|xi − x j|α−1

⎡⎢⎢⎢⎢⎢⎢⎣
q∑

s=1,s�i

(xi − xs)

⎤⎥⎥⎥⎥⎥⎥⎦ +
q∑

i=1,i� j

q∑
k=1,k�i

C(i,k)sgn(xk − xi)|xk − xi|α

= α

q∑
k=1,k� j

C( j,k)sgn(xk − x j)|xk − x j|α +
q∑

k=1,k� j

q∑
s=1,s� j,k

C( j,k)α|xk − x j|α−1(xs − x j)

−(q − 1)

q∑
k=1,k� j

C( j,k)sgn(xk − x j)|xk − x j|α + α
q∑

i=1,i� j

C( j,i)sgn(xi − x j)|xi − x j|α
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+

q∑
i=1,i� j

q∑
s=1,s�i, j

C( j,i)α|xi − x j|α−1(xi − xs) +

q∑
i=1

q∑
k=1,k�i

C(i,k)sgn(xk − xi)|xk − xi|α

−
q∑

k=1,k� j

C( j,k)sgn(xk − x j)|xk − x j|α

= 2α

q∑
i=1,i� j

C( j,i)sgn(xi − x j)|xi − x j|α + α
q∑

i=1,i� j

q∑
s=1,s�i, j

C( j,i)sgn(xi − x j)|xi − x j|α

−q
q∑

k=1,k� j

C( j,k)sgn(xk − x j)|xk − x j|α

= q(α − 1)

q∑
i=1,i� j

C( j,i)sgn(xi − x j)|xi − x j|α

= q(α − 1) f j

which implies that the vector field f is homogeneous of degree k = q(α−1) with respect to the semi-Euler

vector field

ν(x) = −
q∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎣
q∑

j=1, j�i

(x j − xi)

⎤⎥⎥⎥⎥⎥⎥⎦ ∂∂xi

Now, the result is a direct consequence of Theorem 11.2. �

12. Conclusions

In contrast to mechanics, which is based on a dynamical system theory, (classical) thermodynamics

is a physical theory concerned with systems in equilibrium and does not possess equations of motion,

leaving these two classical disciplines of physics to stand in sharp contrast to one another in the one and

the half centuries of their coexistence. This has made any connections between the thermodynamic arrow

of time and the mechanistic course of time over the centuries translucent at best. Over the past several

decades, numerous subjective papers plagued with philosophical arguments and void of any rigorous

mathematics have unsuccessfully attempted to establish such connections. In order to make clear and

rigorous connections between the arrow of time, the course of time, irreversibility, and the second law of

thermodynamics, a dynamical systems framework for thermodynamics is needed rather than the classical

(thermostatic) theory of thermodynamics.

In this paper, we combined the two universalisms of thermodynamics and dynamical systems theory

under a single umbrella, with the second providing the ideal language for the first, to establish rigorous

connections between causality, the arrow of time, the course of time, irreversibility, and the second law of

thermodynamics. Specifically, we show a state irrecoverability, and hence, a state irreversibility nature of

thermodynamics. State irreversibility reflects time-reversal non-invariance, wherein time-reversal is not

meant literally; that is, we develop a dynamical system thermodynamic model whose trajectory reversal

is or is not allowed and not a reversal of time itself. Next, we show that for every nonequilibrium system

state and corresponding system trajectory of our thermodynamically consistent dynamical system,

there does not exists a state such that the corresponding system trajectory completely recovers the

initial system state of the dynamical system and at the same time restores the energy supplied by the
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environment back to its original condition. This, along with the existence of a global strictly increasing

entropy function on every nontrivial system trajectory, establishes the existence of a completely ordered

time set that has a topological structure involving a closed set homeomorphic to the real line, which

gives a clear time-reversal asymmetry characterization of thermodynamics and establishes an emergence

of the direction of time flow.

Classical thermodynamics as well as the dynamical system approach to thermodynamics presented in

this paper are developed for systems that are assumed to be at rest with respect to a local observer and

in the absence of strong gravitational fields. To effectively address the universality of thermodynamics

and the arrow of time to cosmology, the dynamical system framework of thermodynamics presented

in this paper needs to be extended to thermodynamic systems which are moving relative to a local

observer moving with the system and a fixed observer with respect to which the system is in motion.

In addition, the thermodynamic effects of gravity need to also be considered. In this case, Einstein’s

theory of relativity shows that time and space are intricately coupled, and hence, one cannot curve

space without involving time as well. This is essentially the time dilation equivalence principle of

general relativity, which states that the combined speed of any object’s motion through the space-time

continuum is always equal to the speed of light. Given the topological isomorphism between entropy

and time established in this paper and Einstein’s time dilation assertion that increasing an object’s speed

through space results in decreasing the object’s speed through time, we conjecture that a generalization

of the present framework of thermodynamics that includes relativistic effects would lead to an entropy
contraction principle wherein the change in entropy of a system would decrease as the system’s speed

increases through space. This is the subject of current research.

References and Notes

1. Haddad, W.M.; Chellaboina, V.; Nersesov, S.G. Thermodynamics: A Dynamical Systems Approach;

Princeton University Press: Princeton, NJ, USA, 2005.
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