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Abstract: We consider non-equilibrium open statistical systems, subject to potentials and
to external “heat baths” (hb) at thermal equilibrium at temperature T (either with ab
initio dissipation or without it). Boltzmann’s classical equilibrium distributions generate,
as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the
position-independent Hermite polynomialsHn’s). The moments of non-equilibrium classical
distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment
dominates the evolution towards thermal equilibrium, either with dissipation or without
it (but under certain approximation). We revisit that hierarchy, whose solution depends
on operator continued fractions. We review our generalization of that moment method
to classical closed many-particle interacting systems with neither a hb nor ab initio
dissipation: with initial states describing thermal equilibrium at T at large distances but
non-equilibrium at finite distances, the moment method yields, approximately, irreversible
thermalization of the whole system at T , for long times. Generalizations to non-equilibrium
quantum interacting systems meet additional difficulties. Three of them are: (i) equilibrium
distributions (represented through Wigner functions) are neither Gaussian in momenta
nor known in closed form; (ii) they may depend on dissipation; and (iii) the orthogonal
polynomials in momenta generated by them depend also on positions. We generalize the
moment method, dealing with (i), (ii) and (iii), to some non-equilibrium one-particle
quantum interacting systems. Open problems are discussed briefly.

Keywords: classical and quantum distributions; equilibrium solutions and orthogonal
polynomials; non-equilibrium moments; long-time approximations; approximate
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1. Introduction

A quite wide and very interesting set of references, from different standpoints, related to and/or
oriented towards the foundations of non-equilibrium Statistical Mechanics can be seen in [1].
Non-equilibrium statistical systems of classical particles are described by Liouville classical distribution
functions (Wc) [2–5]. For non-equilibrium statistical systems of quantum particles, several distribution
functions are available, Wigner functions (W ) [3–7] being a suitable and simple possibility in a global
sense (in spite of the fact that their positivity is not warranted). Open statistical systems (involving,
typically, one or a few degrees of freedom) are those subject to external “heat baths” (hb) or reservoirs
at thermal equilibrium at temperature T , with finite or small dissipation due to the hb. We shall
regard vanishing dissipation as a mathematical idealization of the case with small friction. Closed
statistical systems are those not subject to any external hb, and they are formed by an enormously large
number of interacting particles. General equations describing, in differential form, the time evolutions
of non-equilibrium closed interacting classical or quantum systems (with some initial off-equilibrium
state) are well known [2–5]. On the other hand, approximate time evolution differential equations for
the effective or relevant degrees of freedom for non-equilibrium open or closed (classical or quantum)
interacting systems are known in certain cases [2–4,6,7]. Generically, those evolution equations turn
out to be increasingly difficult to solve (even on a computer), as the number of particles in the system
grows and/or one tries to describe the state of the system for increasingly long times (starting from some
initial non-equilibrium state). On the other hand, there does exist certain global understanding of various
classes of solutions of those evolution equations, at least in a number of cases. Anyway, to achieve wider
and better knowledge of how open or closed (classical or quantum) statistical interacting systems evolve
in time continues to play a key role in Statistical Physics. In particular, an issue of crucial importance
is how irreversibility could arise in the long-time evolution of closed classical or quantum many-particle
systems [2–5,8], or stated in other words, how an arrow of time could set in.

Non-equilibrium open one-particle statistical classical systems, subject to potentials and to dissipation
due to the hb, lend themselves typically to perform certain constructions and approximations in a
framework which is simpler than those met for other cases: see [9–12] and references therein. We shall
remind them [9–12] firstly, in order to motivate our developments. In them, classical time-independent
equilibrium distributions (Wc,eq), which are independent on dissipation, have been used as weight
functions to generate families of orthogonal polynomials in momenta. The latter has been possible
due to two distinguishing and simplifying features of Wc,eq: dependences on classical momenta
and those on spatial coordinates factorize, and Wc,eq is Gaussian in classical momenta. Then, the
orthogonal polynomials generated by Wc,eq turned out to be just the standard Hermite polynomials [13]
and, moreover, they are independent on spatial coordinates (and on dissipation). Those orthogonal
polynomials yield (by integrating over classical momenta) moments Wc,n of the non-equilibrium
classical distributions Wc. The non-equilibrium Wc,n’s depend on spatial coordinates and time (t) and
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on dissipation (but not on momenta), and fulfill an infinite linear hierarchy. A key issue was that, for
long times, the lowest moment appears to dominate the evolution towards thermal equilibrium with the
hb (and, hence, to become independent on the initial non-equilibrium state and on dissipation) [9,10].

Interesting open issues in [9–12], among others, include: (a) further study of the process leading to
moments which depend only on spatial coordinates; (b) properties of the solutions of the non-equilibrium
classical hierarchies for different potentials (vanishing or not at large distances) and their behaviour for
long times; (c) generalizations to non-equilibrium closed classical interacting many-particle systems
without external hb’s (with potentials vanishing at large distances), with initial states at thermal
equilibrium at temperature T at large distances but off-equilibrium at finite distances and with the
possibility of obtaining, in a suitable long-time approximation, irreversibility; (d) generalizations of
(c) when classical electromagnetic degrees of freedom are included; (e) extensions to open one-particle
quantum systems by means of Wigner functions (either with or without dissipation); (f) closed
quantum interacting many-particle systems, which clearly lead to far more difficult problems. The
above non-equilibrium moment method relies, very crucially, on the previous knowledge and properties
of equilibrium distributions. Being natural to work with quantum Wigner functions (although not
mandatory), we anticipate certain genuine quantum difficulties: the equilibrium quantum Wigner
functions are neither Gaussian in momenta nor known in closed form, and dependences on momenta
and those on spatial coordinates do not factorize, in general. The issue of the possible dependence of
the quantum equilibrium distributions on dissipation leads to additional complications. The use of other
quantum distribution functions does not appear to yield improvements in a global sense.

We shall review in outline items (a)–(c), analyzed in our previous work [14–19]. We shall study
further convergence aspects for issues (b) and (c), which, even if shortly, will provide some additional
partial clarification, so far unpublished. We shall present a simple overview of [14] on long-time
approximations and irreversibility in closed interacting many-particle classical systems, including some
improvements from [16] and [18,19]. Item (d) has been dealt with in [15] in detail and we shall not
add more here. And, finally, we shall concentrate on (e). The genuine difficulties of quantum cases
anticipated above already show up in one-dimensional models. Some generalizations of the moment
method to non-equilibrium open one-particle quantum interacting systems, without or with dissipation
and to lowest order in Planck’s constant, have already been studied [18,20]. Here, we shall concentrate
on constructing the equilibrium Wigner functions, the families of orthogonal polynomials generated by
the latter and non-equilibrium moments and equations at low order in the hierarchies, to all orders in
Planck’s constant, in one-dimensional models. Models in which the equilibrium Wigner functions either
depend on dissipation or are independent on it will be analyzed. Item (f) above (closed many-particle
interacting quantum systems and irreversibility issues) will not be addressed in this work.

This paper is organized as follows. Section 2 reviews open one-dimensional classical systems with
or without dissipation. Section 3 treats classical closed interacting many-particle systems. Section 4
deals with general aspects of quantum-mechanical one-dimensional models, in the idealized limit of
vanishing dissipation. Section 5 is devoted to open quantum-mechanical one-dimensional models with
quartic plus quadratic potential, also without dissipation, through an approach different from that in
Section 4. Section 6 treats open quantum-mechanical one-dimensional models with quadratic plus
quartic potential with dissipation. Various technical aspects in Sections 4, 5 and 6 are treated in
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Appendices A–D. Finally, Section 7 presents some conclusions and various discussions. A short account
of the contents of Sections 5 and 6 has been presented orally in the 11th International Conference on
Orthogonal Polynomials, Special Functions and Applications, held in Universidad Carlos III, Madrid,
Spain (August 29 through September 2, 2011).

2. Open Classical One Particle Systems

2.1. One-Dimensional Case: Some General Aspects

Let a classical particle, with mass m, position x and momentum q, be subject to a real potential
V = V (x), in the presence of a hb at thermal equilibrium at temperature T . We shall employ the
standard variable β = (kBT )−1 (kB being Boltzmann’s constant). To simplify matters, the potential
will be supposed to be repulsive: V (x) ≥ 0: either V (x) → 0 as | x |→ +∞ (Subsection 2.3) or
V (x) ≡ 0 (Subsection 2.4) or V (x) will correspond to a harmonic oscillator (Subsections 2.5). The
classical Hamiltonian of the particle is: Hc = q2/(2m)+V . Let the classical particle be, at the initial time
t = 0, out of thermal equilibrium with the hb, and have a probability distribution Wc,in = Wc,in(x, q)

(≥ 0) to be at the position x with momentum q. Then, the non-equilibrium particle could be, at time
t(> 0), at the position x with momentum q, with probability distribution Wc = Wc(x, q; t)(≥ 0). For
instance, the hb could be air (at rest and at thermal equilibrium, at T ' 300 K) in a room, and the
classical particle could be a virus or a grain of pollen, performing Brownian motion in air.

How doesWc evolve in time? A temporal evolution, including nonvanishing dissipation effects on the
particle due to the hb (described, in turn, by the friction constant σ > 0), is provided by the irreversible
Kramers equation [9–12]:

∂Wc

∂t
+

q

m

∂Wc

∂x
− ∂V

∂x

∂Wc

∂q
=

1

σ

∂[(q + (m/β))(∂Wc/∂q)]

∂q
(1)

The equilibrium (or Boltzmann’s) canonical distribution, the t-independent solution of Equation (1)
describing thermal equilibrium of the particle with the hb, is: Wc = Wc,eq = exp[−β(q2/(2m)+V )]. The
physics involved in the characterization of the equilibrium distribution (to be reached for very long t),
which constitutes the core of Equilibrium Classical Statistical Mechanics, selects uniquely Wc,eq. Notice
that Wc,eq is σ-independent and, hence, it is not influenced by the dissipation mechanism embodied in
the right-hand-side of Equation (1). The last property does not hold necessarily in the quantum case.

For another time evolution, let dissipation effects on the particle due to the hb be supposed so small
that they are discarded completely (vanishing friction). Then, the time evolution of Wc is given by the
reversible Liouville equation:

∂Wc

∂t
+

q

m

∂Wc

∂x
− ∂V

∂x

∂Wc

∂q
= 0 (2)

Wc,eq is a t-independent solution of Equation (2). After some long-time approximation, Wc → Wc,eq in
some sense: see Subsection 2.3.

Let Hn(y) be the standard n-th Hermite polynomial [13]. We remind that the Hn(y)’s
constitute an infinite family of orthogonal polynomials in y, with the weight exp[−y2]:∫ +∞
−∞ dy exp[−y2]Hn(y)Hn′(y) = π1/22nn!δn,n′ , δn,n′ being the Kronecker delta symbol (δn,n′ = 0, 1,
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if n 6= n′, n = n′, respectively) [13]. For both Equations (1) and (2), we shall introduce the (normalized)
non-equilibrium classical moments Wc,n = Wc,n(x; t) (n = 0, 1, 2, . . . ) of Wc [9–12,14,16]:

Wc,n =

∫ +∞

−∞
d(q/qeq)

Hn(q/qeq)

(π1/22nn!)1/2
Wc(x, q; t), qeq = (2m/β)1/2 (3)

Wc,0 is the marginal probability distribution for x. If Wc = Wc,eq, then Wc,eq,0 is proportional to
exp[−βV ] andWc,eq,n = 0 for n = 1, 2, . . . . Equation (3) can also be applied to the initial off-equilibrium
distribution Wc,in and gives the initial moments, Wc,in,n. It will be very convenient to work also with the
symmetrized moments gn = W

−1/2
c,eq,0Wc,n. The time evolution of gn will be treated below.

2.2. Classical Non-Equilibrium and Formal Solution Using Operator Continued Fractions

Equations (1) and (3) yield the infinite irreversible three-term linear hierarchy for gn’s
(n = 0, 1, 2, . . . , g−1 = 0) [9–12,20]:

∂gn
∂t

= −Mn,n+1gn+1 −Mn,n−1gn−1 −
n

σ
gn (4)

Mn,n±1Wc,s,n±1 ≡ [
(n+ (1/2)(1± 1))KBT

m
]1/2[

∂Wc,s,n±1

∂x
− (±1)Wc,s,n±1

2KBT

dV

dx
] (5)

On the other hand, Equations (2) and (3) yield the infinite reversible three-term linear hierarchy for gn’s
(n = 0, 1, 2, . . . , g−1 = 0) [14,16], which is the same as in Equation (4), with σ−1 = 0. For the hierarchy
Equation (4) and for the reversible one, with σ−1 = 0, the initial condition is formed by the set of all
W
−1/2
c,eq,0Wc,in,n. We shall treat both σ−1 > 0 and σ−1 = 0 simultaneously, unless otherwise stated.
The Mn,n±1’s are linear first-order differential operators, none of which is Hermitian: except for

the n-dependent factors, their structures are typical of those appearing in the study of the Smoluchowski
equation [10]. Mn,n+1 is the adjoint of−Mn+1,n. Notice that, if (dV/dx) 6= 0,Mn,n−1 does not commute
with Mn,n+1. Let us consider the Laplace transforms W̃c,n = W̃c,n(s) =

∫ +∞
0

dtWc,n exp(−st).
with inverse Wc,n =

∫ c+i∞
c−i∞ (ds/2πi)W̃c,n exp(st) (c being real and such that W̃c,n(s) is analytic in

the half-plane Res > c of the complex s-plane). It will also be useful to deal with the symmetrized
Laplace transforms g̃n = W

−1/2
c,eq,0W̃c,n. This definition and Equation (4) yield the symmetrized three-term

hierarchy for g̃n:

(s+
n

σ
)g̃n = W

−1/2
c,eq,0Wc,in,n −Mn,n+1g̃n+1 −Mn,n−1g̃n−1 (6)

for both σ−1 > 0 (irreversible) and σ−1 = 0 (reversible).
The hierarchy Equation (6) can be solved formally by extending to it standard procedures for solving

numerical three-term linear recurrence relations in terms of continued fractions (see, for instance, [10]).
Thus, one neglects g̃n′+1(s) in Equation (6) for given n′, solves for g̃n′(s) in terms of g̃n′−1(s), proceeds
to Equation (6) for n′ − 1, solves for g̃n′−1(s) in terms of g̃n′−2(s) and so on. Then, one infers directly
the general formal (continued-fraction) structure of the solution as n′ → +∞. That formal procedure
yields all g̃n(s), for any n = 1, . . . , in terms of sums of products of certain s-dependent linear operators
D[n′; s + n′

σ
], n′ ≥ n, acting upon g̃n−1(s) and upon all W−1/2

c,eq,0Wc,in,n′’s, with n′ ≥ n. The linear
operators D[n; s+ n

σ
]’s are defined recurrently through:

D[n; s+
n

σ
] = [sI +

n

σ
−Mn,n+1D[n+ 1; s+

n+ 1

σ
]Mn+1,n]−1 (7)



Entropy 2012, 14 296

I is the unit operator. By iteration of Equation (7), D[n; s + n
σ
] becomes a formal infinite continued

fraction of products of the linear operators Mn,n+1 and Mn+1,n (which do not commute if dV/dx 6= 0).
For a simpler hierarchy and a clearer exposition, without loss of generality, let us assume that

Wc,in,n′ = 0 for n′ ≥ 1, with Wc,in,0 6= 0 (and 6= Wc,eq,0). Also, let us choose some n0(≥ 1). Then,
Equation (6) yields:

(s+
n

σ
)g̃n = W

−1/2
c,eq,0Wc,in,0δn,0 −Mn,n+1g̃n+1 −Mn,n−1g̃n−1, n ≤ n0 − 1 (8)

g̃n(s) = −D[n; s+
n

σ
]Mn,n−1g̃n−1(s), n ≥ n0 (9)

δn,0 is the Kronecker delta symbol. If σ−1 = 0 and n0 = 1, Equations (8) and (9) yield:

g̃0(s) = D[0; s]W
−1/2
c,eq,0Wc,in,0 (10)

It should be clear that if σ−1 = 0 (absence of dissipation) the particle is not expected to reach irreversibly,
for long time, thermal equilibrium with the hb. In such a case, Equation (10), in which no long-time
approximation has been carried out so far, is as reversible as Equation (2).

2.3. Operator Continued Fractions and Long-Time Approximation

We continue with both σ−1 > 0 and σ−1 = 0, unless otherwise stated. Let us choose n(≥ 1) and fix
s = ε > 0 (real and suitably small) in any D[n; s + n

σ
]. Then, the following crucial properties appear

to hold [14,15]: if D[n + 1; ε + n+1
σ

] were Hermitian and if all its eigenvalues (which would be real)
were non-negative, then the same would hold true for D[n; ε + n

σ
]. It is easy to confirm the validity

of that property if D[n + 1; ε + n+1
σ

] is replaced by a 2 × 2 matrix with the above (non-negativity and
Hermiticity) properties and Mn,n+1 and Mn+1,n are chosen as 2 × 2 matrices such that Mn,n+1 be the
adjoint of −Mn+1,n. A confirming example with a 2 × 2 matrix is given in Appendix D in [15]. Then,
through iterative arguments, D[n; ε+ n

σ
]’s, n = 0, 1, 2, 3, . . . , are Hermitian, and all their eigenvalues are

non-negative. These properties will be crucial for the long-time approximation below.
The long-time approximation for n ≥ n0 ≥ 1 reads as follows. One replaces any D[n; s+ n

σ
] yielding

g̃n in Equation (9), n ≥ n0, by D[n; ε + n
σ
]: this approximation is not done for n < n0, which will

be crucial, and is the better, the larger n0. We regard D[n0; ε + n0

σ
] in Equation (9) for n = n0 as

a fixed (s-independent) operator. Then, for small s, we approximate in Equation (9) for n = n0 as:
g̃n0(s) ' −D[n0; ε + n0

σ
]Mn0,n0−1g̃n0−1(s) [to be compared to Equation (9)]. The resulting hierarchy

Equation (8) for g̃n’s (n = 0, . . . , n0 − 1), through the inverse Laplace transform, yields formally a
closed approximate irreversible hierarchy for gn, n = 0, 1, . . . , n0 − 1. In the latter closed hierarchy,
after the above long-time approximation, we choose to employ the same initial conditionWc,in,0 at t = 0:
this amounts to another kind of approximation. The solutions of the last closed hierarchy for gn relax
irreversibly, for large t and reasonable Wc,in,0, towards W 1/2

c,eq,0 6= 0 for n = 0 and 0 if n = 1, . . . , n0 − 1

(thermal equilibrium) [14,15]. Then, for long-time, the dominant moment is g0, while any gn with n > 0

is negligible. gn (n ≥ n0) is the smaller, the larger t(> 0) and n (due to the behaviour ofD[n; ε+ n
σ
] with

n). Similar behaviours hold for Wc,0 and Wc,n with n > 0. To carry out quantitative studies for large t,
some ansatz or approximation should be provided forD[n0; ε+ n0

σ
], consistent with the above properties.
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We shall illustrate the above facts by taking, for simplicity, n0 = 1 (with either σ−1 > 0 or σ−1 = 0).
Then, Equations (9) (with the above approximation) and (8) yield, by taking inverse Laplace transforms:

∂g0

∂t
= −M0,1g1 (11)

g1 ' −D[1; ε+ σ−1]M1,0g0 (12)

Equations (11) and (12) give the irreversible Smoluchowski-like equation for the n = 0 moment:

∂g0/∂t = M0,1D[1; ε+ σ−1]M1,0g0 (13)

with initial condition W−1/2
c,eq,0Wc,in,0. For the computations below, we shall interpret the right-hand-side

of Equation (13) as
∫ +∞
−∞ dx′(M0,1D[1; ε + σ−1]M1,0)(x, x′)g0(x′). Let: (f1, f2) =

∫ +∞
−∞ dxf1(x)∗f2(x)

for suitable functions f1 and f2. Due to the Hermiticity ofD[1; ε+σ−1]: (f1,M0,1D[1; ε+σ−1]M1,0f2) =

(M0,1D[1; ε + σ−1]M1,0f1, f2), thereby checking that M0,1D[1; ε + σ−1]M1,0 is Hermitian. Moreover:
(f1,M0,1D[1; ε + σ−1]M1,0f1) = −(M1,0f1, D[1; ε + σ−1]M1,0f1) ≤ 0 for arbitrary functions f1, as all
eigenvalues ofD[1; ε+σ−1] are≥ 0. Let fλ(x) be an eigenfunction of the integral operatorM0,1D[1; ε+

σ−1]M1,0 with eigenvalue λ(≤ 0). Then, (M0,1D[1; ε + σ−1]M1,0)(x, x′) =
∑

λ λfλ(x)fλ(x
′)∗.

∑
λ

is a short-hand notation denoting integration over the whole spectrum of M0,1D[1; ε + σ−1]M1,0. By
expanding W

−1/2
c,eq,0Wc,in,0 =

∑
λ gin,λfλ(x), with x-independent gin,λ, the solution of Equation (13)

with the above initial condition is g0 =
∑

λ gin,λfλ(x) expλt, which relaxes irreversibly as t → +∞
towards gin,0f0(x), corresponding to λ = 0. At equilibrium, one has: g0 = W

1/2
c,eq,0 (proportional to

f0), M1,0g0 = 0 and gn = 0, n = 1, 2, 3, . . . , consistently with [9,10]. Let us restrict the above to
σ−1 = 0. Then, Equation (13) with σ−1 = 0 is (at least, with ε > 0) as irreversible as the standard
heat equation: for long t(> 0) the dominant moment is g0, while any gn with n > 0 is negligible, gn
being the smaller, the larger n and t(> 0), and so on for the Wc,n’s. As stressed after Equation (10),
irreversible thermalization does not occur if σ−1 = 0, in the absence of long-time approximations. Then,
for σ−1 = 0, to have carried out mathematical approximations (say, D[n; s] ' D[n; ε] for n ≥ n0,
but not for n < n0), which give rise to thermalization with the hb [like that based on Equation (13)],
could be regarded as an alternative way of introducing irreversibility out of a reversible model [namely,
Equation (2)] with vanishing dissipation ab initio. The latter interpretation with σ−1 = 0 is consistent
for the one-dimensional case. We shall regard it as a mathematical introduction, which will be very
helpful to deal later with non-equilibrium classical closed interacting many-particle systems without
external hb’s.

2.4. Convergence Properties for V ≡ 0 and σ−1 = 0

We shall now undertake a more detailed analysis for σ−1 = 0 and V ≡ 0, in order to understand the
structure and convergence of the operator continued fractions D[n; s] generated by Equation (7). To fix
the ideas, we shall take ε > 0 first, so as to allow for ε→ 0 later, thereby reviewing and extending [14].
Equation (13) becomes formally (using standard notations for continued fractions [21]):

∂g0/∂t =
kBT

m

∂

∂x
D[1; ε]

∂

∂x
g0 (14)

D[1; ε] =
1

εI+

2[(kBT/m)(−∂2)/(∂x2)]

εI+

3[(kBT/m)(−∂2)/(∂x2)]

εI+
· · · (15)
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Let us perform a spatial Fourier transformation from configuration space (x) to wavevector space (k),
by applying (2π)−1/2

∫
dx exp(−ikx). Let e(k) ≡ (2m)−1kBTk

2. Then, the Fourier transforms of the
operator continued fractions in Equation (7), for Res > 0 and n ≥ 0, and in Equation (14) are:

D1[k;n; s] = [s+ 2(n+ 1)e(k;N)D1[k;n+ 1; s]−1 (16)

∂g0,1/∂t = i(kBT/m)1/2kD1[k; 1; ε]i(kBT/m)1/2kg0,1 (17)

g0,1 = g0,1(k, t) being the spatial Fourier transform of g0. By iteration,D1[k;n; s] becomes the following
ordinary continued fraction (in standard notations [21]):

D1[k;n; s] =
1

s+

2e(k)(n+ 1)

s+

2e(k)(n+ 2)

s+
· · · = 1

e(k)1/2
.[

2−1

z+

2−1(n+ 1)

z+

2−1(n+ 2)

z+
· · · ](18)

with z = s/(2e(k)1/2). For real s ≥ 0, D1[k;n; s] is real. On the other hand:

2−1

z+

2−1(n+ 1)

z+

2−1(n+ 2)

z+
· · · = inerfc(z)

in−1erfc(z)
(19)

with inerfc(z) =
∫ +∞
z

dz′in−1erfc(z′), i0erfc(z) = erfc(z) (the complementary error function) and
i−1erfc(z) = (2/π1/2) exp(−z2) [21]. One has: D1[k;n; ε] ≥ 0. With ε > 0 and by using [21], one
gets: D1[k; 1; ε] → ε−1 as k → 0, while D1[k; 1; ε] → (πe(k))−1/2 as | k |→ ∞. For s = 0, the
behaviour of D1 is different. Equation (18) gives:

D1[k;n; s = ε = 0] = D1[k;n; 0] = [2e(k)1/2]−1 1

0+

2−1(n+ 1)

0+

2−1(n+ 2)

0+
· · · (20)

The continued fraction in Equation (20) can, in turn, be evaluated in terms of the standard Gamma
function Γ [21]:

2−1

0+

2−1(n+ 1)

0+

2−1(n+ 2)

0+
· · · = Γ((n/2) + 1/2)

2Γ((n/2) + 1)
> 0, n ≥ 1 (21)

For large n, the ratio in Equation (21)→ n−1/2. Equation (19) behaves similarly. For k → 0, D1[k;n; 0]

diverges as k−1 (due to e(k)−1/2). Then,
∫
dkD1[k;n; 0] also diverges near k = 0.

2.5. Classical Harmonic Oscillator: Operator Continued Fractions

For vanishing dissipation due to the hb, which is at thermal equilibrium at T , D[n; s] has also been
evaluated for a classical harmonic oscillator (V = 2−1mω2x2 with frequency ω > 0) in one space
dimension [16]. It will be methodologically adequate to outline those results here. The actual classical
hierarchy turns out to be exactly solvable, by inspiring on known algebra for the quantum harmonic
oscillator: compare with [10]. Here, we shall work with the dimensionless position and momentum
variables y ≡ [(2kBT )−1m]1/2ωx, π ≡ [(2kBTm)−1]1/2q. Accordingly, we shall deal with Wc(x.q; t) =

f(y, π; t) = f . The non-equilibrium moments for f are introduced through Equation (3), with the
corresponding changes. For convenience, we introduce, in the actual classical context, “annihilation”
(a) and “creation” (a+) operators: a ≡ 2−1/2(d/dy + y), a+ ≡ 2−1/2(−d/dy + y), with commutator
[a, a+] = +1 ([A,B] ≡ AB − BA). Notice that a+ and a are proportional to Mn,n+1 and Mn,n−1,
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respectively. We proceed like in Subsections 2.1 and 2.2. Then, the hierarchy for the symmetrized
g̃n(s)(=g̃n(y, s)) , which is the actual counterpart of Equation (6), becomes (with σ−1 = 0):

sg̃n = W
−1/2
c,eq,0Wc,in,n + ω[(n+ 1)1/2.a+g̃n+1 − n1/2.ag̃n−1] (22)

with the initial condition W−1/2
c,eq,0Wc,in,n. In the new variables, W 1/2

c,eq,0 is proportional to exp(−y2/2). The
actual counterpart of the operator D[n; s] in Subsection 2.2 is: D[n; s] = [sI + (n + 1)ω2a+D[n +

1; s]a]−1. This D[n; s] can be evaluated in closed form [16], as we shall now outline. By using
a+[sI + nωa+a]−1 = [sI + nω(a+a − 1)]−1a+, and after some iterative algebra, one finds that the
dependence of D[n; s] on a and on a+ occurs only through the product a+a and that, by rewriting
D[n; s] ≡ D[n; s; a+a], one gets:

D[n; s; a+a] = [sI + (n+ 1)ω2a+aD[n+ 1; s; a+a− 1]]−1 (23)

Let fn′ = Hn′(y) exp[−2−1y2], n′ = 0, 1, 2, . . . . Then, the eigenfunctions of a+a and of D[n; s; a+a]

are fn′ . The eigenvalues of a+a are n′ which, through iteration of Equation (23), yield directly those
of D[n; s; a+a] as finite fractions, precisely due to the structure a+a − 1. In other words, D[n; s]

(which, in principle, is an infinite continued fraction of operators) becomes, by iterating Equation (23),
a finite fraction in a+a. A posteriori, one confirms for the actual harmonic oscillator that the resulting
D[n; s = ε] (ε > 0) is Hermitian and has nonnegative eigenvalues. See [16] for further details.

3. Closed Classical Many-Particle Systems: Long-Time Approximation and Arrow of Time

We shall present an outline of the main developments, omitting lengthy arguments and equations,
which can be seen in [14]. We treat a closed large system of many (N � 1) classical nonrelativistic
particles, in d spatial dimensions (d = 1, 2, 3), with spatial coordinates x1,. . . ,xN (≡ [x]) and momenta
q1,. . . ,qN (≡ [q]). All particles, which are identical, have mass m. Let xi,α and qi,α be the Cartesian
components of xi and qi, respectively (i = 1, . . . , N , α = 1, . . . d). Neither a hb nor external friction
mechanisms nor external forces are assumed. The interaction potential is: V = ΣN

i,j=1,i<jVi,j(| xi−xj |)
and we suppose that all Vi,j(| xi−xj |) are repulsive (≥ 0) and tend quickly to zero for large | xi−xj |.
The physical idea is that the very large number of degrees of freedom (which be at thermal equilibrium
with one another) in the system play the role of a hb. The non-equilibrium classical distribution function
is: Wc = Wc([x], [q]; t). Boltzmann’s equilibrium (canonical) distribution at absolute temperature T is :
Wc,eq = exp[−β((2m)−1ΣN

i=1Σd
α=1q

2
i,α + V )].

The initial non-equilibrium distribution Wc,in, to be regarded as known, is quite arbitrary in practice.
Instead of considering the most general initial state, we shall choose a class of Wc,in’s, which will be:
(i) qualitatively consistent with the idea [8,22], typical of Information Theory, that one should employ
only distribution functions compatible with the limited information available which, in turn, refers to
expectation values not of all possible dynamical variables but only of an observable subset of such
variables (these ideas being imposed for t = 0 only, but not for t > 0); (ii) also consistent with standard
variables employed in Equilibrium Statistical Mechanics and Fluid Dynamics [2–5]. Then, we shall
treat a class of an explicit ansätze for Wc,in which will depend on a finite number of functions (actually,
2 + d) of one single position vector, x: λk = λk(x), k = 0, 2, and λ1,α = λ1,α(x), α = 1, . . . , d (all of
them being independent on time and on momenta). The expression for Wc,in in terms of λk and λ1,α has
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appeared previously [3,5] (and is related to the Massieu-Planck function [5]). In short, Wc,in at t = 0

will be chosen to describe thermal equilibrium with homogeneous temperature T for large distances but
non-equilibrium for intermediate and short distances (with spatial inhomogeneities). The ansatz is:

Wc,in = (N !)−1 exp[−
∫
ddx(λ0(x)

N∑
i=1

δ(d)(xi − x) +
d∑

α=1

λ1,α(x)
N∑
i=1

qi,α
m

× δ(d)(xi − x) + λ2(x)
N∑
i=1

(
q2
i

2m
+

1

2

N∑
j=1,j 6=i

Vi,j(| qi − qj |))δ(d)(xi − x)]

(24)

Consistently with (i)–(ii) above, the λ’s will be uniquely determined (through standard recipes in
Information Theory) in terms of 2 + d x-dependent observables (also independent on time and on
momenta) typically employed in Fluid Dynamics, which, by assumption, are known at t = 0: mass
density, fluid velocity and some suitable energy density [5,14]. For simplicity, no observables associated
to angular momentum are included. How does the equilibrium temperature T appear in this closed
system, without hb? We assume that Wc,in describes thermal equilibrium at temperature T at large x but
off-equilibrium at finite x. We accept that λ2(x) approaches quickly a non-vanishing constant, λ2(∞),
as | x | tends to∞ along any direction and that the same holds for λ0(x). A similar statement holds for
λ1,α(x), the corresponding (large-| x |) limiting value being zero. At finite x, the off-equilibrium λ2(x),
λ0(x) and λ1,α(x) do depend on x and, so, differ from their respective constant (large-| x |) limiting
values, which describe equilibrium. Then, consistency is achieved (T being thereby introduced) if, in
the thermodynamical limit, λ2(∞) tends to (kBT )−1 (plus corrections which approach zero in that limit).
The dominant contributions to various statistical averages at t = 0 come from large x, up to corrections
which tend to vanish as N increases. The very large number of degrees of freedom involved in the
largest part of the system (for large | x |) are at equilibrium at T . For consistency, the 2 + d x-dependent
dynamical variables known at t = 0 (mass density, fluid velocity and some suitable energy density) have
to fulfill the corresponding behaviour as | x | tends to∞ along any direction. For details, see [14].

The reversible Liouville equation reads:

∂Wc

∂t
= ΣN

i=1Σd
α=1[

∂V

∂xi,α

∂Wc

∂qi,α
− qi,α

m

∂Wc

∂xi,α
] (25)

Let [n] denote a set of nonnegative integers (n(i = 1, α = 1), . . . , n(i = N,α = d)) and let
n = ΣN

l=1Σd
α=1n(l, α). Let [dq] =

∏N
i=1

∏d
α=1 dqi,α. We introduce non-equilibrium moments

W[n] of W (using products of Hermite polynomials, by generalizing Equation (3) with all integrations
in (−∞,+∞)):∫

[dq]
N∏
i=1

d∏
α=1

Hn(i,α)(qi,α/(2mkBT )1/2)

(π1/22n(i,α)n(i, α)!)1/2
Wc([x], [q], t) ≡ Wc(x; [n]; t) = Wc([n]) (26)

If Wc = Wc,eq, then Wc,eq([0]) ([0] = (0, 0, . . . , 0) = (n(i = 1, α = 1) = 0, . . . , n(i = N,α = d) =

0) = [n = 0]) is proportional to exp[−βV ] and Wc,eq([n]) = 0, [n] 6= [0] (say, n 6= 0). Equation (26) can
also be applied to Wc,in and gives the corresponding initial moments, Wc,in([n]). We shall work with the
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symmetrized moments g([n]) = Wc,eq([0])−1/2Wc([n]). One gets an infinite reversible three-term linear
recurrence for g([n])’s, generalizing Equations (4) and (5). It reads:

∂g(n(1, 1), . . . , n(j, β), . . . , n(N, d))

∂t

=− ΣN
l=1Σd

α=1[Ml,α;n(l,α);+g(n(1, 1), . . . , n(l, α) + 1, . . . , n(N, d))

+Ml,α;n(l,α);−g(n(1, 1), . . . , n(l, α)− 1, . . . , n(N, d))]

(27)

Ml,α;n(l,α);+ = [
(n(l, α) + 1)kBT

m
]1/2[

∂

∂xl,α
− 1

2kBT

∂V

∂xl,α
] (28)

Ml,α;n(l,α);− = [
n(l, α)kBT

m
]1/2[

∂

∂xl,α
+

1

2kBT

∂V

∂xl,α
] (29)

The Laplace transform of the hierarchy Equation (27) is the actual many-particle counterpart of
Equation (6) with σ−1 = 0. Such a Laplace transform (with N � 1) can be formally solved in terms
of linear operators D[[n]; s], which generalize the previous D[n; s]. For details, see [14]. All D[[n]; s]

are square matrices, due to the indices i = 1, . . . , N and α = 1, . . . , d. In turn, each matrix element in
those square matrices is an ordinary linear integral operator, arising from the partial differential operators
Ml,α;n(l,α);+ and Ml,α;n(l,α);−, as l, α and n(l, α) vary. The D[[n]; s] fulfill the following formal hierarchy
[which generalizes Equation (7)]:

D[[n]; s] = [sI −M+,[n+1]D[[n+ 1]; s]M−,[n]]
−1 (30)

The linear operators M±,[n] are rectangular matrices, the elements of which are formed out of the
partial differential operators Ml,α;n(l,α);+ and Ml,α;n(l,α);−. M+,[n+1] can be shown to be the adjoint of
−M−,[n]. By iterating Equation (30) indefinitely, one can express formally the linear operator D[[n]; s]

as an operator continued fraction, which depends on all partial differential operators Ml,α;n(l,α);+ and
Ml,α;n(l,α);− and generalizes the operator continued fraction for D[n; s]. See [14]

By generalizing the iterative arguments in Subsection 2.3, it follows that, for both V 6= 0 and V = 0,
D[[n]; ε] for ε > 0 is a Hermitian operator with non-negative eigenvalues for n ≥ n0 ≥ 1 [14].

A few remarks for the case V ≡ 0 may be clarifying. In the Laplace transform of Equation (27), let
us perform a spatial Fourier transformation from configuration space (x1,. . . , xN ) to wavevector space
(k1,. . . , kN )≡ [k]. Let e(k;N) ≡ kBT

∑N
j=1(2m)−1k2

j . Then, the Fourier transform D1[[k]; [n]; s] of
D[[n]; s] for Res > 0 is an ordinary continued fraction, given in Equations (16)–(18) with e(k) replaced
by e(k;N). Then, with such a replacement, the properties ofD1(k;n; s) given in Subsection 2.4 also hold
for D1[[k]; [n]; s]. Notice that D1[[k]; [n]; s = 0] diverges as e(k;N)−1/2 if e(k;N) → 0. On the other
hand, and contrary to what happened for one particle in one spatial dimension [recall the comment after
Equation (21)],

∫
[dk]D1[[k]; [n]; s = 0] converges near e(k;N) = 0. This would suggest that the actual

counterpart of Equation (9) (containing D[[n]; ε] acting on various Ml,α;n(l,α);−g(n(1, 1), . . . , n(l, α) −
1, . . . , n(N, d))’s), when integrated over [k]’s to come back to [x]-space, would converge at small [k]’s
as ε→ 0, for the actual V 6= 0. Whether such a property holds is an open question.

In spite of the very involved structure of Equation (27) (and of its Laplace transform), we argue that
a simple long-time approximation can be performed in it, for Vi,j ≥ 0 (and vanishing quickly at large
distances) and very large N (in the thermodynamical limit), which generalizes that in Subsection 2.3.
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This approximation consists in fixing s = ε > 0 (ε being small) in the whole hierarchy of operators
D[[n]; s], for any n ≥ n0(> 0) which, then, become Hermitian operators D[[n]; ε] with no negative
eigenvalues. It is crucial that s-dependences be kept in D[[n]; s], for n < n0. Notice that the
non-vanishing factors n(l, α)1/2 and ((n(l, α) + 1))1/2 in Ml,α;n(l,α);− and Ml,α;n(l,α);+, respectively, tend
to reduce, as the n(l, α)’s increase, the relative importance of having fixed s = ε and the contribution of
the latter in the D[[n]; s = ε]’s with n ≥ n0. This is a genuine feature of the D[[n]; s = ε]’s. See [14],
where it was seen that, by imposing n0 > 2, the long-time approximation is exactly consistent with
all hydrodynamical balance equations. For simplicity, we discard all the initial moments Wc,in([n]) for
n ≥ n0. We regard D[[n0]; ε] as a fixed (s-independent) operator, yielding all g([n0]) in terms of all
g([n0 − 1]). The choice ε = 0 was made in [14]. By using [16] and [18,19], the arguments in [14]
are easily seen to hold for ε > 0. All that leads to a closed approximate hierarchy for g([n])’s (with
initial moments Wc,in([n])), with n < n0, which appears to yield an approximate irreversible evolution
towards thermal equilibrium at T . g([n])’s and, then, Wc([n]) relax the quicker the larger n, provided
that n < n0. Wc([0]) would dominate the approach towards equilibrium for t → +∞. See [14]. All
that appears to work based on the general properties of D[[n0]; ε]: for quantitative studies, some ansatz
or approximation should be provided directly for it. An arrow of time would follow approximately, in
the present case.

As an extreme example, let n0 = 1 (which is strictly consistent only with the hydrodynamical
balance equation for mass): see [14] for n0 = 2, 3. By making the above long-time approximation
and taking inverse Laplace transforms, one finds directly the irreversible Smoluchowski-like equation
for the [n = 0] moment, which generalizes Equation (13) ([n = 0] meaning n(1, 1) = 0, . . . , n(j, β) =

0, . . . , n(N, d) = 0):

∂g([n = 0])

∂t
= ΣN

l=1Σd
α=1Ml,α;n(l,α)=0;+×

(ΣN
l′=1Σd

α′=1[D[[n = 1]; ε]]l,α;l′,α′Ml′,α′;n(l′,α′)=1;−)g([n = 0])

(31)

The operatorD[[n = 1]; ε] (Hermitian, with non-negative eigenvalues) has, as a square matrix, the matrix
elements [D[[n = 1]; ε]]l,α;l′,α′ . The initial condition is Wc,eq([0])−1/2Wc,in([0]). Compare with [14].

4. Open Quantum-Mechanical One-Dimensional System without Dissipation: General Aspects

We shall consider a quantum Brownian particle qBp of mass m (> 0) and momentum operator
−ih̄(∂/∂x), in one spatial dimension x, with (Hermitian) quantum Hamiltonian:

H = − h̄2

2m

∂2

∂x2
+ V (32)

with a real potential V = V (x) ≥ 0 vanishing quickly for | x |→ +∞. h̄ is Planck’s constant. All
eigenvalues Ej of H sweep the continuous positive real half-line: 0 ≤ Ej < +∞. Such a continuous
spectrum has, typically, a double degeneracy, associated to different asympotic conditions at x → ±∞,
with the same energy. The continuous variable j (−∞ < j < +∞) labels all states and distinguishes
degenerate states. Thus, if ϕj(x) is an eigenfunction of H: Hϕj(x) = Ejϕj(x).

The example considered in Subsection 2.1 (namely, a Brownian particle moving in air at room
temperature) could be invoked here as well: the particle should now be described by Quantum
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Mechanics. This Section presents a purely formal generalization of Subsections 2.1 and 2.2 for the
non-equilibrium statistical evolution of a qBp subject to V (x), and in the presence of a hb at thermal
equilibrium at T , in the idealized case of vanishing dissipation. The time evolution for t > 0 of the
qBp is given by the density operator ρ = ρ(t) (a statistical mixture of quantum states), with the initial
condition ρ(t = 0) = ρin. For t ≥ 0, ρ(t) is a Hermitian and positive-definite linear operator acting in a
Hilbert space. Unless otherwise stated, we shall not impose that ρ(t) be normalized. The time evolution
of the qBp in differential form is described by the operator equation ([H, ρ] = Hρ− ρH):

∂ρ

∂t
=

1

ih̄
[H, ρ] (33)

We consider the matrix element 〈x− y|ρ(t)|x+ y〉 of ρ(t) in generic eigenstates, |x− y〉, |x+ y〉, of the
quantum position operator. The quantum Wigner function W = W (x, q; t), determined by ρ, is [6,7]:

W (x, q; t) =
1

πh̄

∫ +∞

−∞
dy exp[

i2qy

h̄
]〈x− y|ρ(t)|x+ y〉 (34)

The initial non-equilibrium Wigner function at t = 0 is Win, given by Equation (34) if ρ = ρin. For
t > 0, the exact dissipationless quantum master equation (QME) for W [6,7] is:

∂W (x, q; t)

∂t
=− q

m

∂W (x, q; t)

∂x
+MQW (35)

MQW =

∫ +∞

−∞
dq′W (x, q + q′; t)

∫ +∞

−∞

idy

πh̄2 [V (x+ y)− V (x− y)]

× exp[−i2q
′y

h̄
] =

dV

dx

∂W

∂q
− h̄2

3!22

d3V

dx3

∂3W

∂q3
+ · · ·

(36)

As h̄ → 0, Equation (35) becomes formally, by dropping all h̄-dependent terms (containing
∂nW/∂pn in Equation (36), n = 3, 5, . . . ), the classical Liouville equation Equation (2), with
W → Wc [6,7]. We shall assume that, as | q |→ +∞, W (x, q; t) → 0 quickly, for fixed x and
long t. Then,

∫ +∞
−∞ dqW (x, q; t)qn converges, for any integer n ≥ 0. Equation (35) readily implies that

(∂/∂t)
∫ +∞
−∞ dx

∫ +∞
−∞ dqW (x, q; t) = 0.

A stationary Wigner function is any t-independent solution of Equation (35). We are not interested
on arbitrary stationary Wigner functions, but only on a very specific one (denoted by Weq), namely, that
which accounts for the thermal equilibrium state of the qBp, at temperature T = (kBβ)−1, with the hb.
Like in the classical case, the solutions of Equations (35) and (36) are not expected to approach Weq

exactly, unless some approximation be made. Weq arises from the canonical (t-independent) density
operator ρeq = exp[−βH], with matrix elements:

〈x− y|ρeq|x+ y〉 =
∑
j

exp[−βEj]ϕj(x− y)ϕj(x+ y)∗ (37)

∑
j is a short-hand notation denoting integration over the whole continuous spectrum of j (

∫ +∞
−∞ dj). In

turn, ρeq determines Weq(x, p), through Equation (34):

Weq(x, q) =
1

πh̄

∫ +∞

−∞
dy exp[

i2qy

h̄
]
∑
j

exp[−βEj]ϕj(x− y)ϕj(x+ y)∗ (38)

− q

m

∂Weq

∂x
+MQWeq = 0,

∂Weq

∂t
= 0 (39)
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We remark that if one has constructed some general stationary Wigner function, by solving
Equation (39), further additional information should be fed in, so as to select uniquely that solution
of Equation (39) which yields precisely Weq. Such a situation will be met in Section 5. Some known
genuine difficulties of the quantum case are that Weq(x, p) is neither Gaussian in q nor known in closed
form, for a general V [6,7]. In Subsection 4.1 we shall start the generalizations of Subsections 2.1 and 2.2
to the actual quantum situation, so as to search for ways for solving or, at least, bypassing the genuine
difficulties, mentioned above, of the quantum case. An alternative representation for Weq has been given
by Wigner [6]: we shall review it shortly in Subsection 4.2 and use it in Section 5.

4.1. Orthogonal Polynomials H ′Q,n Generated by Weq in Equation (38), Moments and Hierarchy

We shall introduce the denumerably infinite family of all (unnormalized) polynomials in q,
H ′Q,n = H ′Q,n(q)(n = 0, 1, 2, 3, . . . ), orthogonalized in q (for fixed x) by using the equilibrium Wigner
function Weq Equation (38) as weight function. Let q0 be some fixed (scaling) momentum: q0 could
equal qeq [Equation (3)], but not necessarily. By choosing H ′Q,0(q) = 1, for n 6= n′ and any x (left
unintegrated), we impose: ∫ +∞

−∞

dq

q0

Weq(x, q)H
′
Q,n(q)HQ,n′(q) = 0 (40)

The H ′Q,n’s, depending parametrically on x for n ≥ 1, generalize the standard Hermite polynomials, and
will be used for the time evolution. We shall look for the H ′Q,n(q)’s as (y0 = q/q0):

H ′Q,n(q) = yn0 +
n∑
j=1

εn,n−jy
n−j
0 (41)

εn,n−j being q-independent (but x-dependent, in general): see Appendix A. The orthonormalized
polynomials are H ′Q,n(q)/(h′n)1/2, with the (x-dependent) normalization factor:

h′n ≡
∫ +∞

−∞

dq

q0

Weq(x, q)H
′
Q,n(q)2 (42)

The lowest normalization factors h′0 and h′1 are given in Appendix A.
We shall treat general situations in which the qBp could be out of thermal equilibrium with the hb at

t = 0 (and, hence, for t > 0). We shall analyze them by using Equation (35), for the non-equilibrium W .
The study will also enable to discuss, as a consistency check, the case in which the qBp be at thermal
equilibrium with the hb at any t. TheH ′Q,n(q)’s suggest the following new momentsWn (n = 0, 1, 2, . . .):

Wn = Wn(x; t) =

∫ +∞

−∞

dq

q0

H ′Q,n(q)W (x, q; t) (43)

The initial condition Win,n for Wn is obtained by replacing W by the initial non-equilibrium Wigner
function Win in Equation (43). One has the following (formal) expansion for W :

W = Weq(x, q)
+∞∑
n=0

Wn(x; t)
H ′Q,n(q)

h′n
(44)
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For W = Weq(x, q), Equation (43) yields Weq,n = 0 if n > 0, and Weq,0 = h0.
For the actual dissipationless case, the role of H ′Q,n(q), of the Wn’s and of Equation (44) can be

appreciated through the following formal argument, which extends to the quantum case behaviours
met in the classical case (Subsections 2.1–2.3). One could argue that, at least for some initial
non-equilibrium conditions and after some approximations, Wn(x; t) would approach or be related to
Weq,n. Then, for long-time and approximately, the dominant moment would be W0(x; t), while any
Wn(x; t) with n > 0 would be negligible, Wn being the smaller, the larger n and t(> 0). One has:∫ +∞
−∞ dx

∫ +∞
−∞ d(q/q0)W (x, q; t) =

∫ +∞
−∞ dxW0(x; t). The above argument, even if it would not seem

essentially wrong, is recognizedly loose for vanishing dissipation, unless some approximation be made.
It will be revisited in Section 6, with dissipation.

The transformation of Equations (35) and (36) into a linear hierarchy for the new moments Wn is
outlined in Appendix A. The hierarchy in Equations (74), (75) and so on is exact and very general, but
it requires to know the eigenfunctions ϕj(x) and the eigenvalues Ej . Our limited aim here was to show
that orthogonal polynomials and a non-equilibrium hierarchy exist formally for Equation (35). Then, we
shall neither delve further into this nor treat the issue of long-time approximations for Equations (74),
(75) and so on. In Sections 5 and 6, we shall treat other alternatives, with repulsive quadratic plus
quartic potentials.

4.2. The Wigner Representation for Weq for High Temperature, Near the Classical Limit

We remind the following representation for Weq [given in Equation (38)] as a series in the standard
Hermite polynomials Hn(q/qeq) [6]:

Weq = Wc,eq

+∞∑
n=0

a0,nHn(
q

qeq
) (45)

Wc,eq is Boltzmann’s classical distribution function, given in Subsection 2.1, and qeq was given in
Equation (3). The a0,n = a0,n(x)’s are coefficients, which depend on h̄, V (x) and β, with a0,n ≡ 0

for n = 1, 3, 5, . . . . The expansion Equation (45) holds for high temperature and near the classical limit
(small β and h̄). The a0,n’s, n = 0, 2, 4, 6, 8, . . . , are non-vanishing in general: those for n = 0, 2, 4 have
been given in [6]. Here, it will suffice to quote only a0,0, through the first terms in a series expansion into
powers of h̄):

a0,0(x) = 1 +
h̄2

8
[
β3

3m
(
dV

dx
)2 − 2β2

3m

d2V

dx2
] +

h̄4β2

64m2
[−4β

15

d4V

dx4
+
β4

18
(
dV

dx
)4

− 22β3

45
(
dV

dx
)2d

2V

dx2
+

8β2

15

dV

dx

d3V

dx3
+

2β2

5
(
d2V

dx2
)2] + · · ·

(46)

All terms in Equation (46) contribute if h̄ 6= 0 and β 6= 0, even if V = mω2x2/2 (a0,0(x) 6= 1, then).
The key information, which does select uniquely the equilibrium Wigner function Weq, out of the set of
all stationary Wigner functions, is encoded in the factor Wc,eq and in the fact that Weq → Wc,eq for any
V , if h̄ → 0 and small β. This is, of course, consistent with Equation (46) and with a0,0(x) → 1 in the
classical high-temperature limit for any V . As shown in [6], all the remaining non-vanishing a0,n(x)’s,
n = 2, 4, 6, 8, . . . , are determined recursively in terms of a0,0(x).
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5. Quantum-Mechanical One-Dimensional Model with Quadratic Plus Quartic V : No Dissipation

In this Section, we shall restrict to a quadratic plus quartic V (≥ 0):

V = V (x) =
mω2x2

2
+ V1, V1 = V1(x) =

gx4

4!
(47)

that is, we deal with a quantum anharmonic oscillator, with harmonic frequency ω(> 0). g, real and
≥ 0, is an anharmonicity parameter. Then, H is defined in a denumerably infinite Hilbert space. H
has a denumerably infinite discrete spectrum of real eigenvalues Ej(≥ 0), j = 1, . . . and there is no
continuous spectrum. For the actual quadratic plus quartic V (x), the (formal) series expansion of the
integral operator MQ into powers of h̄2 reduces exactly to the first two terms shown in Equation (36). In
this Section, we shall also bypass the genuine difficulties of the quantum case: the representation of Weq

and the construction of the H ′Q,n’s will now differ considerably from those in Section 4.

5.1. Alternative Series for Weq(x, q), Orthogonal Polynomials Generated by It and Hierarchy

We shall deal with Weq(x, q) (as given in Equation (38) in general, and in Equation (45) for small h̄
and β) for the special case in Equation (47). We shall recast Weq(x, q) into a new series in the standard
Hermite polynomials, which should be not restricted to the regime of small h̄ and β [as is Equation (45)].
For that purpose, we shall introduce:

α =
h̄ω[1 + cosh(βh̄ω)]

2 sinh(βh̄ω)
, qQ,eq = +[2mα]1/2 (48)

W (0)
eq = W (0)

eq (x, q) = exp[− 1

α
(
q2

2m
+
mω2x2

2
)] (49)

Notice that qQ,eq 6= qeq (although qQ,eq → qeq for h̄ω → 0). One looks for Weq(x, q) as the new formal
series in the standard Hermite polynomials Hn(q/qQ,eq):

Weq = W (0)
eq

+∞∑
n=0

aeq,nHn(
q

qQ,eq
) (50)

with new coefficients aeq,n = aeq,n(x), depending on h̄,m, ω, β and x. We emphasize that Equations (45)
and (50) are different expansions. Based upon the well known ρeq for g = 0 [7,23–25], a direct
computation shows that W (0)

eq is the exact Wigner function for the quantum harmonic oscillator for
any m, ω, β and h̄. Then, if g = 0, it follows that aeq,n = 0 for n = 1, 2, 3, 4, . . . and that aeq,0 is
x-independent. This justifies the interest of Equation (50): it can be expected to converge, at least, for
small positive g for finite β.

Let us characterize aeq,0 first. As
∫ +∞
−∞ (dq/qQ,eq)Weq = (qeq/qQ,eq)

∫ +∞
−∞ ( dq/qeq)Weq and by using

Equations (45) and (50), one gets:

aeq,0 =
qeq
qQ,eq

a0,0(x) exp[+
1

α

mω2x2

2
] exp[−βV ] (51)

If g = 0 (for finite β and h̄), the x-dependences of a0,0(x), exp[+(2α)−1mω2x2] and exp[−βV ] cancel
out in Equation (51) exactly, so that aeq,0 is x-independent. For the new series Equation (50), the
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additional information which does select uniquely Weq, out of the set of all stationary Wigner functions,
is encoded in the factor W (0)

eq and in aeq,0(x) [determined, through Equation (51), in terms of a0,0 given,
in turn, in Equation (46)]. Equations (39), (50), (47) and (49) yield a three-term linear recurrence relation
for the aeq,n’s: see Appendix B.

By generalizing Equation (50), one could expand the non-equilibrium Wigner function in terms of
the Hn(q/qQ,eq)’s, in terms of non-equilibrium moments an’s. For large t(> 0) and, at least, for some
suitable class of initial non-equilibrium conditions, one could argue whether the an’s would approach
approximately or be related, in some sense, to the aeq,n’s which, as shown above, are non-vanishing.
Then, for long-time, all an, n = 2, 4, 6, . . . would be non-vanishing as well and should be taken into
account, which would make their analysis rather difficult. The above argument, which is rather loose
in the absence of dissipation, will be revisited in Section 6 with friction included. Anyway, the above
argument will provide motivation for the following developments.

We shall come back to the denumerably infinite family of polynomials H ′Q,n(q) (n = 0, 1, 2, 3, . . . ),
orthogonalized in q (for fixed x) by using Weq [Equation (38), in the form of Equation (50)] as weight
function. Here, we shall use Equation (40), with q0 replaced by qQ,eq. For the actual V , given in
Equation (47), we shall recast those H ′Q,n(q) ≡ HQ,n(y) (y = q/qQ,eq) into another form. Strictly
speaking, the H ′Q,n(q)’s considered in Equation (40) for a general V coincide with the HQ,n(y)’s to
be analyzed here only when Equation (47) holds. By assumption, we search for HQ,n(y) to equal the
standard Hermite polynomial Hn(y) plus a remainder. The latter is another polynomial in y of degree
smaller than n. We shall write:

HQ,n(y) = Hn(y) +
n∑
j=1

σn,n−jHn−j(y) (52)

with n = 1, 2, 3, . . . and (y-independent) coefficients σn,n−j (given in Appendix B), which depend
on x and β (these two dependences not being explicited). The orthonormalized polynomials are
HQ,n(q/qQ,eq)/h

1/2
Q,n, with the (x-dependent) normalization factor:

hQ,n ≡
∫ +∞

−∞

dq

qQ,eq
Weq(x, q)HQ,n(q/qQ,eq)

2 (53)

See Appendix B. The alternative hierarchies off-equilibrium and at equilibrium following from
H ′Q,n(q) = HQ,n(q/qQ,eq) and h′n = hQ,n (with q0 replaced by qQ,eq) are outlined in Appendix B.

6. Quantum-Mechanical One-Dimensional Model with Quadratic Plus Quartic V : Dissipation

6.1. First Model: Equilibrium Wigner Function Dependent on Dissipation

Here, we shall suppose that the evolution of the qBp, in the presence of the hb, is also subject
to non-vanishing friction. We shall regard the qBp as an open quantum system, also described by
Equations (32) and (47) in the same denumerably infinite Hilbert space. Recall that open quantum
systems constitute a very active research field, which is common to several modern branches of quantum
physics (quantum optics, laser theory, atoms and electromagnetic radiation in cavities, spin relaxation
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dynamics, decoherence, ion traps, quantum information, . . . ) [23–31]. For t > 0, we shall assume that
the QME for W , including dissipation, is:

∂W (x, q; t)

∂t
= − q

m

∂W (x, q; t)

∂x
+MQW +MDW (54)

MDW = [γ +
γ

2
(x

∂

∂x
+ q

∂

∂q
) + γ

α

2mω2
(
∂2

∂x2
+m2ω2 ∂

2

∂q2
)]W (55)

with the same MQ given in Equation (36). The linear operator MD, with the same α as in Equation (48),
accounts for the dissipation on the qBp due to the hb. The key real parameter γ (≥ 0) accounts for
friction effects. Equations (54) and (55) readily imply that (∂/∂t)

∫ +∞
−∞ dx

∫ +∞
−∞ dqW (x, q; t) = 0.

Equations (54) and (55) are: (a) the standard equations describing a single mode of the electromagnetic
field inside a laser cavity [23,24], if g = 0; (b) a toy model for the inclusion of weak nonlinearities in (a)
(say, due to a nonlinear medium within the cavity), along the lines pursued in [25], if g 6= 0.

First, we shall look for the physically acceptable equilibrium solution, denoted as Weq,γ(x, q), of
Equation (54) (∂Weq,γ(x, q)/∂t = 0). An important property is that, provided that g = 0, W (0)

eq , given in
Equation (49) [with the same qQ,eq as in Equation (48)], is the equilibrium solution of Equation (54) (with
γ 6= 0) as a direct computation shows. Then, if g = 0, Weq,γ(x, q) = W

(0)
eq , which is γ-independent.

However, for g 6= 0, a qualitatively new feature is that Weq,γ(x, q) is indeed γ-dependent and, hence,
it is not given by the right-hand-sides of either Equation (34) (with ρ = exp(−βH)) or Equation (50).
This dependence of quantum equilibrium distributions in certain models, like the one in Equations (54)
and (55), on the dissipation mechanism is one of the additional difficulties met in the quantum case, to
be treated in this Subsection. We remind that, in order to avoid physically that difficulty, an interesting
generalization of Equation (1) to the quantum case (to order h̄2), in the regime of small h̄ and β, has been
carried out in [32].

Then, by reminding Equation (50) for the frictionless case, we shall look for Weq,γ(x, q) if γ 6= 0 and
g 6= 0 as the new series using the standard Hermite polynomials:

Weq,γ = W (0)
eq

+∞∑
n=0

aeq,γ,nHn(
q

qQ,eq
) (56)

with new (γ-dependent) coefficients) aeq,γ,n (6= aeq,n): see Appendix C. In order to select uniquely Weq,γ

in the actual case with dissipation, we need a choice for aeq,γ,0. We shall choose aeq,γ,0 = aeq,0,
as given in Equation (51) (γ-independent). Such a choice for aeq,γ,0 seems a natural one (not
leading to inconsistencies) although, recognizedly, it also seems less compelling than that for aeq,0 in
Equation (51) (which was necessary, for consistency). Then, all aeq,γ,n(x)’s, n = 1, 2, 3, 4, . . . , are
determined recurrently in terms of aeq,γ,0(x), through Equation (89), through the obvious generalizations
of Equations (77) and (78). Notice that aeq,γ,n(x) 6= 0 for odd n′ (n′ = 1, 3, 5, . . . ). For g = 0,
with nonvanishing β, h̄ and γ, aeq,γ,n(x) = 0 for n = 1, 2, 3, 4, . . . while aeq,γ,0(x) is x-independent,
consistently.

Like in the dissipationless case, we shall introduce the new denumerably infinite family of all
polynomials in y = q/qQ,eq, HQ,γ,n = HQ,γ,n(y)(n = 0, 1, 2, 3, . . . ), orthogonalized in q by using
the equilibrium Wigner function Weq,γ given in Equation (56) as weight function. Then:∫ +∞

−∞

dq

qQ,eq
Weq,γ(x, q)HQ,γ,n(y)HQ,γ,n′(y) = 0, n 6= n′ (57)
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We impose that HQ,0(y) = 1 and that for n ≥ 1, HQ,γ,n(y) equals the standard Hermite polynomial
Hn(y) plus another polynomial in y of degree smaller than n. Then:

HQ,γ,n(y) = Hn(y) +
n∑
j=1

σγ,n,n−jHn−j(y) (58)

with n = 1, 2, 3, . . . . The coefficients σγ,n,n−j depend on x, β and γ: they are determined recurrently
through Equation (57). See Appendix C. We omit the normalizing factors of HQ,γ,n(y).

Using the HQ,γ,n(y)’s, we introduce the new non-equilibrium moments Wγ,n (n = 0, 1, 2, . . . ) of W :

Wγ,n = Wγ,n(x; t) =

∫ +∞

−∞

dq

qQ,eq
HQ,γ,,n(y)W (x, q; t) (59)

Notice that
∫ +∞
−∞ dx

∫ +∞
−∞ d(q/qQ,eq)W (x, q; t) =

∫ +∞
−∞ dxWγ,0(x; t). At equilibrium, the moments

of Weq,γ determined by Equation (59) are: Weq,γ,n = 0 for n = 1, 2, 3, 4, . . . while Weq,γ,0 =

π1/2 exp[− 1
α
mω2x2

2
]aeq,,γ,0. Then, one can proceed to the non-equilibrium recurrence relation for the

Wγ,n. It will suffice to give the lowest two equations in the recurrence in Appendix C.

6.2. Second Model: Equilibrium Wigner Function Independent on Dissipation (Lindblad’s Theory)

A characteristic feature of Equations (54) and (55) was that the corresponding equilibrium Wigner
function did depend on dissipation. Here, we shall treat another model for the evolution of the qBp,
in the presence of the hb, also with the choice Equation (47) for V (x) and subject to non-vanishing
dissipation, based upon [25,29,33,34] and to all orders in h̄: then, the equilibrium Wigner function
will be independent on dissipation. For an economical description, it will be convenient not to limit to
the Wigner function W , but to employ also an equivalent operator formulation in terms of the density
operator ρ(t), which is uniquely determined by W . In fact, any matrix element of ρ(t) is given, by
performing an inverse Fourier transform of Equation (34), by:

〈x− y|ρ(t)|x+ y〉 =

∫ +∞

−∞
dq exp[

−i2qy
h̄

]W (x, q; t) (60)

Let a, a+ be the standard destruction and annihilation operators for the quantum harmonic oscillator:
a = 2−1/2[α0x + α−1

0 (∂/∂x)] and a+ = 2−1/2[α0x − α−1
0 (∂/∂x)] (α0 = (mω/h̄)1/2). The superscript

+ will always denote the adjoint. Then, with Equation (47), one has: H = H0 + V1, with
H0 = h̄ω0(a+a+ 1/2) and V1 = g1(a+ a+)4 (g1 = g/[224!α4

0]).
We shall suppose that the actual time evolution of the qBp, including dissipation, is a quantum Markov

process, described by the following QME:

∂ρ

∂t
=

1

ih̄
[H, ρ] +Dρ (61)

D (“the dissipator”), accounting for the dissipation on the qBp due to the hb, is a linear operator. In
order to characterize D, we shall introduce first the following linear (t-independent) operators A(ω′) and
A+(ω′) as:

[H,A(ω′)] = −h̄ω′A(ω′) (62)

[H,A+(ω′)] = h̄ω′A+(ω′) (63)

A+(ω′) = A(−ω′) (64)
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D, A(ω′) andA+(ω′) act on the actual denumerably infinite Hilbert space. ω′ (with dimension (time)−1)
is a real number, as shown in general [29]. A(ω′) and A+(ω′) are named the eigen-operators of
H [33,34] and also Lindblad’s operators. They are supposed to be dimensionless. A+(ω′) is a traceless
operator [29]. Equations (62) and (63) imply: [H,A+(ω′)A(ω′)] = 0. Equation (64) implies that A(ω′)

is Hermitian only if ω′ = 0: then, [A(ω′ = 0), H] = 0. For the time being, we shall not deal with A(ω′),
A+(ω′) and the associated ω′ for g1 6= 0: we shall turn to that pending task in Appendix D, for the sake
of completeness.

We shall make more precise the model in Equation (61) by assuming thatDρ has the structure [33,34]:

Dρ =
∑
ω′′

γ(ω′′)[[A(ω′′)ρ,A+(ω′′)] + [A(ω′′), ρA+(ω′′)]] (65)

The summation in Equation (65) is performed only over two real values: ω′′ = ω′ and ω′′ = −ω′.
γ(ω′′) are real and positive numbers: they have dimension (time)−1 and, physically, they play the role of
relaxation rates. Technically, Equations (61)–(65) (known as Lindblad’s formulation for Markovian open
quantum systems) give the most general Markovian and time-homogeneous master equation describing
a non-unitary evolution of ρ that is trace preserving and completely positive for any ρin. See [25,29,31]
for presentations of several alternative arguments leading to Equation (65). For g 6= 0 (say, g1 6= 0), the
representation of Equation (61) [with Dρ given in Equation (65)] by means of the Wigner function
is different from Equation (54) [with MD given in Equation (55)]. It is crucial to notice that the
canonical (t-independent) density operator ρeq(= exp(−βH)) with vanishing friction as considered in
Subsection 4.1 (with [ρeq, H] = 0) fulfills:

ρeqA(ω′) = exp[βh̄ω′]A(ω′)ρeq (66)

ρeqA
+(ω′) = exp[−βh̄ω′]A+(ω′)ρeq (67)

We shall not treat the class of models in Equations (61) and (65) in its full generality. Rather, by inspiring
ourselves on [25,29], we shall add the assumption:

γ(−ω′) = exp[−βh̄ω′]γ(ω′) (68)

Equations (61), (65) and (68) fully characterize the quantum model with dissipation on which we shall
concentrate in this Subsection. Then, Equations (65), (66), (67) and (68) imply the crucial property:

Dρeq = 0 (69)

See [29] for the proof of Equation (69). As ∂ρeq/∂t = 0, ρeq is, indeed, an equilibrium state of the
QME Equation (61) describing the qBp in the presence of the hb, with dissipation included through
Equations (65) and (68). Then, the equilibrium Wigner function determined by ρeq coincides exactly
with Weq in Equation (50). Thus, the orthogonal polynomials for the actual Lindblad’s theory coincide
with the HQ,n(q/qQ,eq)’s studied in Subsection 5.1. The non-equilibrium moments WQ,n for the actual
Lindblad’s theory are also given in Equations (43) and (44), with H ′Q,n(q) = HQ,n(q/qQ,eq), h′n = hQ,n

and with q0 replaced by qQ,eq.
A very important example ofA(ω′) and the above formulation is provided by the QME for a quantized

radiation mode with frequency ω in a laser cavity, with V1 = 0, when dissipation is included [25,28–30].
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Then, with g = 0 (g1 = 0), the representation of Equation (61) and of Dρ [through Equations (65) and
(68)] by means of the Wigner function can be shown to coincide with Equations (54) and (55).

At this stage, we shall focus shortly on our main target, namely, the interest of theWQ,n’s (and, hence,
of the HQ,n’s) for the time evolution, in the present framework with friction. Like in Subsection 5.1,
we multiply Equation (61), with Dρ given in Equations (65) and (68), by HQ,n(q/qQ,eq)/qQ,eq and
integrate over q. That yields: ∂WQ,n(x, t)/∂t = Λn,1(x, t) + Λn,2(x, t), in which we manipulate,
so as to express the resulting equation solely in terms of the WQ,n′’s. Λn,1(x, t) is the contribution
from 1

ih̄
[H, ρ], which has been treated in Appendix B. Λn,2(x, t) is the contribution from Dρ, given in

Equation (65), which gives rise to new features. In order to deal with Λn,2(x, t), we use, successively,
the formal closure relation I =

∫
dz|z〉〈z|, Equations (60) and (44), with H ′Q,n(q), h′n and q0

replaced by HQ,n(q/qQ,eq), hQ,n and qQ,eq, respectively. As expected, the net result is: Λn,2(x, t) =∑+∞
n′=0

∫
dx′λn,2;n′(x, x

′)WQ,n′(x
′; t), with some kernel λn,2;n′(x, x

′), determined by A(ω′), A+(ω′) and
the HQ,n(q/qQ,eq)’s and HQ,n′(q/qQ,eq)’s. We shall omit the complicated λn,2;n′(x, x

′), because it will be
unnecessary for the discussion that follows.

First, let us consider the case in which the qBp is at thermal equilibrium, so that W = Weq in
Equation (50). All equilibrium moments Weq,n′ = 0 for n′ = 1, 2, 3, 4, . . . and Weq,n′=0 = hQ,0 fulfill,
for any n = 0, 1, 2, 3, . . . , not only Λn,1 = 0 but, by virtue of Equation (69), Λn,2 = 0 as well.

Based upon the above equilibrium case, we consider next the time evolution for large t. It may
be adequate to address here the discussion in Subsection 4.1, after Equation (44). One would argue
that W (x, q; t) −Weq(x, q) should be the smaller (and eventually tend to zero), the larger t is (at least,
for a suitable, possibly restricted, class of initial non-equilibrium conditions). Then, to argue that, for
long-time, the dominant moment would be WQ,0(x; t), while any WQ,n(x; t) with n > 0 would be
negligible (WQ,n being the smaller, the larger n and t(> 0)) would not seem essentially incorrect. This
(even in the lack of a rigorous control) would suggest the following approximation scheme, for suitably
large t and some restricted set of initial non-equilibrium conditions. In the hierarchy ∂WQ,n(x, t)/∂t =

Λn,1(x, t) + Λn,2(x, t), let us restrict to the equations for n = 0 and n = 1 for suitably large t, and
we neglect in them all WQ,n′(x, t)’s with n′ ≥ 2. In the resulting equation for n = 1, we also neglect
∂WQ,1(x, t)/∂t, obtain formallyWQ,1 in terms ofWQ,0 and reshuffle the last expression into the equation
for ∂WQ,0(x, t)/∂t = Λ0,1(x, t) + Λ0,2(x, t). This would provide an approximate evolution equation for
WQ,0(x, t) alone, for large t, describing the approach to thermal equilibrium of the qBp, with dissipation.

7. Conclusions, Discussions and Open Problems

This work contains two parts, very closely related to each other, summarized below with more
detail. The first part (a review of previous work, including certain improved analysis) has dealt with
classical systems: Sections 2 and 3. It is not warranted that the main issues of the latter (the long-time
approximation and so on) could be extended to general quantum systems. As an attempt towards that,
the second part has been devoted to one-dimensional quantum systems: Sections 4, 5 and 6, with new
material dealing with more difficult problems and, hence, having a formal and limited scope.

(1) We have extended previous work by other authors on open classical one-dimensional systems
off-equilibrium, with dissipation. In the present work, we have considered those systems, both with
or without dissipation, as well as closed classical many-particle ones. In all cases, equilibrium
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(Boltzmann’s) classical canonical distribution functions, which are Gaussian in momenta, have been
used as weight functions to generate families of orthogonal polynomials in momenta (namely, the
standard Hermite polynomials), for fixed spatial coordinates. Distinguishing and simplifying features
of all classical systems considered here are that dependences on classical momenta and those on spatial
coordinates factorize (as no magnetic fields are considered), so that those orthogonal polynomials in
momenta are independent on positions. Three-term linear hierarchies for the non-equilibrium classical
moments (which depend only on the spatial coordinates) have been studied and solved formally, in terms
of certain operator continued fractions. For an open classical one-dimensional system with dissipation,
the equilibrium distribution is independent on the latter: the analysis (with repulsive potentials which
vanish at large distance) shows that, for long times, the lowest moment dominates the evolution towards
thermal equilibrium with the hb, while higher order moments are subdominant. The latter study has
been extended, under certain long-time approximation, to the case without dissipation, which does
provide valuable hints for generalizations to non-equilibrium closed classical interacting nonrelativistic
many-particle systems, with repulsive potentials vanishing at large distance. Then, the very large
number of degrees of freedom of the system plays the role of a hb, and the initial states are assumed to
correspond to thermal equilibrium at large distances (thereby introducing the equilibrium temperature,
T ), but to non-equilibrium situations at finite distances. The canonical equilibrium distribution leads to
orthogonal polynomials which are suitable products of Hermite polynomials and leads to generalize
the non-equilibrium moment method. We emphasize that for closed classical three-dimensional
many-particle interacting systems, the non-equilibrium hierarchy based upon moments treated here is
radically different from the well known one due to Born, Bogoliubov, Green, Kirkwood and Yvon
(BBGKY) [2,3] for classical distribution functions, and that the operator continued fractions appear to
yield, in a long-time approximation, irreversibility and thermalization of the whole system at T , for long
times (and, hence, an approximate arrow of time): then, the lowest moment also dominates the evolution
towards thermal equilibrium. The conclusion also appears to hold for a non-equilibrium classical
closed plasma, with the degrees of the classical electromagnetic field included [15]. The classical open
one-dimensional case corresponding to a harmonic oscillator (with a repulsive potential which grows
at large distance), with vanishing dissipation, has been discussed very shortly, for completeness. The
analysis of non-equilibrium for classical systems, considered here, has been based on continued fractions
of certain linear operators. Some crucial properties of those operator continued fractions (Hermiticity,
absence of negative eigenvalues) have been inferred through the analysis of examples and iterative
arguments. Moreover, those operators have been constructed in compact forms, in outline, for free
particles and for a classical harmonic oscillator. We emphasize that such operators appear to be very
interesting objects, which would deserve much more mathematical attention than the limited one devoted
to them here.

(2) Non-equilibrium quantum interacting systems present various conceptually new difficulties. We
have concentrated on descriptions through Wigner functions. We quote some quantum difficulties of the
latter, on which we have focused: canonical equilibrium Wigner distributions Weq are not Gaussian in
momenta, their dependences on the latter and on spatial coordinates do not factorize and they may depend
on the dissipation mechanism (for various open systems). Due to such difficulties, we have limited
ourselves to open quantum one-dimensional interacting models, so as to investigate various procedures
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to construct the Weq’s, and the very construction of families of orthogonal polynomials in momenta
which have those Weq’s as weight functions, to all orders in Planck’s constant. We have considered,
first, a general repulsive potential V (x) (vanishing suitably for | x |→ +∞) without dissipation due
to the hb first and, later, we have turned to a repulsive quadratic plus quartic potential (either without
or with dissipation). We have studied the Weq’s, in all those cases. For a repulsive quadratic plus
quartic potential with dissipation, we have considered two models, inspired on laser theory: (i) one,
in which Weq does depend on dissipation; (ii) another one, using Lindblad’s theory, in which Weq is
independent on dissipation. In all those cases, we have outlined the construction of the new families
of orthogonal polynomials in momenta, which have the corresponding Weq as weight function. We
have employed those new families of orthogonal polynomials (depending parametrically also on spatial
coordinates), in order to construct new moments of the non-equilibrium Wigner function. Hierarchies for
the non-equilibrium moments (which depend only on spatial coordinates) have been treated in outline.
Then, it seems possible to generalize the developments of the open classical case for the open quantum
one, at least formally. The construction of stationary or equilibrium solutions of Equation (61) in a
general case (in which Equations (68) and (69) do NOT hold) would proceed, if the eigen-operators are
known, through a procedure similar to that in Subsection 6.1. See [31] for theorems and constructive
methods to find stationary solutions of Equation (61) in general cases.

The issues of carrying through some limited control of convergence and of long-time approximations
in the open quantum one-dimensional case (generalizing the ones for the classical cases in
Sections 2 and 3) are more difficult and have not been addressed here. We have also omitted
generalizations to quantum closed interacting many-particle systems (and, hence, issues related to
quantum indistinguishability). Then, many questions remain open in the approach to non-equilibrium
quantum systems through orthogonal polynomials, moment methods and long-time approximations,
compared to classical cases.
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Appendices

A. εn,n−j’s and Hierarchy at Equilibrium and Off-Equilibrium for Equations (35) and (36)

We shall treat the low-order cases n = 1, 2, by using Equations (38), (40) and (41). After some
algebra, one finds:

ε1,0 =− ih̄

2q0

∑
j exp[−βEj][d(ϕj(x−y)ϕj(x+y)∗)

dy
]y=0

〈x|ρeq|x〉
(70)

ε2,0〈x|ρeq|x〉+
ih̄ε2,1
2q0

∑
j

exp[−βEj][
d(ϕj(x− y)ϕj(x+ y)∗)

dy
]y=0

− h̄2

4q2
0

∑
j

exp[−βEj][
d2(ϕj(x− y)ϕj(x+ y)∗)

dy2
]y=0 = 0

(71)

ε2,1[ε1,0
ih̄

2q0

∑
j

exp[−βEj][
d(ϕj(x− y)ϕj(x+ y)∗)

dy
]y=0

− h̄2

4q2
0

∑
j

exp[−βEj]× [
d2(ϕj(x− y)ϕj(x+ y)∗)

dy2
]y=0]

= ε1,0
h̄2

4q2
0

∑
j

exp[−βEj][
d2(ϕj(x− y)ϕj(x+ y)∗)

dy2
]y=0

− ih̄3

8q3
0

∑
j

exp[−βEj][
d3(ϕj(x− y)ϕj(x+ y)∗)

dy3
]y=0

(72)

ε2,0 and ε2,1 are obtained by solving Equations (71) and (72). The lowest normalization factors are:

h′0 =
〈x|ρeq|x〉

q0

, h′1 =
〈x|ρeq|x〉

q0

[ε1,0ε2,1 − ε2,0 − ε21,0] (73)

We shall transform Equations (35) and (36) into a linear hierarchy for the new moments Wn. For that
purpose, we multiply Equation (35) by H ′Q,n(q)/q0, integrate over q and operate, so as to express the
resulting equation solely in terms of the Wn′’s. We carry out cancellations and simplifications, by
using Equations (35) and (36) and the properties of the H ′Q,n(q)’s, which do play a crucial role. The
computations become increasingly complicated as n increases. It will suffice to display the first two
equations in the hierarchy:

∂W0

∂t
=− q0

m

∂W1

∂x
+
q0

m

∂(ε1,0W0)

∂x
(74)

∂W1

∂t
=− qo

m

∂W2

∂x
+
q0

m

∂

∂x
[(ε1,0(ε1,0 − ε2,1) + ε2,0)W0]− q0

2m

∂ε21,0
∂x

W0

− q0

m

∂

∂x
[(ε1,0 − ε2,1)W1] +

q0

m

∂ε1,0
∂x

W1 −
1

q0

dV

dx
W0

(75)

with initial condition Win,n. The following interesting check of consistency arises. One would expect
that, at thermal equilibrium, the set formed by all equilibrium moments (Weq,n = 0 if n > 0, and
Weq,0 = h0) fulfills the hierarchy in Equations (74), (75) and so on. However, it is not obvious, a
priori, whether the above hierarchy can be automatically satisfied by those t-independent Weq,n’s, and,
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hence, whether some intricate cancellations need to be established a posteriori in order to display that
consistency check. Direct computations show that Weq,1 = 0 and Weq,0 = h0 (with ∂Weq,0/∂t = 0) do
fulfill Equation (74). In turn, Equation (75) is indeed satisfied by Weq,1 = Weq,2 = 0 and Weq,0 = h0

in general, the corresponding proof being rather lengthy: we shall outline a check of it in Appendix B,
when Equation (47) holds. .

B.Weq, Orthogonal Polynomials Generated by It and Hierarchy, When Equation (47) Holds

Equations (39), (50), (47) and (49) yield the following three-term linear recurrence relation for the
aeq,n’s [with aeq,0 given in Equation (51)]:

− qQ,eq2(n+ 1)

2m
[
daeq,n+1

dx
− mω2x

α
aeq,n+1]

− qQ,eq
2m

[
daeq,n−1

dx
+

1

α

dV1

dx
aeq,n−1] +

h̄2

3!22
[
qQ,eq
2mα

]3
d3V1

dx3
aeq,n−3 = 0

(76)

with aeq,−1 = aeq,−2 = aeq,−3 = 0. For even values of n = 0, 2, 4, 6, . . . , the solutions for non-vanishing
aeq,1, aeq,3, aeq,5, . . . are not acceptable. To understand this statement, take n = 0. Then, Equation (76)
yields aeq,1 = aeq,1,0 exp[+ 1

α
mω2x2

2
], aeq,1,0 being constant. aeq,1 diverges exponentially as | x |→ +∞

and makes
∫
dxWeq to diverge. Then, we choose aeq,1,0 = 0. From that and through a similar analysis

of the recurrence Equation (76) for n = 2, 4, 6, . . ., one concludes that aeq,1 = aeq,3 = aeq,5 = · · · = 0.
All the remaining aeq,n(x)’s, n = 2, 4, 6, . . . are to be determined recurrently below in terms of aeq,0(x),
through Equation (76) for odd values n = 1, 3, 5, 7, . . . , once we impose that they (like aeq,1 above) do
not diverge exponentially as | x |→ +∞. With aeq,0 6= 0, one finds successively:

aeq,2(x) = exp[ +
1

α

mω2x2

2
]

∫ x

−∞
dx′ exp[− 1

α

mω2x′2

2
]
(−1)

4
[
daeq,0
dx′

+
1

α

dV1

dx′
aeq,0] (77)

aeq,4(x) = exp[ +
1

α

mω2x2

2
]

∫ x

−∞
dx′ exp[− 1

α

mω2x′2

2
]
(−1)

8
[[
daeq,2
dx′

+
1

α

dV1

dx′
aeq,2]

+
h̄2

3!222mα2

d3V1

dx′3
aeq,0]

(78)

and so on for aeq,n, n = 6, 8, . . . . We emphasize that aeq,n 6= a0,n in Equation (45), and that aeq,n 6= 0, for
n = 2, 4, 6, . . . . For g = 0, since aeq,0 is x-independent, one has aeq,n = 0, for n = 2, 4, 6, . . . . The new
series Equation (50) is a nontrivial reordering (for finite β and h̄), of the Wigner series Equation (45).
As h̄ → 0 for small β, for finite g, the consistency of Equation (50) with Equation (45) and that of
Equation (51) implies that aeq,0(x) → exp[−βV1] and aeq,n(x) → 0 for n = 2, 4, . . . . The latter are
consistent with Equations (77), (78) and so on. A posteriori, one sees that one could not have imposed
aeq,0(x) = 1 when g 6= 0.

The σn,n−j’s in Equation (52) can be determined successively in terms of the aeq,n’s, by using
Equations (40), (50), (52) and the orthogonality properties of the standard Hn(y)’s. The computations
become increasingly complex, as n grows. One has, trivially, that σn,n−j = 0, unless j is even. We shall
limit ourselves to give the lowest non-vanishing σn,n−j:

σ2,0 = −23aeq,2
aeq,0

, σ3,1 = −234!aeq,4 + 223!aeq,2
aeq,0 + 22aeq,2

(79)

σ4,0aeq,0 + 23 4, 2aeq,2 + 244!aeq,4 = 0, σ4,0 − σ4,2σ2,0 − 2σ3,1 + σ2,0(6 + σ3,1) = 0 (80)
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Consistently with general properties [13], the HQ,n’s fulfill the recurrence relation:

2yHQ,n(y) = HQ,n+1(y) + CnHQ,n−1(y) (81)

for n = 0, 1, 2, . . . , with C0 ≡ 0. Cn are y-independent (but depend on β and x). By using Equation (52)
and the explicit expressions for the standard Hn(y)’s, one can obtain the Cn’s successively. We shall
limit ourselves to give the lowest non-vanishing Cn’s. One gets:

C1 = 2− σ2,0, C2 = 4 + σ2,0 − σ3,1 (82)

The lowest (x-dependent) normalization factors are:

hQ,0 = π1/2 exp[− 1

α

mω2x2

2
]aeq,0. (83)

hQ,1 = π1/2 exp[− 1

α

mω2x2

2
]2[aeq,0 + 4aeq,2] (84)

hQ,2 = π1/2 exp[− 1

α

mω2x2

2
][(8 + σ2

2,0)aeq,0 + 23(8 + σ2,0)aeq,2 + 244!aeq,4]

We shall come back to the general situation in which the qBp is off-equilibrium with the hb for t ≥ 0 .
We shall analyze it by using Equation (35) for the non-equilibrium W , now assuming Equation (47) and
using Equations (43) and (44), with q0 replaced by qQ,eq and with H ′Q,n(q) = HQ,n(q/qQ,eq), h′n = hQ,n.
With the latter replacements, Equation (43) defines new moments WQ,n (and Win,Q,n, for W = Win).

We shall transform Equations (35) and (36) into another linear hierarchy for the WQ,n’s. For that
purpose, we multiply Equation (35) by HQ,n(q/qQ,eq)/qQ,eq, integrate over q and operate, so as to
express the resulting equation solely in terms of the WQ,n′’s. Again, the issue of performing a check
of consistency arises, which will be carried out at a later stage.

We have performed cancellations and simplifications, by using the structure of Equations (35) and
(36) and of the properties of theHQ,n(q/qQ,eq)’s, which do play a crucial role. The computations become
increasingly complicated as n increases. In particular, Equations (76) for n = 1 and Equation (79) play
a crucial role. We get the following three-term recurrence relation:

∂WQ,0

∂t
=− qQ,eq

2m

∂WQ,1

∂x
(85)

∂WQ,1

∂t
=− qQ,eq

2m

∂WQ,2

∂x
+
qQ,eq
2m

∂

∂x
[σ2,0WQ,0]− qQ,eq

2m
2
∂WQ,0

∂x
− 2

qQ,eq

dV

dx
WQ,0 (86)

∂WQ,2

∂t
=− qQ,eq

2m

∂WQ,3

∂x
+
qQ,eq
2m

∂

∂x
[σ3,1WQ,1]− qQ,eq

2m
(4 + σ2,0)

∂WQ,1

∂x
− 4

qQ,eq

dV

dx
WQ,1 (87)

∂WQ,3

∂t
=− qQ,eq

2m

∂WQ,4

∂x
+
qQ,eq
2m

∂

∂x
[σ4,2WQ,2]− qQ,eq

2m
(6 + σ3,1)

∂WQ,2

∂x
− 6

qQ,eq

dV

dx
WQ,2 (88)

and so on forWQ,n, n > 3, with initial conditionsWin,Q,n. A posteriori, the hierarchy Equation (85)–(88)
enables one to establish the check of consistency at equilibrium. In fact, all Weq,n = 0 for
n = 1, 2, 3, 4, . . . and ∂Weq,0/∂t = 0 satisfy Equations (85), (87) and (88). Finally, Equation (86)
is also fulfilled by Weq,0 = hQ,0, by virtue of Equations (76) for n = 1 and Equation (79). The
computations for n = 3, 4, 5, . . . become extremely difficult. An open question is whether one also
gets a three-term hierarchy for any n. The above checks of consistency are independent of the specific
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aeq,0 given in Equation (51). Notice that in the actual case Equation (47), one has ε1,0 = ε2,1 = 0,
while ε2,0 6= 0. In this case, Equation (71) allows to prove that Equation (75) is indeed satisfied by
Weq,1 = Weq,2 = 0 and Weq,0 = hQ,0 rather directly. The general comments in Subsection 4.1 after
Equation (44) continue to hold here. Our aim here was to just show that, when Equation (47) holds,
alternative orthogonal polynomials exist yielding another non-equilibrium hierarchy. We shall not deal
with the issue of long-time approximations for Equations (85)–(88).

C.Weq,γ , Orthogonal Polynomials Generated by It and Hierarchy, When Equations (54) and
(55) Hold

Upon replacing Equation (56) into Equations (54) and (55) with ∂Weq,γ(x, q)/∂t = 0, a lengthy
computation yields the following four-term linear recurrence relation for the aeq,γ,n’s (n = 0, 1, 2, 3, . . . ):

− qQ,eq2(n+ 1)

2m
[
daeq,γ,n+1

dx
− mω2x

α
aeq,γ,n+1]− qQ,eq

2m
[
daeq,γ,n−1

dx
+

1

α

dV1

dx
aeq,γ,n−1]

+
h̄2

3!22
[
qQ,eq
2mα

]3
d3V1

dx3
aeq,γ,n−3 −

γn

2
aeq,γ,n + γ

α

2mω2
[
∂

∂x
− mω2x

α
]
∂

∂x
aeq,γ,n = 0

(89)

with aeq,γ,−1 = aeq,γ,−2 = aeq,γ,−3 = 0. We shall impose that all aeq,γ,n(x)’s, n = 0, 1, 2, 3, . . . , do
not diverge exponentially as | x |→ +∞. With the choice aeq,γ,0 = aeq,0 made in Subsection 6.1, all
aeq,γ,n(x)’s, n = 1, 2, 3, 4, . . . , are determined recurrently in terms of aeq,γ,0(x), through Equation (89),
through the obvious generalizations of Equations (77) and (78). Notice that aeq,γ,n(x) 6= 0 for odd n′

(n′ = 1, 3, 5, . . . ). For g = 0, with nonvanishing β, h̄ and γ, aeq,γ,n(x) = 0 for n = 1, 2, 3, 4, . . . while
aeq,γ,0(x) is x-independent.

Let us outline an attempt at dealing with off-equilibrium situations. By generalizing Equation (56),
we shall expand the non-equilibrium Wigner function [fulfilling Equation (54)] in terms of the Hn’s as:

W = W (0)
eq

+∞∑
n=0

aγ,nHn(
q

qQ,eq
) (90)

aγ,n =
exp[+mω2x2

2α
]

π1/22nn!

∫ +∞

−∞

dq

qQ,eq
Hn(q/qQ,eq)W (x, q; t) (91)

The aγ,n’s are the non-equilibrium moments of W (x, q; t) determined by the Hn’s. We shall transform
Equations (54) and (55) into a linear hierarchy for the aγ,n’s. For that purpose, we multiply Equation (54)
by Hn(q/qQ,eq)/qQ,eq, integrate over q and operate, so as to express the resulting equation solely in terms
of the aγ,n′’s. One finds the following four-term linear hierarchy:

∂aγ,n
∂t

=− qQ,eq2(n+ 1)

2m
[
daγ,n+1

dx
− mω2x

α
aγ,n+1]− qQ,eq

2m
[
daγ,n−1

dx
+

1

α

dV1

dx
aγ,n−1]

+
h̄2

3!22
[
qQ,eq
2mα

]3
d3V1

dx3
aγ,n−3 −

γn

2
aγ,n + γ

α

2mω2
[
∂

∂x
− mω2x

α
]
∂

∂x
aγ,n

(92)

with aγ,−1 = aγ,−2 = aγ,−3 = 0. One could argue that W (x, q; t) − Weq(x, q) be the smaller (and
eventually tend to zero), the larger t is (at least, for some suitable class of initial non-equilibrium
conditions). Then, one would argue that aγ,n would approach, somehow, aeq,γ,n which, as seen above,
are non-vanishing if g 6= 0. Then, for long t(> 0), all aγ,n, n = 1, 2, 3, 4, . . . , would be non-vanishing as
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well, which would make the analysis rather difficult, and the argument may be not regarded as definitive.
However, if g = 0 all aeq,γ,n vanish for n = 1, 2, 3, 4, . . . , so that the above argument is, due to the
actual inclusion of dissipation (γ 6= 0), fully correct (and entirely convincing, compared to the loose one
given previously in Subsection 4.1). Except for the choice made in Equations (47), (48) and (49), the
expansion of the non-equilibrium W in terms of standard Hermite polynomials made in Equation (90) is
entirely analogous to the one employed in the very extensive work in [35]. The above difficulty that all
aγ,n, n = 1, 2, 3, 4, . . . , be non-vanishing is bypassed based upon Equation (57).

The coefficients σγ,n,n−j in Equation (58) depend on x, β and γ: they are determined recurrently
through Equation (57). One important difference compared to Equation (81) is the actual recurrence
relation:

(2y +Bγ,n)HQ,γ,n(y) = HQ,γ,n+1(y) + Cγ,nHQ,n−1(y) (93)

for n = 0, 1, 2, . . . , with C0 ≡ 0. Here, one has Bγ,n 6= 0, as γ 6= 0. For instance: Bγ,0 = σγ,1,0.
The lowest two equations in the recurrence for the new non-equilibrium moments Wγ,n read:

∂Wγ,0

∂t
=− qQ,eq

2m

∂Wγ,1

∂x
+
qQ,eq
2m

∂(σγ,1,0Wγ,0)

∂x
+
γ

2
[1 + x

∂

∂x
]Wγ,0 + γ

α

2mω2

∂2Wγ,0

∂x2
(94)

∂Wγ,1

∂t
=− qQ,eq

2m
[
∂Wγ,2

∂x
− ∂(σγ,2,1Wγ,1)

∂x
+
∂((σγ,2,1σγ,1,0 − σγ,2,0 + 2)Wγ,0)

∂x

+ σγ,1,0
∂(Wγ,1 − σγ,1,0Wγ,0)

∂x
]− 2

qQ,eq

dV

dx
Wγ,0

+
γ

2
[x
∂Wγ,1

∂x
− x(

∂σγ,1,0
∂x

)Wγ,0 + σγ,1,0Wγ,0]

+ γ
α

2mω2
[
∂2Wγ,1

∂x2
− 2

∂σγ,1,0
∂x

∂Wγ,0

∂x
− (

∂2σγ,1,0
∂x2

)Wγ,0]

(95)

At equilibrium, Equation (94) is satisfied by Weq,γ,1 = 0 and Weq,γ,0 = π1/2 exp[− 1
α
mω2x2

2
]aeq,,γ,0,

consistently. The above check of consistency is independent of the specific aeq,γ,0 selected above. We
shall not delve into long-time approximations for Equations (94) and (95).

D. Eigen-Operators ofH for V1 6= 0

An exact formal representation for Lindblad’s operators is known, which has provided certain general
properties for them [29]. On the other hand, it has not been easy for us to use that representation to get
approximate or explicit expressions for Lindblad’s operators in a direct way, when Equation (47) holds.
Then, there may be a conceptual interest in investigating how could Lindblad’s operators be constructed
through alternative approximation procedures, at least when Equation (47) holds with V1 6= 0, through
Equations (62) and (63) (with ω′ 6= ω). Such a study will be undertaken below, in outline. We shall
search for A+(ω′) as the formal operator series:

A+(ω′) =α1,0a+ α0,1a
+ + α2,0a

2 + α0,2(a+)2 + α1,1a
+a

+ α3,0a
3 + α0,3(a+)3 + α1,2(a+)2a+ α2,1a

+a2 + α4,0a
4

+ α0,4(a+)4 + α1,3(a+)3a+ α3,1a
+a3 + α2,2(a+)2a2 + · · ·

(96)
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all αl,l′’s (l, l′ = 0, 1, 2, 3, . . . ) being unknown coefficients. If the series Equation (96) fulfills
Equation (63), then the coefficients of the successive operators (a+)lal

′ (l, l′ = 0, 1, 2, 3, . . . ) should
match at both sides of Equation (63). To the order of truncation implied by the terms displayed in
Equation (96), ω′ and the non-vanishing coefficients αl,l′ are the solution of the following homogeneous
linear system (corresponding to the matching of the coefficients of (a+)0a0, (a+)0a, a+a0, (a+)0a2,
(a+)2a0, (a+)a, and so on):

24g1(α0,4 − α4,0) + 12g1(α0,2 − α2,0) = 0 (97)

−h̄ωα1,0 + 24g1α0,3 + 12g1(α0,1 + α1,2 − 3α3,0)− 12g1α1,0 = h̄ω′α1,0 (98)

h̄ωα0,1 − 24g1α3,0 + 12g1(−α1,0 − α2,1 + 3α0,3) + 12g1α0,1 = h̄ω′α0,1 (99)

−2h̄ωα2,0 + 12g1α0,2 + 24g1α1,3 + 12g1(α1,1 + α2,2 − 6α4,0)− g16α2,0 = h̄ω′α2,0 (100)

2h̄ωα0,2 − 12g1α2,0 − 24g1α3,1 + 12g1(−α1,1 − α2,2 + 6α0,4) + g16α0,2 = h̄ω′α0,2 (101)

96g1(α0,4 − α4,0) + g112(4α0,2 − 4α2,0 + α1,3 − α3,1) = h̄ω′α1,1 (102)

−3h̄ωα3,0 + 4g1(α0,1 + 3α1,2) + 4g1(3α2,1 − α1,0)− 15g1α3,0 = h̄ω′α3,0 (103)

3h̄ωα0,3 − 4g1(α1,0 − 3α2,1) + 4g1(−3α1,2 + α0,1) + 15g1α0,3 = h̄ω′α0,3 (104)

h̄ωα1,2 − 36g1α3,0 + g1(36α0,3 − 24(α2,1 − 12α1,0) + g1(4α1,2 + 2α0,1) = h̄ω′α1,2 (105)

−h̄ωα2,1 + 36g1α0,3 + g1(−36α3,0 + 24(α1,2 + 12α0,1) + g1(−4α2,1 − 2α1,0) = h̄ω′α2,1 (106)

−4h̄ωα4,0 + 4g1(α1,1 + 3α2,2) + 4g1(3α3,1 − 2α2,0)− 36g1α4,0 = h̄ω′α4,0 (107)

4h̄ωα0,4 + 4g1(−α1,1 − 3α2,2) + 4g1(−3α1,3 + 2α0,2) + 36g1α0,4, = h̄ω′α0,4 (108)

−2h̄ωα3,1 + 8g1α0,2 + 36g1α1,3 + g1(24α2,2 − 48α4,0 + 8α1,1)− g110α3,1 − 4g1α2,0 = h̄ω′α3,1 (109)

2h̄ωα1,3 − 8g1α2,0 − 36g1α3,1 + g1(−24α2,2 + 48α0,4 − 8α1,1) + g110α1,3 + 4g1α0,2 = h̄ω′α1,3 (110)

72g1α0,4 − 72g1α4,0 + g1(36α1,3 − 36α3,1 + 24α0,2 − 24α2,0) = h̄ω′α2,2 (111)

Equations (97)–(111) are a homogeneous linear system of fifteen equations for the fourteen unknowns
αl,l′’s, written explicitly in Equation (96). On the other hand, ω′ is also unknown. The analysis of
Equations (97)–(111) leads to the following conclusions: (i) α2,0 = α0,2 = α1,1 = α4,0 = α0,4 = α3,1 =

α1,3 = α2,2 = 0, so that the nine Equations (97), (100), (101), (102), (107), (108), (109), (110) and
(111) are satisfied identically; (ii) the remaining six α1,0, α0,1, α3,0, α0,3, α2,1 and α1,2 are nonvanishing
and fulfill the homogeneous linear system of six equations, Equations (98), (99), (103), (104), (106) and
(105), provided that (iii) the determinant formed by the coefficients of the homogeneous linear system
Equations (98), (99), (103), (104), (106) and (105) vanishes, which yields ω′. More specifically, the
vanishing of the determinant in (iii) yields two solutions, ω′ > 0 and ω′ < 0 which, in turn, determine
two solutions for the coefficients of the system Equations (98), (99), (103), (104), (106) and (105) and,
hence, two operators A+(ω′) with ω′ > 0 and A+(ω′) with ω′ < 0. Let g1 → 0. Then, for ω′ > 0, as
ω′ → ω, A+(ω′) → a+. For ω′ < 0, as ω′ → −ω, then A+(ω′) → a. The adjoint of the solution with
ω′ > 0 yields A(ω′). To the actual order of truncation, all that yields completely Lindblad’s operators in
Equation (65).

The above study indicates clearly how the inclusion of higher order terms with nonvanishing
coefficients in the operator series Equation (96) proceeds at higher orders: αl,l′ = 0 or 6= 0, if l + l′

is even or odd, respectively. Thus, the next set of nonvanishing coefficients is: α5,0, α0,5, α4,1, α1,4,
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α3,2 and α2,3. In addition to the counterparts of Equations (98), (99), (103), (104), (106) and (110) (in
which the new set of six nonvanishing coefficients also contribute), one has an additional subset of six
equations determined by α5,0, α0,5, α4,1, α1,4, α3,2 and α2,3, which contain all twelve αl,l′’s. Altogether,
one has a homogeneous linear system of 6 + 6 = 12 equations for the nonvanishing 6 + 6 = 12 αl,l′’s:
the vanishing of its determinant yields ω′(> 0) and ω′(< 0) to the new order of truncation, and so on for
higher orders of truncation.

c© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/.)
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