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Abstract: A number of measures have been used in the structural biology literature to
compare the shapes or conformations of biological macromolecules. However, the issue
of how to compare two ensembles of conformations has received far less attention. Herein,
the problem of how to quantitatively compare two such ensembles is addressed in several
different ways using concepts from probability and information theory. Ultimately, such
metrics could be used in the evaluation of structure-prediction algorithms and the analysis of
how conformational mobility is inhibited by bound ligands.
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1. Introduction

The comparison of conformations of biological macromolecules has traditionally been purely
geometric and primarily concerned with measuring the difference of two fixed structures [1–6]. In
contrast, the issue of comparing ensembles of conformations has received relatively little attention. This
issue can be particularly important if the macromolecules in question have significant flexibility. For
example, consider a protein that is comprised of a large relatively rigid body and a flexible loop. The
shape of the loop may vary significantly over time while the shape of the rigid portion remains largely
fixed. Given two conformations of such a protein, traditional geometric methods of comparison may
weight the importance of the shape of the loop and the rigid body equally, whereas comparing two
conformational ensembles of the same protein may reduce the importance of the shape of the loop based
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on the uncertainty of its location with respect to the rigid body. This difference is the primary focus of
this paper.

Several groups have looked at distributions and ensembles of protein conformations from a variety
of perspectives [7–10]. Additionally, the flexibility and associated entropy of proteins has been
studied [11–18]. This includes the work by Damm and Carlson presented in [19]. They proposed
a geometric evaluation of protein prediction based on Gaussian-weighted root mean square deviation
(RMSD). However, their method differs significantly from what is presented here as their weights are
based on the distance between atoms in two different conformations as opposed to the flexibility of the
proteins individually.

The remainder of this section establishes terminology and definitions that are used throughout the
paper, and reviews methods for quantitatively comparing two conformations or shapes of the same
macromolecule. Such metrics are used both to compare structures in biological contexts and in evaluating
the performance of algorithms in competitions such as CASP [20,21] and CAPRI [22,23]. The rest
of the paper is then structured as follows. Section 2 describes how conformational ensembles can
be described as Gaussian distributions on high-dimensional configuration spaces. Section 3 explores
similarity measures between conformational ensembles. This includes information-theoretic measures
based on the Maxwell-Boltzmann probability distribution and its marginals. Section 4 provides some
numerical examples of the metrics explored relative to more traditional approaches. An appendix is
included that provides some information for reducing the degrees of freedom for a coarse-grained
elastic network.

1.1. Terminology and Definitions

In the literature, the words conformation and configuration are sometimes used interchangeably, and
at other times are given slightly different meanings. Here configuration is used to mean a collection
of particles that are arranged in space in a particular way. When, in addition, the constituents of a
configuration are connected together in a specified way, the result is a conformation. Connectivity
information is topological in nature, and so conformation = configuration + topology. For example,
a conformation can be described by a set of coordinates {xi} for i = 1, ..., n and a connectivity matrix,
Γ. Here xi = [xi, yi, zi]

T ∈ R3 is a three-dimensional position vector, and Γ = ΓT ∈ Rn×n is a
symmetric matrix consisting of 1’s and 0’s where 1 means that two points are connected and 0 means
that they are not. The set of points by itself, without the connectivity information contained in Γ, would
describe a configuration.

When the connections allow for some degree of mobility, the specific vectors in the set {xi} can
change, while Γ remains constant. The set of all possible conformations consistent with the constraints is
described as an ensemble. In the case of a macromolecule, the set of allowable conformations is defined
by constraints from the covalent structure and non-covalent interactions such as hydrogen bonds, steric
repulsion, and hydrophobicity. Even when all of these constraints are imposed, a significant degree of
conformational mobility exists.

In contrast to the concepts of configuration and conformation, the concept of shape is a coarser
description. Shape is concerned with the external appearance rather than internal connectivity. Shape
can be described in terms of the boundary of a conformation and, since it disregards Γ, contains even less
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information than a configuration. A description that lies somewhere between configuration and shape
is that of density. For example, if ρi(x) is the electron density of the ith atomic nucleus in a structure
containing n atoms, then the density of a whole macromolecule can be described as

ρ(x) =
n∑
i=1

ρi(x− xi)

For example, each ρi(x) might be described as a concentrated Gaussian distribution. Estimates of
shape can be obtained from density by evaluating level curves of the form ρ(x) = c where c is some
threshold value.

1.2. Established Measures of Conformational and Shape Similarity

Two conformations ({xi},Γ) and ({x′i},Γ′) are said to be (geometrically) congruent if Γ = Γ′ and it
is possible to find a rigid-body transformation g = (R, t) where R ∈ SO(3) (the set of 3 × 3 rotation
matrices) and t ∈ R3 (the set of three-dimensional translation/position vectors) such that x′i = Rxi + t

for all values i = 1, ..., n. It is convenient to use the shorthand g · xi
.
= Rxi + t. The set of all g is

denoted as G, the group of rigid-body motions in three-dimensional space, and g · xi defines an “action”
of G on Rn.

Two configurations are said to be congruent if {x′i} = {g · xi}. This is a weaker condition than the
corresponding concept of congruence for conformation for two reasons: (1) there is no constraint on
Γ, since there is no Γ as part of the definition of a configuration; (2) equality of sets does not require a
correspondence between individual members of the set, and hence is a loser condition than when specific
elements are equated. Two densities ρ(x) and ρ′(x) are said to be congruent if it is possible to find a
g ∈ G such that ρ(x) = ρ′(g · x).

When two conformations, configurations, or shapes are not congruent, it is useful to assess how close
they are to being congruent. These measures of “similarity” are based on some measure of distance [24].
For example,

dp(x,x
′)

.
= ‖x− x′‖p = (|x− x′|p + |y − y′|p + |z − z′|p)

1
p (1)

can be used to measure the distance between points where p = 1 (the Manhattan metric) and p = 2

(Euclidean distance) are the most common values. Likewise, distance between two densities can be
defined as

Dp(ρ, ρ
′)

.
=

(∫
R3

|ρ(x)− ρ′(x)|p dx
) 1

p

(2)

A common similarity measure between two conformations is

dp({xi}, {x′i})
.
= min

g∈G

(
n∑
i=1

1

n
[dp(xi , g · x′i)]p

) 1
p

(3)

When p = 2, this is the commonly used root-mean-square (RMSD) comparison. It is also possible to
define differences in conformations without minimizing overG by establishing internal coordinates such
as dihedral angles and bond lengths, and comparing these internal coordinates for each conformation,
but this approach will not be pursued here.
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In the case of two conformations (or configurations) consisting of identical particles without
correspondence, the optimal-assignment metric [25,26]

δp({xi}, {x′i})
.
= min

g∈G
min
π∈Πn

(
n∑
i=1

[dp(xi , g · x′π(i))]
p

) 1
p

(4)

can be used where Πn is the set of permutations that acts on the n indices that label the particle positions.
In cases where subsets of particles are of the same type rather than all of them being the same, the
minimization over Πn in Equation (4) can be broken down into minimizations within each subset of
similar particle types.

It is also possible to define similarity metrics of the form

d′p({xi}, {x′i})
.
= min

g∈G

n∑
i=1

dp(xi , g · x′i)

and

δ′p({xi}, {x′i})
.
= min

g∈G
min
π∈Πn

n∑
i=1

dp(xi , g · x′π(i))

but these are less commonly used because they require more effort to compute.
Shape similarity can be measured by evaluating

∆p(ρ, ρ
′)

.
= min

g∈G
Dp(ρ, g · ρ′) (5)

where [27]
g · ρ′(x)

.
= ρ′(g−1 · x) (6)

It can be shown that all of these measures of similarity satisfy the formal properties of a metric.
If the densities are normalized so as to be probability density functions,∫

R3

ρ(x) dx =

∫
R3

ρ′(x) dx = 1

then the Kullback-Leibler divergence (or relative entropy) is defined as

DKL(ρ ‖ ρ′) .
=

∫
R3

ρ(x) log

(
ρ(x)

ρ′(x)

)
dx

A similarity measure can be defined as

∆KL(ρ ‖ ρ′) .
= min

g∈G
DKL(ρ ‖ g · ρ′) (7)

Unlike the similarity metrics discussed above, this one is not symmetric.
Whereas the similarity measures reviewed in this section are for individual conformations,

configurations, or shapes, it can be useful to compare two sets (or ensembles) of such objects rather
than two individual objects. The next section addresses continuous ensembles that can be described as
probability densities in high-dimensional spaces.
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2. Generating Conformational Ensembles

Consider a macromolecule with atomic nuclei in a single conformation given by {xi}, and let the
mass of the ith of these be mi. Then the kinetic energy will be

T =
1

2

n∑
i=1

mi ẋi · ẋi =
1

2
ẊT [M ]Ẋ

where ẋ denotes the derivative of x with respect to time and · denotes the dot product of vectors,
X = [xT1 , · · · ,xTn ]T ∈ R3n, and [M ] is the 3n × 3n diagonal matrix with blocks on the diagonal
of the form miI3 for i = 1, ..., n.

The ith conjugate momentum vector is

pi =
∂T

∂ẋi
= miẋi

Concatenating these gives P = [pT1 , ...,p
T
n ]T , and so the kinetic energy can be written as

T =
1

2
PT [M ]−1P

The potential energy for the macromolecule will be of the form V = V (X ; X0) where X0 is
the set of Cartesian coordinates where energy is minimized. For an ensemble that is generated by
small conformational changes induced by Brownian motion bombardment of a molecule that is free to
move in the absence of an external potential, V (X ; X0) ≈ 1

2
(X − X0)T [K(X0)](X − X0), where

[K(X0)] = [K(X0)]T is the Hessian (or stiffness) matrix evaluated at X0, the referential (lowest
energy) conformation,

Kij(X0) =
∂2V

∂Xi∂Xj

∣∣∣∣
X=X0

In this case, the Maxwell-Boltzmann distribution will be

f(X,P ; X0, β)
.
=

1

Z(β ; X0)
exp β ·

(
−1

2
(X−X0)T [K(X0)](X−X0)− 1

2
PT [M ]−1P

)
(8)

where

Z(β ; X0) =

∫
X∈R3n

∫
P∈R3n

exp β ·
(
−1

2
(X−X0)T [K(X0)](X−X0)− 1

2
PT [M ]−1P

)
dP dX

is the partition function that normalizes f(X,P) to be a probability density, and β = 1/kBT where kB
is the Boltzmann constant and T is temperature in degrees Kelvin. The distribution in Equation (8) is a
6n-dimensional Gaussian distribution with covariance

Σ = β−1 · ([K(X0)]−1 ⊕ [M ]) (9)

where ⊕ denotes the direct sum of two matrices.
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2.1. Invariance and Degeneracy

In some scenarios there is an external elastic potential corresponding to the macromolecule being
tethered to a substrate, in which case Equation (9) would be valid. However, an important technical
detail that needs to be addressed when there is no external potential is that [K(X0)] will be singular.
This is related to the fact that when there is no external potential, then for any static g ∈ G,

V (X ; X0) = V (g ·X ; g ·X0) (10)

where
g ·X .

= [(g · x1)T , ..., (g · xn)T ]T

From the above invariance of V (· ; ·) under rigid-body shifts it follows that

[K((R⊕R⊕ · · · ⊕R)X0)] = (R⊕R⊕ · · · ⊕R) [K(X0)] (R⊕R⊕ · · · ⊕R)T (11)

Moreover,
V (g−1 ·X ; X0) = V (X ; g ·X0) (12)

This means that
f(g ·X,P ; g ·X0) = f(X,P ; X0)

It is also true that
f(X, R ·P ; X0) = f(X,P ; X0)

where R ·P = [(Rp1)T , ..., (Rpn)T ]T , but this fact is not relevant to the current discussion.
In classical statistical mechanics, this invariance under translation and rotation is broken by limiting

the motion of molecules to a finite box, which is tantamount to defining an external potential. But in
the present context it will be convenient instead to reduce degrees of freedom while maintaining the
Gaussian nature of this distribution (which is convenient for the calculations that will follow). The mass
matrix has full rank, and so R is not a concern. But the stiffness matrix has rank 3n − 6 due to the
6 degrees of freedom in G. Therefore, either reducing [K] by six degrees of freedom, or by adding an
artificial tethering potential, will make it have full rank. If [K] is decomposed as

[K] = Q(O6 ⊕ Λ)QT

where O6 is the 6×6 matrix of zeros and Λ is the 3n−6-dimensional diagonal matrix with the remaining
eigenvalues, then choosing

X = Q

(
06

Y

)
will define a new (full-rank) stiffness matrix, which is Λ, where 06 is the six-dimensional zero vector.

Alternatively, constraints

n∑
i=1

mi(xi − x0
i ) = 0 and

n∑
i=1

x0
i × (mixi) = 0

can be imposed to ensure that the body does not undergo any overall rotation or translation from its
initial state as it deforms. These result from conservation of linear and angular momentum. They can
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be imposed as hard constraints, by for example, solving for xn−1 and xn in terms of all other xi’s and
back substituting to produce X̃ that is (3n− 6)-dimensional, or as soft constraints imposed with elastic
potentials. We take the approach of hard constraints. Another way to impose hard constraints would be
to fix a specific point, for example, by translating every point by −xn so that xn becomes 0, and keep it
fixed there as the macromolecule undergoes fluctuations. This removes three degrees of freedom. Then,
if the vector from xn to xn−1 is forced to have a specific orientation (e.g., pointing along the direction
e1 = [1, 0, 0]T ), this removes two more degrees of freedom. The final rigid-body degree of freedom can
be enforced by defining allowable motions of xn−2 to be in the plane spanned by e1 and e2. Additional
information on applying these constraints can be found in Appendix A.

2.2. Conformational Boltzmann Distribution

We shall be concerned primarily with the conformational Boltzmann distribution, which results
from removing the superfluous rigid-body degrees of freedom that leave the potential invariant as in
Equations (10) and (12). Removing these degrees of freedom and marginalizing over the conjugate
momenta results in

fc(X̃ ; X̃0, β)
.
=

1

Zc(β ; X̃0)
exp

(
−1

2
β(X̃− X̃0)T [K̃(X̃0)](X̃− X̃0)

)
(13)

where

Zc(β ; X̃0) =

∫
X̃∈R3n−6

exp

(
−1

2
β(X̃− X̃0)T [K̃(X̃0)](X̃− X̃0)

)
dX̃

Here X̃ represents a reduced set of coordinates that could have been generated in either of the two ways
discussed above. Now that [K̃(X̃0)] is full rank, the conformational partition function can be computed
in closed form as

Zc(β ; X̃0) =

(
2π

β

) 3n−6
2 (

det[K̃(X̃0)]
)− 1

2

2.3. Elastic Network Models

Elastic network models have been used to model the motion of macromolecules [28–35]. In the elastic
network model the stiffness matrix is computed from a set of coordinates {x0

i } of a baseline structure in
terms of 3× 3 blocks as

Kij =

{
−Gij for i 6= j∑

1≤k 6=i≤nGk,i for i = j
(14)

where

Gij = kij
(x0

i − x0
j)(x

0
i − x0

j)
T

‖x0
i − x0

j‖2

and kij takes a uniform nonzero value when ‖x0
i − x0

j‖ is within a cutoff radius, r0, and takes a value of
zero otherwise. This leads to a stiffness matrix that is sparse, which leads to efficient computations of
normal modes. For our purposes, it will be more convenient to define kij as follows:

kij = k · φ(‖x0
i − x0

j‖)
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where φ(0) = 1 and φ(r) ≈ 1 when 0 < r < r0, and decays rapidly to zero on the range r0 to infinity.
Many such functions exist that are differentiable, including sigmoid functions and certain multi-Gaussian
difference functions. Then the full stiffness matrix constructed from these blocks explicitly depends on
the vector of initial coordinates as [K] = [K(X0)].

3. Similarity Measures for Conformational Ensembles

In this section, measures of similarity that build on the concepts in the previous section are articulated.
Let the two ensembles in question be described by probability density functions f1(X̃) = fc(X̃ ; X̃0, β)

and f2(X̃) = fc(X̃ ; X̃′0, β
′). The difference between them is that either X̃0 6= X̃′0, or β 6= β′, or both.

Since the conformations were effectively anchored in space in a specific way prior to computing these
probability densities, in order to make the stiffness matrix nonsingular, it follows that the probability
densities should be optimally aligned before they are compared. This is analogous to what was done in
Equation (5) in comparing shapes using their mass densities. But now, the conformational probability
densities are functions on (3n−6)-dimensional Euclidean space. Herein several measures are compared.
Throughout this discussion,

N
.
= 3n− 6

Let P(RN) denote the set of all smooth probability density functions on RN . Given a measure of
distance, divergence, or discrepancy between two probability density functions,

D : P(RN)× P(RN) −→ R≥0

and given an action of G on RN , g · RN , a corresponding action on functions can be defined in analogy
with Equation (6). A measure of similarity between probability densities describing an ensemble can
then be constructed as

∆(f1 ; f2)
.
= min

g∈G
D(f1 ; g · f2) (15)

This similarity of conformational probability densities then serves to quantify how similar two ensembles
are. Below, it is shown how various D(f1 ; f2) can be computed in closed form when f1 and f2 are
Gaussian distributions.

3.1. L2 Difference

It is known from the literature that the following measure can be computed in closed form for Gaussian
distributions on RN , f(µ,Σ)(x) = f(x;µ,Σ):

D2

(
f(µ1,Σ1) , f(µ2,Σ2)

)
=

(∫
RN

[f(x;µ1,Σ1)− f(x;µ2,Σ2)]2dx

) 1
2

(16)

=

(∫
RN

f(x;µ1,Σ1)2 − 2 f(x;µ1,Σ1)f(x;µ2,Σ2) + f(x;µ2,Σ2)2dx

) 1
2
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An advantage of Gaussian functions is that the integration of quadratic terms over RN has a
closed-form expression. We derived it as follows,∫

RN

f(x;µ1,Σ1)f(x;µ2; Σ2)dx =

∫
RN

(2π)−N/2| det Σ1|−1/2 exp

(
−1

2
(x− µ1)TΣ−1

1 (x− µ1)

)
(2π)−N/2| det Σ2|−1/2 exp

(
−1

2
(x− µ2)TΣ−1

2 (x− µ2)

)
dx

=(2π)−N | det Σ1 det Σ2|−1/2

∫
RN

exp

(
−1

2
(x− µ1)TΣ−1

1 (x− µ1)

−1

2
(x− µ2)TΣ−1

2 (x− µ2)

)
dx (17)

Since ∫
RN

exp(−1

2
xTMx−mTx− C)dx = (2π)N/2| detM |−1/2 exp(

1

2
mTM−1m− C) (18)

Equation (17) can be rewritten in a closed-form as∫
RN

f(x;µ1,Σ1)f(x;µ2; Σ2)dx =(2π)−N/2
∣∣det Σ1 det Σ2 det(Σ−1

1 + Σ−1
2 )
∣∣−1/2

exp

(
1

2
(µT1 Σ−1

1 + µT2 Σ−1
2 )(Σ−1

1 + Σ−1
2 )−1(Σ−1

1 µ1 + Σ−1
2 µ2)

−1

2
(µT1 Σ−1

1 µ1 + µT2 Σ−1
2 µ2)

)
(19)

Similarly, we can write ∫
RN

(f(x;µ1,Σ1))2 dx = 2−Nπ−N/2 |det Σ1|−1/2 (20)

For the numerical examples presented in Section 4 a normalized version of the L2 difference is
presented. This normalized version is given by

D2

(
f(µ1,Σ1) , f(µ2,Σ2)

)
=

D2

(
f(µ1,Σ1) , f(µ2,Σ2)

)(∫
RN [f(x;µ1,Σ1)]2dx

) 1
2

(21)

3.2. Kullback-Leibler Divergence

The Kullback-Leibler divergence (or relative entropy) between two probability density functions is
defined as

DKL

(
f(µ1,Σ1) ‖ f(µ2,Σ2)

)
=

∫
RN

f(x;µ1,Σ1) log
f(x;µ1,Σ1)

f(x;µ2,Σ2)
dx (22)

This can be computed in closed form for Gaussians using the identity in Equation (18) and∫
RN

xTGx exp

(
−1

2
xTAx

)
dx = (2π)N/2

tr(GA−1)

| detA| 12
(23)

as follows:

DKL(f(µ1,Σ1)||f(µ2,Σ2)) =
1

2
log
| det Σ2|
| det Σ1|

− N

2
+

1

2

[
tr(Σ−1

2 Σ1) + (µ1 − µ2)TΣ−1
2 (µ1 − µ2)

]
(24)
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4. Numerical Examples and Comparison with RMSD

The examples presented below use structural data from the protein database (PDB) [36] and the
2010 Critical Assessment of protein Structure Prediction (CASP9) [37] to highlight how the metrics in
Section 3 differ with respect to RMSD.

4.1. Example 1: Perturbed Protein Structure

In order to contrast the proposed metrics in Section 3 with those that are purely geometric based,
we perturbed a conformation given in the PDB [36] in two ways. The protein chosen is Streptomyces
griseus protease B (PDB ID 3SGB) [36,38] shown in Figure 1. This protein’s loops and size make it
relatively flexible and well suited to illustrate the difference between these metrics.

Figure 1. Biological assembly image of the example protein used, Streptomyces griseus
protease B. Image from the RCSB PDB [39] of PDB ID 3SGB [36,38].

The perturbations are performed using a unit length vector, V ∈ RN . Using V and the alpha carbon
locations given in the PDB file, X0

0, a family of similar mean conformations were generated as

Xγ
0 = X0

0 + γV (25)

for scalar values of γ. This parameterization of mean conformations then provides a way to compare how
the difference measures given in Section 3 vary over a range of RMSD values. Conformational ensembles
were then generated using the conformational Boltzmann distribution described in Section 2.2 together
with the hard constraints discussed in Sections 2.1 and Appendix A.

The first set of comparisons that was performed was between two different perturbation vectors, V.
For the first vector we consider perturbations in the direction of low frequency normal modes. These
mode shapes are associated with the dominant direction of motion for large conformational changes. We
start by forming a coarse grain elastic network as described in Section 2.3 using the alpha carbons. Based
on this elastic network, normal mode analysis was used to obtain the minimum nonzero eigenvalue and
its associated unit-length eigenvector. This eigenvector is then used as the perturbation vector V. The
second type of perturbation applied was obtained by taking a random vector whose elements are drawn
from a zero mean normal distribution with constant variance. This vector was then normalized to unit
length. For these examples, all stiffness matrices were constructed using r0 = 8 Å, k = 1, and β = 1.
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Figure 2 highlights the difference of these two perturbation methods. The conformations
corresponding to the random perturbation exhibit lower RMSD values at all values of γ than perturbation
in the likely direction of motion; for the random perturbations, the RMSD values are roughly half
of those associated with the mode shape. This is particularly interesting when contrasted with the
Kullback-Leibler divergences and L2 differences. For these measures, the values associated with the
normal mode perturbations are lower than those associated with the random perturbations. This can be
attributed to the fact these deviations occur in a direction of high flexibility and both of these measures
are functions of the conformation’s elastic structure. This effect is particularly pronounced for the
Kullback-Leibler divergence. This result highlights the fact that RMSD alone does not capture how
similar two conformations are when uncertainty is considered.

Figure 2. Here we demonstrate how RMSD (top left), Kullback-Leibler divergence (top
right), and normalized L2 difference (bottom) vary with γ (β and r0 are fixed at 1 and 8
respectively). Two perturbation vectors are given, one corresponding to the lowest frequency
mode and one random unit vector.
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The second set of comparisons presented utilizes only the normal mode perturbation. However, a
variety of values for β and r0 were used as these parameters effectively alter the “stiffness” of the
conformational Boltzmann distribution for a fixed value of k (k = 1 for these examples). Figures 3
and 4 demonstrate the effect of varying β and the cutoff radius, r0. It should be noted that the wide range
of β values being shown are only for the purpose of illustrating the relative sensitivity of our results to
β. The values used may not represent a physiologically realizable range.

Figure 3. These plots illustrate how Kullback-Leibler divergence, ∆KL(fc(X̃, X̃
0
0, β)‖

fc(X̃, X̃
γ
0 , β)) varies with γ for several values of β (left) and several values of r0 (right).

Figure 4. These plots illustrate how normalized L2 difference, ∆2(fc(X̃, X̃
0
0, β),

fc(X̃, X̃
γ
0 , β)) varies with γ for several values of β (left) and several values of r0 (right).

These figures illustrate several interesting things about how these metrics differ from RMSD. The
first thing to note is that while RMSD is constant with respect to β and r0, both the Kullback-Leibler
divergence and L2 difference vary with respect to these flexibility measures. It is also apparent that ∆KL

increases with γ; although, the relationship is not linear. For “stiffer” structures (i.e., higher β or higher
r0), the slope of ∆KL with respect to γ is lower and begins to flatten sooner. The relationship between
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∆2 and γ is more complex. Close to γ = 0, ∆2 increases with γ until it reaches a maximum and then
begins to decline until it levels out at a value of one.

4.2. Example 2: CASP Predictions

One of the motivations for looking at metrics for conformational ensembles is for comparison of
protein predictions to experimentally solved proteins. Here we present a target protein structure, T0575
from CASP9 [37] (PDB ID 3NRG [40]), and several groups’ predictions. Figure 5 provides a ribbon
diagram for the target protein. We examined the 44 predictions of the target that met the following
conditions: (1) the prediction contains all of the residues; (2) the prediction is a group’s “first” model
(i.e., it is the model with which a group is most confident); and (3) the RMSD between the alpha carbons
of the prediction and target is less than 6 Å. For each of the predictions and the target, ensembles were
generated using the conformational Boltzmann distribution for β = 1 and r0 = 8 Å. Using these
ensembles, the Kullback-Leibler divergence ∆KL was determined. Figure 6 presents these values of
Kullback-Leibler divergence versus their associated RMSD.

Figure 5. Biological assembly image of the protein target used, a TetR family transcriptional
regulator (Caur 2714) from Chloroflexus aurantiacuss. Image from the RCSB PDB [39] of
PDB ID 3NRG [36,40].

It is believed that the Kullback-Leibler divergence in this context provides an indication of how similar
two conformations are in terms of topology and flexibility. To demonstrate this, we used normal mode
analysis to perturb the predicted models; we added a weighted sum of the first few nonzero normal
modes to the predicted models to minimize the RMSD between the prediction and the target. These
first few nonzero normal modes represent the primary directions of motion for elastic networks. Let the
vectors associated with the normal modes be ordered such that Vi represents the ith nonzero normal
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mode. Then we can represent this minimization over m normal modes with the following perturbed
model vector similar to what was done in Equation (25)

Xγ
0 = X0

0 +
m∑
i=1

γiVi (26)

where X0
0 is a vector of the original coordinates of the predicted model and γi’s are scalar weights. If

XTarget
0 is the coordinate vector associated with the target structure, we can then use a cyclic gradient

descent to minimize RMSD,
min
γi

d2(XTarget
0 ,Xγ

0) (27)

The results for this analysis can found in Figures 6 and 7 for the first three normal modes (m = 3).
Figure 6 shows the original Kullback-Leibler divergence versus both the original RMSD and the RMSD
optimized using the first three normal modes. Figure 7 provides the percent reduction in RMSD versus
the original Kullback-Leibler divergence. In this analysis, we would expect to see the amount of
minimization decrease as the Kullback-Leibler divergence increases. This trend is apparent, although
there are a few outliers. We note that similar results were observed for other CASP9 targets and different
values of m.

Figure 6. The Kullback-Leibler divergences between predicted models and the CASP9
target are shown with respect to RMSD. RMSDs are given for the original predictions and
predictions perturbed along the first three normal modes.
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Figure 7. The reduction in RMSD realized by minimizing along the first three normal modes
is given with respect to the Kullback-Leibler divergence between the predicted model and
the target (T0575).

5. Conclusions

Measures to quantify how similar two conformational ensembles are have been articulated here. In
contrast to well-known measures of shape similarity between two conformations, which are purely
geometric, the comparison of ensembles here requires concepts from probability and information
theory. We have illustrated how using the stiffness information in conformational ensembles for two
macromolecules can be used to develop difference measures that take into account the positional
uncertainty of flexible regions. These new measures are based on the Kullback-Leibler divergence and
L2 difference.

Numerical examples of how these measures compare with the traditional RMSD were presented. The
conformational ensembles for these examples were based on coarse-grained elastic networks. It has been
demonstrated that for two different conformations, the RMSD of each of them with respect to a third may
not provide enough information to determine which of the conformations is more similar to the third in
terms of their positional uncertainty.

The measures presented provide additional information with respect to positional uncertainty. They
have the potential to be extended or combined with each other, additional information theoretic measures,
and/or traditional geometric measures to make them more robust to a variety of parameters. Additionally,
methods for comparing the similarity of an individual structure and an ensemble can be explored.
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Appendix

A. Restricting the Conformational Boltzmann Distribution and Applying a Rigid-Body
Transformation

Recall from Section 2.1 that we can remove 6 degrees of freedom by forcing x0
n = 0, rotating the

conformation so that the vector from x0
n to x0

n−1 is aligned with e1, and confining x0
n−2 to the plane

spanned by e1 and e2. The resulting coordinate vector X ∈ R3n can then be written as

X =



x1

x2

...
xn−3

xn−2

xn−1

xn


=



x1

x2

...
xn−3

a1e1 + a2e2

a3e1

0


=



x1

x2

...
xn−3

a1

a2

0

a3

0

0

0



(28)

Let us define B as

B =

(
I(3n−7) 0 0 0 0 0 0 0

0T 0 1 0 0 0 0 0

)
(29)

Here B ∈ R(3n−6)×3n. Let us also define

X1,n−3 =


x1

x2

...
xn−3

 (30)
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The generalized coordinate system X̃ ∈ R3n−6 is then

X̃ =



x1

x2

...
xn−3

a1

a2

a3


=


X1,n−3

a1

a2

a3

 = BX (31)

Here, and henceforth, a1 will represent the signed distance of xn−1 from the plane spanned by the
global e2 and e3 axes as measured along the vector from x0

n to x0
n−1. This ensures that the confined

degrees of freedom are respected. Also, a2 (a3) will represent the signed distance of xn−2 from the plane
spanned by the fixed global e2 and e3 (e1 and e3) axes as measured along the transformed e1 (e2) axis.

If we apply an arbitrary rigid body motion g0 to the conformation where

g0 =

(
R0 t0

0T 1

)
(32)

then
yi = R0xi + t0 (33)

We can then write
R̃0 = R0 ⊕R0 ⊕ · · · ⊕R0 (34)

and

t̃0 =


t0

t0

...
t0

 (35)

where R̃0 ∈ R3n×3n and t̃0 ∈ R3n. (Note: We will let R̃n−3
0 ∈ R3(n−3)×3(n−3) represent a direct sum of

n− 3 copies of R0.) Then the new coordinate vector can be written as

Y = R̃0 X + t̃0 (36)

If KX0 is the stiffness matrix associated with X, the new stiffness matrix KY0 can be written as

KY0 = R̃0 KX0 R̃
T
0 (37)

Also, the stiffness matrix corresponding to X̃ can then be written as

K̃X0 = BKX0 B
T (38)

However, in the new coordinate system that has been transformed via g0, a similar equality does not hold
in general,

K̃Y0 6= BKY0 B
T (39)
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Yet there is something that can be said if we consider the rotation and translation separately. First we
will consider pure translation (i.e., R0 = I3);

Y = X + t̃0, Ỹ = BY = X̃ + B t̃0, and KY0 = KX0 (40)

Also,
K̃Y0 = BKY0 B

T = BKX0 B
T (41)

Next, consider pure rotation (i.e., t0 = 0);

Y = R̃0 X and KY0 = R̃0 KX0 R̃
T
0 (42)

However

Ỹ =


R̃n−3

0 X1,n−3

a1

a2

a3

 =


Y1,n−3

a1

a2

a3

 (43)

We can recover Y using A = I⊕ I⊕ · · · ⊕ I⊕R0 ⊕R0 ∈ R3n×3n via

Y = ABT


Y1,n−3

a1

a2

a3

 = ABT Ỹ (44)

Then one can write

(Y −Y0)TKY0(Y −Y0) = (Ỹ − Ỹ0)TBATKY0ABT (Ỹ − Ỹ0) (45)

Therefore, for pure rotation
K̃Y0 = BATKY0ABT (46)

Using these two cases, we can generate any rigid body motion of one conformation relative to another.
For example, if we want the coordinate frames attached to two conformations (X0 and X′0) to be
separated by g0 = (R0, t0), we could apply gR0 = (R0,0) to X′0 and gt0 = (I,−t0) to X0.
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