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Abstract:



This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT). Using an endoreversible Curzon–Ahlborn (CA) heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law) was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.
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1. Introduction


Several authors [1,2,3,4,5,6,7,8,9] have pointed out that endoreversible thermal cycle models working in maximum power conditions have an efficiency that strongly depends on the heat transfer law used to describe the heat fluxes between the working fluid and its surroundings. In fact, one of the most impressive results of the Curzon–Alhborn (CA) paper [10] was that the authors found very reasonable numerical results for the efficiency of certain power plants by means of a very simple formula for a Carnot-like finite time heat engine in a maximum power output regime but where a linear heat transfer law was used. Since the CA paper, many authors have considered more realistic models to describe the heat exchanges using non-linear heat transfer laws [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. Generally, the quantities to optimize are functionals such as work, power output and entropy production or a combination of these, which can be expressed as integrals over certain trajectories.



Thus, it becomes natural to use the variational calculus to treat optimization problems such as the ones mentioned previously. For instance, in the CA paper the equation that represents the thermal cycle efficiency was found by the maximization of the power output as a two variable function [image: there is no content] with [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content] represent the absolute temperatures of the hot and cold reservoirs respectively (see Figure 1).


Figure 1. (a) Diagram of the CA endoreversible heat engine with conductances α1=α2=α; (b) The Müser engine.



[image: Entropy 14 02611 g001]








In fact, Rubin [22] could obtain the CA engine efficiency through the maximization of the Lagrangian with the power output as the objective function and the endoreversibility condition as the integral restriction. It is worth noting that in the later case the authors use a linear heat transfer law as CA did. Later Ares de Parga et al. [23,24] used the variational approach to study a CA engine under both maximum power and maximum ecological function conditions [25]. They analyzed the performance of the CA engine with a nonlinear heat transfer law (the Dulong and Petit law [24]), obtaining results consistent with those previously obtained by means of other procedures. In this work, an analysis was made following the same ideas of Ares de Parga et al. [24] but considering a different heat transfer law, namely the Stefan–Boltzmann law, which considers only radiative effects and has not been used before in the variational approach.



In this paper, a variational approach was used to study a CA engine for three different criteria: maximum power output, ecological function and maximum power density, where a heat transfer law different from previous studies was used. Under the maximum power output criterion, it is possible to recover all the numerical results for the Müser engine reported in [26]. Additionally, new outcomes were obtained for the engine efficiency in the special case of the Müser engine, using the two mentioned additional criteria.



The paper is organized as follows. Section 2 presents a brief introduction to previous work about the variational optimization and its application to the cycle’s power output for a CA engine using the maximum power output criterion. Section 3 presents the application of the variational approach to a CA engine under the ecological function criterion. In order to prove the validity of the results, the limit case of a Müser engine is considered. Section 4 presents the maximization of the CA engine using the maximum power density criterion. Finally, in Section 5, we present some concluding remarks.




2. Maximum Power Criterion


In 1975, Curzon and Ahlborn [10] published their paper. The main result was that they could obtain maximum power output efficiency for a finite time Carnot-like thermal engine using a linear heat transfer. This efficiency is shown by the following expression,


ηCA=1-[image: there is no content][image: there is no content]



(1)







Later, in 1979, Rubin [22] obtained Equation (1) by means of the variational calculus application for power maximization, treated as the functional subject to the endoreversibility condition as a restriction. Rubin’s approach is based on one of the most important results of classical thermodynamics, which states that the maximum work in thermal process with fixed constraints is obtained when performing a reversible process that leads to upper bounds of performance criteria for an arbitrary process [22]. Taking the above as a starting point, Rubin addresses the following problem in the context of endoreversible thermodynamics. For a CA engine, which is the maximum work output W per cycle subject to the constraint [image: there is no content]?, this means that the entropy changes of the working fluid in one period is zero.



For this purpose, Rubin considered that in the CA engine, the work performance by the engine in one cycle is given by


[image: there is no content]



(2)




where p and v are the pressure and volume of the working fluid. Applying the first law of thermodynamics, [image: there is no content], where [image: there is no content] is the heat flux and, substituting it in Equation (2), we obtain,


W=∫0τ[image: there is no content]dt



(3)







It can be observed that W is a functional (functionals are often expressed as definite integrals involving functions and their derivatives). If we desire to locate the extrema of functionals, as is in our case, we need to use the calculus. Therefore, mathematically, we seek functions [image: there is no content] that extremize the integral of a function [image: there is no content]. The solutions to this problem can be shown to satisfy the Euler–Lagrange equations [27]. We proceed as in ordinary calculus. First, we write the constraint as a function equal to zero, [image: there is no content]. Second, we add this term to the function [image: there is no content] times by [image: there is no content]:


[image: there is no content]λ(f(x),f′(x),x,λ)=L(f(x),f′(x),x)+λΔS



(4)







In this case, [image: there is no content](f(x),f′(x),x)=W[image: there is no content], so finally we obtain the new function [image: there is no content]λ(f(x),f′(x),x) or simply [image: there is no content] as,


[image: there is no content]=W+λΔSw



(5)




where λ is a Lagrange multiplier and [image: there is no content] is the endoreversible condition, given by


ΔSW=∫0τ[image: there is no content]Tdt



(6)




where T is the working substance temperature and t is the time. Now assuming a heat transfer law of the form


[image: there is no content]=α(TRn-Tn)



(7)




where α is the thermal conductance and [image: there is no content] is the heat reservoir temperature. Taking into account the explicit form of Equation (7) we have


[image: there is no content]



(8)




where the local equilibrium condition for the first law of thermodynamics was used. Following Rubin’s procedure, setting the first variation of Equation (5) equal to zero, we have


δL=∫0τδ[image: there is no content]g(T,[image: there is no content],[image: there is no content],λ)-δTf(T,[image: there is no content],[image: there is no content],λ)dt=0



(9)




where


g(T,[image: there is no content],[image: there is no content],λ)=TRn-1(1-λT)








and


f(T,[image: there is no content],[image: there is no content],λ)=Tn-1(λT-1)











Equation (9) has the same form as Equation (24) of [23]. Since [image: there is no content] is necessarily in the interval [image: there is no content]≤[image: there is no content]≤[image: there is no content], this is a unilateral restriction [2]. Thus, the variation of δ[image: there is no content] will not correspond to a physical situation and then only [image: there is no content]=[image: there is no content] or [image: there is no content]=[image: there is no content] is considered. Therefore, in this analysis, [image: there is no content] assumes a fixed value of [image: there is no content] or [image: there is no content]. Finally, from Equation (9) we obtain


[image: there is no content]



(10)







In order to verify Equation (10), the special case when [image: there is no content] is considered, which gives


T2-λ[image: there is no content]=0



(11)




Set [image: there is no content]=[image: there is no content] and [image: there is no content] or [image: there is no content], we have


ηCA=1-[image: there is no content][image: there is no content]



(12)







This equation is consistent with the CA case, in the limit [image: there is no content]. Now, returning to Equation (10) but using the Stefan–Boltzmann nonlinear heat transfer law where [image: there is no content], Equation (10) takes the following form,


[image: there is no content]



(13)







As in the previous case, [image: there is no content]=[image: there is no content] and [image: there is no content] or [image: there is no content] can be assumed, which implies that


[image: there is no content]



(14)




and


[image: there is no content]



(15)







Equations (14) and (15) need to be solved to give [image: there is no content] or [image: there is no content] respectively and then to derive the endoreversible efficiency by η=1-[image: there is no content]/[image: there is no content]. However, Equations (14) and (15) have no analytical solution. Whereas the solutions of a fourth-degree equation can always be written in terms of radicals, the solutions of an arbitrary fifth-degree polynomial equation cannot. Only some special classes of fifth-degree equations have analytical solutions in terms of nested radicals. Therefore, in order to prove the usefulness of the variational method, an approximation of the Stefan–Boltzmann engine called the Müser engine (ME) [28] introduced by Müser in 1957 can be used. This is a model of the Stefan–Boltzmann engine, which assumes that technology is so good that the conversion device is in a perfect thermal contact with the second reservoir, thus [image: there is no content]=[image: there is no content], see Figure 1b. Taking into account this restriction, the Lagrange multiplier λ in Equation (15) now takes the form


λ=[image: there is no content]



(16)







Now substituting Equation (16) in Equation (14) gives


4Th5-3[image: there is no content]Th4-[image: there is no content]TH4=0



(17)







This equation is the same to that discovered by Müser [28] in 1957, which was afterwards rediscovered independently by Jeter [29] and by De Vos and Pauwels [30] in 1981. However, here it is obtained by a different method.



Now taking the endoreversible efficiency, η=1-[image: there is no content][image: there is no content], and substituting it into Equation (17), the following expression is shown,


[image: there is no content]



(18)




which is the Equation (5.7) obtained by De Vos in his well-known book [26]. Again, as stated before, it has no analytical solution. The numerical solution of Equation (18) for η yields


[image: there is no content]



(19)




where we take the same approximation as De Vos [26] for the special case of solar converter or Müser engine, that is, [image: there is no content]=288 K and [image: there is no content]=431 K, which are the average planet temperature and the effective sky temperature respectively.




3. Ecological Function Criterion


Many criteria of merit have been proposed for the study of a CA engine. Among these, the maximization of a kind of ecological function [7,25] is found, which consists in the maximization of a function E that represents a relationship between high power output and low entropy production per cycle. This function is given by


E=P-[image: there is no content]σ



(20)




where P is the power output, σ is the total entropy production (system plus surroundings) per cycle, and [image: there is no content] is the temperature of the cold reservoir. Alternatively, Yan [31] proposed that it might be more convenient to use [image: there is no content], if the cold reservoir temperature [image: there is no content] is not equal to the environmental temperature [image: there is no content], from the exergy analysis point of view.



Ecological function shows two important properties [6,23,25]. Firstly, if a CA engine works in this regime, the thermal efficiency is shown as


[image: there is no content]



(21)




where [image: there is no content] is the Carnot efficiency and [image: there is no content] is the efficiency at maximum power regime.



Secondly, in this regime the CA engine produces around 80% of maximum power, while entropy production is reduced down to around 30% of the entropy produced in the maximum power regime. It has been shown that Equation (21), called the semi-sum property, is independent of the heat transfer law used in the process and is termed as a universal property for the endoreversible systems [6,23].



Taking into account Section 2 and the above, a Lagrangian function L can be proposed as [23],


[image: there is no content]=W-[image: there is no content]σ-λΔSw



(22)




where the power output is replaced by the work per cycle W (fixing cycling period τ), σ is the universe entropy production, λ is the Lagrange multiplier and [image: there is no content] is the endoreversibility constraint in the same way as proposed in Equation (8). Taking the universe entropy production rate in the same mode as Ares de Parga et al. [23] did, but now considering the general heat transfer law Equation (7), we get


σ=αTn-TRn[image: there is no content]



(23)




where α is the thermal conductance. Substituting Equations (6), (7) and (23) into (22) yields,


[image: there is no content]=∫0τα(TRn-Tn)-αλ(TRn-Tn)T-[image: there is no content][image: there is no content]α(Tn-TRn)



(24)




Reorganizing terms then gives


[image: there is no content]=∫0τα(TRn-Tn)1+[image: there is no content][image: there is no content]-λT



(25)







By setting the first variation of [image: there is no content] equal to zero, we obtain


-nTn+11+[image: there is no content][image: there is no content]+λTn(n-1)+λTRn=0



(26)







This last equation is analogous to Equation (10) but now takes the ecological criterion instead of the maximum power regime. In order to verify Equation (26), an example that has been studied in [23] is taken. For this specific case ([image: there is no content]), Equation (26) yields


T2=λ[image: there is no content]1+[image: there is no content]/[image: there is no content]



(27)







In the last equation, the specific case that [image: there is no content]=[image: there is no content] and [image: there is no content] gives [image: there is no content]=(λ[image: there is no content]1+[image: there is no content]/[image: there is no content])1/2, which is the same as Equation (27) in [23]. Hence, returning to our case, i.e., taking [image: there is no content] (Stefan–Boltzmann heat transfer law), Equation (26) gives


-4T5(1+[image: there is no content][image: there is no content])+3λT4+λTR4=0



(28)




Now, as in the previous section, if [image: there is no content]=[image: there is no content] and [image: there is no content] then


-4Th5(1+[image: there is no content][image: there is no content])+3λTh4+λTH4=0



(29)




and if [image: there is no content]=[image: there is no content] and [image: there is no content] then


[image: there is no content]



(30)







Equations (29) and (30) need to be solved to give [image: there is no content] or [image: there is no content] respectively and then to derive the endoreversible efficiency by η=1-[image: there is no content][image: there is no content]. However, Equations (29) and (30) have no analytical solution. Once again, in order to prove the usefulness of the variational method, an approximation of the Stefan–Boltzmann engine called the Müser engine (ME) [28] can be used. This engine considers [image: there is no content]=[image: there is no content], as was mentioned before. Taking into account this restriction, from Equation (30) the Lagrange multiplier λ takes the form


λ=2[image: there is no content]



(31)







Substituting Equation (31) in Equation (29) gives


-4Th51+[image: there is no content][image: there is no content]+6[image: there is no content]Th4+2[image: there is no content]TH4=0



(32)







This equation is similar to that obtained by Müser and by De Vos [26] (Equation (5.7) in his book), but it is obtained for the ecological criterion. It is important to note that this is a new outcome by means of the ecological criterion.



Equation (32) has no analytical solution as mentioned before. However, taking the special case in which [image: there is no content]=288 K and [image: there is no content]=431 K, as in Section 2, we have,


[image: there is no content]=389.04K



(33)




Now, taking the endoreversible efficiency, η=1-[image: there is no content][image: there is no content], substitute the values of [image: there is no content] just obtained and assume [image: there is no content]=[image: there is no content]. For [image: there is no content] we then get


[image: there is no content]=0.2597



(34)







Two important facts are noticed. (a) The efficiency for the Müser Stefan–Boltzmann engine is higher in the ecological case than in the maximum power case, as expected. (b) The so-called ecological function has some interesting properties. Among them, the semi-sum property is given in an approximate manner by Equation (21), [image: there is no content], where [image: there is no content] is the Carnot efficiency and [image: there is no content] is the efficiency at the maximum power regime. Using the semi-sum property for our case, in which [image: there is no content]=1-[image: there is no content][image: there is no content]=0.3317 and [image: there is no content]=1-[image: there is no content][image: there is no content]=0.2029, we then have [image: there is no content]=0.2673, which is close to Equation (34).





Finally, it is interesting to compare our results for the efficiencies at maximum power and maximum ecological function cases with the lower and upper bounds for the optimum efficiency for the maximum power and maximum omega function [32], respectively, reported by Sánchez et al. [33]. It is possible to compare the efficiencies at maximum omega function and maximum ecological function because under endoreversible conditions, such as our case, the ecological and omega functions are equivalent [34]. The efficiencies obtained in this work and the bounds reported by Sánchez [33] can be observed in Figure 2, where only the limit case called without symmetry conditions was plotted, since only for this case our efficiencies fulfill


[image: there is no content]2≤[image: there is no content]≤[image: there is no content]21+ηc








and


3[image: there is no content]4≤[image: there is no content]≤3[image: there is no content]41+ηc3










Figure 2. (a) [image: there is no content] Equation (19), and the upper and lower bounds for the efficiency at maximum power for systems without symmetry conditions reported in [33]; (b) [image: there is no content] Equation (34), bounds for maximum Ω.



[image: Entropy 14 02611 g002]






The other case (left-right symmetry) is more restrictive and our optimum efficiencies are not in the correspondent interval to this case. It should be emphasized that our results explicitly used a nonlinear transference law and that the Müser engine model is not symmetric in the isothermal branches, although this asymmetry is in a different context to [33].




4. Maximum Power Density Criterion


In previous sections, an analysis for a CA engine performance was presented for two regimes in the context of Finite-Time Thermodynamics. However, none of these performance analyses include the effects of engine size. To include the size of the engine, Sahin et al. [35] suggested a new criterion called maximum power density analysis. In their work, Sahin et al. obtained two important results. Firstly, the thermal efficiency at maximum power density is shown to be greater than the thermal efficiency at maximum power. Secondly, the thermal efficiency at maximum power density varies between [image: there is no content] and [image: there is no content] for [image: there is no content], where b is the conductance allocation parameter defined as [image: there is no content], where [image: there is no content] (assuming, as Sahin did, that the total thermal conductance is constrained [35,36]), [image: there is no content] and [image: there is no content] are the overall heat transfer coefficients and [image: there is no content] and [image: there is no content] are the heat transfer areas on the high and low temperature sides, respectively.



Considering as the same way as Sahin, the temperature of hot and cold working fluid exchanging heat with the reservoirs [image: there is no content] and [image: there is no content] are [image: there is no content] and [image: there is no content], respectively. Then, we consider that the heat flux input now takes the form


[image: there is no content]H=[image: there is no content][image: there is no content](THn-Thn)



(35)




and the heat flux output is


[image: there is no content]L=[image: there is no content][image: there is no content](Tln-TLn)



(36)




The initial terms on the right hand side are similar to the thermal conductance of the walls where the working fluid is enclosed, but including the engine size [35]. Then, we can write the power of the cycle as


W˙=[image: there is no content]H-[image: there is no content]L=[image: there is no content][image: there is no content](THn-Thn)-[image: there is no content][image: there is no content](Tln-TLn)



(37)







Sahin defined the power density as the power output divided by the maximum volume in the cycle, [image: there is no content]. Thus it takes the form


[image: there is no content]=W˙[image: there is no content]=[image: there is no content]H-[image: there is no content]L[image: there is no content]=[image: there is no content][image: there is no content](THn-Thn)-[image: there is no content][image: there is no content](Tln-TLn)[image: there is no content]



(38)




Considering the parameter b defined above, this last equation can be re-written as


[image: there is no content]=UA[image: there is no content][b(THn-Thn)-(1-b)(Tln-TLn)]



(39)







Assuming that [image: there is no content]=mR[image: there is no content]Pmin and [image: there is no content] [35], we get


[image: there is no content]=β[b(THn-Thn)-(1-b)(Tln-TLn)][image: there is no content]



(40)




where [image: there is no content].



Now, taking into account Section 2, we can propose a Lagrangian function L given by


[image: there is no content]



(41)







where [image: there is no content] is defined by Equation (39), λ is the Lagrange multiplier and [image: there is no content] is the entropy production per cycle (our case requires that [image: there is no content]). By means of the second law of thermodynamics, it can be shown that


ΔSW=[image: there is no content]H[image: there is no content]-[image: there is no content]L[image: there is no content]=0



(42)







which implies


[image: there is no content]H[image: there is no content]=[image: there is no content]L[image: there is no content]



(43)







Substituting Equations (35) and (36) into Equation (43) yields


[image: there is no content][image: there is no content](THn-Thn)[image: there is no content]=[image: there is no content][image: there is no content](Tln-TLn)[image: there is no content]



(44)







Substituting Equations (43) and (42) into (41) gives


LMPD=∫0τβb(THn-Thn)1[image: there is no content]+λ[image: there is no content]-(1-b)(Tln-TLn)[image: there is no content](λ+1)



(45)







Set the first variation of L equal to zero with respect to [image: there is no content]. After some algebra, we get


[image: there is no content]=nThn+1λThn(1-n)-THn



(46)







In order to verify Equation (46), we take again [image: there is no content], which has been studied in [35]. For this specific case, Equation (46) demonstrates


[image: there is no content]=-Th2λ[image: there is no content]



(47)







Following the same procedure for the variation of L with respect to [image: there is no content] gives


[image: there is no content]



(48)




which for the specific case [image: there is no content] gives


-b([image: there is no content]-[image: there is no content])-(λ+1)(1-b)[image: there is no content]=0.



(49)







Equations (48) and (49) are in a good concordance with equations (14) and (15) in [35]. Besides, taking Equation (48) for [image: there is no content] and substituting [image: there is no content] and [image: there is no content] from Equations (46) and (49), we can obtain λ, which has the following form


[image: there is no content]



(50)







Considering Equations (46) and (50) with respect to the Stefan–Boltzmann heat transfer law (that is, [image: there is no content]) gives


[image: there is no content]=-4Th5λ(3Th4+TH4)



(51)






[image: there is no content]



(52)







Again, taking the approximation made for the Müser engine, that is, taking [image: there is no content]=[image: there is no content] and combining Equations (51) and (52) for λ, we have


-4(1-b)TL4-b(TH4-Th4)4(1-b)TL4=-4Th5[image: there is no content](3Th4+TH4)



(53)




Finally, if we solve Equation (53), we get


[image: there is no content]



(54)




where


α=3b[image: there is no content]



(55)






[image: there is no content]



(56)






γ=-12(1-b)TL5-2bTH4[image: there is no content]



(57)






ϵ=-b[image: there is no content]TH8-4(1-b)TL5TH4



(58)







Equation (54) needs to be solved for [image: there is no content] and substituted in the endoreversible efficiency, η=1-[image: there is no content]/[image: there is no content]. However, like in the other two cases, Equation (54) has no analytical solution. Taking [image: there is no content]=288 K, [image: there is no content]=431 K and [image: there is no content], we can solve this equation numerically


[image: there is no content]=402.775K



(59)







Now, taking the endoreversible efficiency η=1-[image: there is no content]/[image: there is no content] and substituting the values of [image: there is no content] just obtained and let [image: there is no content]=[image: there is no content], η becomes


[image: there is no content]



(60)







In this case we used [image: there is no content], because it represents the optimal value that maximizes the power density efficiency [35]. However, the effect of the conductance allocation parameter b at maximum power density obtained by means of the variational procedure is presented in Figure 3. It indicates, as Sahin stated, that as [image: there is no content], [image: there is no content] approaches to [image: there is no content] and, for [image: there is no content], the efficiency [image: there is no content] increases to an upper limit depending on τ(=[image: there is no content]/[image: there is no content]). This result is similar to those obtained by Sahin [35] and De Vos [37] where they considered the engine size as an interesting parameter of study.


Figure 3. Effect of the conductance allocation parameter b on the efficiency at maximum power density.



[image: Entropy 14 02611 g003]








it can be noticed that under the maximum power density criterion, the efficiency for the Müser Stefan–Boltzmann engine is higher than in the ecological case or in the maximum power case, as many authors have pointed out [8,35].




5. Concluding Remarks


As far as is known, when dealing with optimization problems to obtain the efficiency for thermal engines in the context of the Finite Time Thermodynamics (FTT), it is not usual to use variational procedures for this purpose. In a previous work [24], Ares de Parga et al. showed that it was possible to use the variational methods to obtain the same results for the efficiency that the classical methods gave. Taking into account the former, the present work uses a simple variational procedure for obtaining the efficiency of an endoreversible CA Finite Time cycle of three different optimization criteria, namely



(a) the maximum power regime; (b) the ecological function criterion and (c) the maximum power density. All the analysis was made by means of a nonlinear heat transfer law (The Stefan–Boltzmann law), which is considered to represent the heat exchanges between reservoirs and working substance taking into account only radiative contributions.



The variational procedure allows obtaining two algebraic equations of fifth order for the temperatures of the isothermal processes for the maximum power and the ecological cases respectively. For the maximum power density case, an algebraic equation of eighth order was obtained. However, due to the order of the equations, it was not possible to obtain analytical solutions. To prove the validity of our results, we used the Müser engine, which has a main characteristic of perfect thermal contact with the surroundings. With this restriction, the results made by other authors, in particular those reported by De Vos [26], were produced with respect to the engine efficiency in the maximum power regime.



Due to the algebraic complexity of the solutions, there are no results for the ecological function regime and maximum power density with the characteristics mentioned before. In this work, interesting results for the maximum power density cases are presented.



For the nonlinear heat transfer law, the verification of the semi-sum property for the ecological case is of special interest. For the ecological regime, the efficiency was [image: there is no content]=0.2597, which is higher than the maximum power efficiency [image: there is no content], for the limit case of the Müser engine. This reinforces the idea that the ecological function criterion is more efficient than the maximum power regime.



However, looking at the maximum power density, the efficiency [image: there is no content] is higher even than the ecological regime, for the interval of [image: there is no content], as many other authors have pointed out [35].



For the Müser engine, the optimum efficiencies for the power output and the ecological function could be considered as non-symmetric systems [33].







Acknowledgments


We would like to thanks CONACYT, EDI-IPN, and COFAA-IPN for supporting this work. N. Sánchez-Salas thanks for financial support from Ministerio de Educación y Ciencia of Spain under Grant No. FIS2010-17147 FEDER. Also, we appreciate the useful comments of the reviewers that have been instrumental in improving our paper. Finally, we appreciate the tips given by a native English speaker Lawrence Whitehill.




References


	1. 
Gutkowicz-Krusin, D.; Procaccia, I.; Ross, J. On the efficiency of rate processes. Power and efficiency of heat engines. J. Chem. Phys. 1978, 69, 3898–3906. [Google Scholar] [CrossRef]

	2. 
De Vos, A. Efficiency of some heat engines at maximum-power conditions. Am. J. Phys. 1985, 53, 570–573. [Google Scholar] [CrossRef]

	3. 
Chen, L.; Yan, Z. The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle. J. Chem. Phys. 1989, 90, 3740–3743. [Google Scholar] [CrossRef]

	4. 
Angulo-Brown, F.; Páez-Hernández, R. Endoreversible thermal cycle with a nonlinear heat transfer law. J. Appl. Phys. 1993, 74, 2216–2219. [Google Scholar] [CrossRef]

	5. 
Arias-Hérnandez, L.A.; Angulo-Brown, F. Thermodynamic optimization of endoreversible engines. Revista Mexicana de Física 1994, 40, 866–977. [Google Scholar]

	6. 
Arias-Hernández, L.A.; Angulo-Brown, F. A general property of endoreversible thermal engines. J. Appl. Phys. 1997, 81, 2973–2979. [Google Scholar] [CrossRef]

	7. 
Arias-Hernandez, L.A.; Barranco-Jiménez, M.A.; Angulo-Brown, F. Comparative analysis of two ecological type modes of performance for a simple energy converter. J. Energy Inst. 2009, 82, 223–227. [Google Scholar] [CrossRef]

	8. 
Barranco-Jiménez, M.A.; Sánchez-Salas, N.; Angulo-Brown, F. On the optimum operation conditions of an endoreversible heat engine with different heat transfer laws in the thermal couplings. Revista Mexicana de Física 2008, 54, 284–292. [Google Scholar]

	9. 
Barranco-Jiménez, M.A.; Sánchez-Salas, N. On thermodynamic optimisation of solar collector model under maximum ecological conditions. J. Energy Inst. 2008, 81, 164–167. [Google Scholar] [CrossRef]

	10. 
Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]

	11. 
Chen, L.; Sun, F.; Wu, C. Influence of heat transfer law on the performance of a Carnot engine. Appl. Thermal Eng. 1997, 17, 277–282. [Google Scholar] [CrossRef]

	12. 
Wu, C.; Chen, L.; Sun, F. Heat transfer effect on the performance of and endoreversible heat engine. Int. J. Energy Environ. Econ. 2000, 9, 249–258. [Google Scholar]

	13. 
Zhu, X.; Chen, L.; Sun, F.; Wu, C. The ecological optimization of a generalized irreversible Carnot engine with a generalized heat transfer law. Int. J. Ambient Energy 2003, 24, 189–194. [Google Scholar] [CrossRef]

	14. 
Chen, L.; Zhu, X.; Sun, F.; Wu, C. Optimal configuration and performance for a generalized Carnot cycle assuming the heat-transfer law Q ∝ (ΔT)m. Appl. Energy 2004, 78, 305–313. [Google Scholar] [CrossRef]

	15. 
Zhu, X.; Chen, L.; Sun, F.; Wu, C. Effect of heat transfer law on the ecological optimization of a generalized irreversible carnot engine. Open Syst. Inf. Dyn. 2005, 12, 249–260. [Google Scholar] [CrossRef]

	16. 
Chen, L.; Zhu, X.; Sun, F.; Wu, C. Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines. Appl. Energy 2006, 83, 573–582. [Google Scholar] [CrossRef]

	17. 
Chen, L.; Zhu, X.; Sun, F.; Wu, C. Effect of mixed heat-resistances on the optimal configuration and performance of a heat-engine cycle. Appl. Energy 2006, 83, 537–544. [Google Scholar] [CrossRef]

	18. 
Chen, L.; Li, J.; Sun, F. Generalized irreversible heat-engine experiencing a complex heat-transfer law. Appl. Energy 2008, 85, 52–60. [Google Scholar] [CrossRef]

	19. 
Li, J.; Chen, L.; Sun, F.; Wu, C. Power vs. efficiency characteristic of an endoreversible Carnot heat engine with heat transfer law Q ∝ (ΔT)m. Int. J. Ambient Energy 2008, 29, 149–152. [Google Scholar] [CrossRef]

	20. 
Li, J.; Chen, L.; Sun, F. Ecological performance of an endoreversible Carnot heat engine with complex heat transfer law. Int. J. Sustain. Energy 2011, 30, 55–64. [Google Scholar] [CrossRef]

	21. 
Li, J.; Sun, F. Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law. Int. J. Energy Environ. 2011, 2, 57–70. [Google Scholar]

	22. 
Rubin, H. Optimal configuration of a class of irreversible heat engines I. Phys. Rev. A 1979, 19, 1272–1281. [Google Scholar] [CrossRef]

	23. 
De Parga, G.A.; Santillán, M. A variational approach to some properties of endoreversible heat engines. Revista Mexicana de Física 1998, 44, 373–376. [Google Scholar]

	24. 
De Parga, G.A.; Angulo-Brown, F.; Navarrete-González, T. A variational optimization of a finite-time thermal cycle with a nonlinear heat transfer law. Energy 1999, 24, 997–1008. [Google Scholar] [CrossRef]

	25. 
Angulo-Brown, F. An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 1991, 69, 7465–7469. [Google Scholar] [CrossRef]

	26. 
De Vos, A. Endoreversible Thermodynamics of Solar Energy Conversion; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]

	27. 
Margenau, H.; Murphy, G. The Mathematics of Physics and Chemistry; D. Van Nostrand Co.: New York, NY, USA, 1961. [Google Scholar]

	28. 
Müser, H. Behandlung von Elektronenprozessen in Halbleiter-Randschichten. Zeitschrift fur Physik 1957, 148, 380–390. [Google Scholar] [CrossRef]

	29. 
Jeter, S.M. Maximum conversion efficiency for the utilization of direct solar radiation. Sol. Energy 1981, 26, 231–236. [Google Scholar] [CrossRef]

	30. 
Vos, A.D.; Pauwels, H. On the thermodynamic limit of photovoltaic energy conversion. Appl. Phys. A 1981, 25, 119–125. [Google Scholar] [CrossRef]

	31. 
Yan, Z. Comment on “An ecological optimization criterion for finite-time heat engines”. J. Appl. Phys. 1993, 73, 3583–3583. [Google Scholar] [CrossRef]

	32. 
Calvo Hernández, A.; Medina, A.; Roco, J.M.M.; White, J.A.; Velasco, S. Unified optimization criterion for energy converters. Phys. Rev. E 2001, 63, 037102. [Google Scholar] [CrossRef]

	33. 
Sánchez-Salas, N.; López-Palacios, L.; Velasco, S.; Calvo Hernández, A. Optimization criteria, bounds, and efficiencies of heat engines. Phys. Rev. E 2010, 82, 051101. [Google Scholar] [CrossRef]

	34. 
Sánchez-Salas, N.; Calvo Hernández, A. Unified working regime of irreversible Carnot-like heat engines with nonlinear heat transfer laws. Energy Convers. Manag. 2002, 43, 2341–2348. [Google Scholar] [CrossRef]

	35. 
Sahin, B.; Kodal, A.; Yavuz, H. Maximum power density for an endoreversible carnot heat engine. Energy 1996, 21, 1219–1225. [Google Scholar] [CrossRef]

	36. 
Bejan, A. Theory of heat transfer-irreversible power plants-II. The optimal allocation of heat exchange equipment. Int. J. Heat Mass Transfer 1995, 38, 433–444. [Google Scholar] [CrossRef]

	37. 
De Vos, A. Endoreversible thermoeconomics. Energy Convers. Manag. 1995, 36, 1–5. [Google Scholar] [CrossRef]





© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).







nav.xhtml


  entropy-14-02611


  
    		
      entropy-14-02611
    


  




  





media/file5.png
0.30 |
nMPD:

0.25/

0.151

0.20 |






media/file3.png
0.35

mp

0.25!
0.15!

0.05!

a)

mQ

0.4:
0.3:
o.z:

01/

b)

01

0.2

03

04

0.5





media/file1.png
RN

e

T,

azélqz

b)

a)





media/file4.jpg
0.30

nMPD
0.25

0.20

0.2 0.4

0.6

0.8

1.0





media/file0.jpg
a)

b)





media/file2.jpg
035 a)

0.25
mp .

0.15

0.05
04 b)
mQ
03

0.2

01

0.1 0.2 03 04 0.5





