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Abstract: Capacity bounds for a three-node binary symmetric relay channel with
orthogonal components at the destination are studied. The cut-set upper bound and the
rates achievable using decode-and-forward (DF), partial DF and compress-and-forward
(CF) relaying are first evaluated. Then relaying strategies with finite memory-length
are considered. An efficient algorithm for optimizing the relay functions is presented.
The Boolean Fourier transform is then employed to unveil the structure of the optimized
mappings. Interestingly, the optimized relay functions exhibit a simple structure. Numerical
results illustrate that the rates achieved using the optimized low-dimensional functions are
either comparable to those achieved by CF or superior to those achieved by DF relaying.
In particular, the optimized low-dimensional relaying scheme can improve on DF relaying
when the quality of the source-relay link is worse than or comparable to that of other links.

Keywords: binary symmetric relay channel; decode-and-forward; compress-and-forward;
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1. Introduction

In this paper we consider a relay network consisting of a source, a relay, and a destination, as
illustrated in Figure 1. This channel is considered in [1,2]. The communication task is to reproduce
the transmitted message M , uniformly chosen from the setM = {1, 2, . . . , 2nR}, at the destination such
that the probability of error is arbitrarily small. The transmission of a message consumes n channel
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uses. We desire to quantify the supremum of the set of rates, R, for which the average message error
probability at the destination can be made to approach zero as the number of channel uses n goes to
infinity. This number is the capacity, C, in the communication between the source and destination. The
channel capacity for the general relay channel is still an open problem.

Figure 1. Three-node relay network.
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One special case of the general relay channel is the Gaussian relay channel, which is studied,
e.g., in [2–9]. In this paper, however, we focus on a relay network in which each link is a binary
symmetric channel. Some instances of the binary symmetric relay channel (BSRC) are considered
in [10–14]. The work of [10,11] considers BSRCs with correlated noises and [12,13] focuses on the
detect-and-forward protocol for multi-hop relaying and the relay channel, respectively. In this paper,
we consider a model that is also studied in an independent work [14]. We study decode-and-forward
(DF), partial decode-and-forward (PDF), compress-and-forward (CF) and general finite-memory relay
mappings. One of our main contributions is to propose a general structure for finite dimensional relaying.
We show that one can improve on the result presented in [14] and illustrate that it is possible to approach
the capacity upper bound for some cases by using the proposed low-dimensional mappings. Interestingly
we recover the lower bound in [14] by a simple one-dimensional mapping at the relay. We also illustrate
that one can obtain higher reliable rates by employing optimized relaying functions with larger memories.
The rate obtained via optimized finite-length mappings can be superior to those achieved by DF protocol
in some cases and are comparable to those achieved by CF protocol in general.

The remaining part of the paper is organized as follows. In Section 2, we present the three-node BSRC
with orthogonal components at the destination. Section 3 derives capacity bounds for the BSRC when
the relay is assumed to have infinite memory. Section 4 investigates capacity bounds for the BSRC when
the relay is assumed to have a finite memory. We present an algorithm to optimize the relay mapping
in Section 4. In Section 5 we compare the achievable rates as a function of memory length. Finally,
Section 6 concludes the paper.

Notation: We use the following notation for brevity.

• GFb denotes the binary Galois filed, i.e., {0, 1}.
• GFkb denotes the k-dimensional binary Galois filed, i.e., {0, 1}k.
• Hb(ε) := −ε log(ε)− (1− ε) log(1− ε) denotes binary entropy function where ε ∈ [0, 1].
• DH(x

k
1, y

k
1) denotes the Hamming distance between the two binary sequences of length k.

• The operation ∗ is defined as ε1 ∗ ε2 := ε1 + ε2 − 2ε1ε2.
• We denote that the binary random variable Z has a Bernoulli distribution by Z ∼ Ber(ε) where

Pr(Z = 1) = ε and Pr(Z = 0) = 1− ε.
• We denote the binary Kronecker delta function by δb(x), where δb(0) = 1 and δb(1) = 0 for
x ∈ GFb.



Entropy 2012, 14 2591

2. Binary Symmetric Relay Channel

In this section, we introduce the channel model that we consider in the paper. Figure 2 shows a
BSRC consisting of three nodes: a source, a relay and a destination. In this model, we however assume
that received signals at the destination are orthogonal. That is, the signals transmitted from the source
and the relay do not interfere with each other. We further assume that all links are corrupted with
modulo-sum noises distributed according to the Bernoulli distribution and all quantities are binary; i.e.,
X,Xr, Y1, Y2, Yr ∈ {0, 1}.

The received signal at the relay Yr is given by

Yr = X ⊕ Zr (1)

whereX is the transmitted symbol from the source andZr ∼ Ber(εr) is the additive Bernoulli noise. (The
Bernoulli noise models for example the conventional communication set-up using BPSK modulation
followed by a hard decision (see also [14]).) The received signal from the source at the destination Y1 is
given by

Y1 = X ⊕ Z1 (2)

where Z1 ∼ Ber(ε1) is the additive Bernoulli noise. Similarly, the received signal from the relay at the
destination Y2 is given by

Y2 = Xr ⊕ Z2 (3)

where Xr is the transmitted symbol from the relay and Z2 ∼ Ber(ε2) is the additive Bernoulli noise. We
assume that the random variables Zr, Z1, and Z2 are mutually independent. Note that the addition in
Equations (1)–(3) is done in GF(2).

Remark 1. Figure 3 shows a BSRC with non-orthogonal reception at the destination. The received signal
at the destination is given by

Y = X ⊕Xr ⊕ Z (4)

where X and Xr respectively denote the symbols transmitted by the source and the relay. The random
variable Z ∼ Ber(ε) is the additive Bernoulli noise and is independent of Zr. The capacity of this
channel is

Cno = 1−Hb(ε) (5)

By setting Xr = 0, we have Y = X ⊕ Z. Then the achievability follows since maxp(x) I(X;Y |Xr =

0) = Cno. The converse follows from the cut-set bound. Invoking the multiple access bound, we have

C ≤ I(X,Xr;Y )

= H(Y )−H(Y |X,Xr)

= H(Y )−H(Z)

≤ 1−Hb(ε) (6)
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In the sequel, we present various capacity bounds for the orthogonal BSRC.

Figure 2. Orthogonal Binary Symmetric Relay Channel.
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Figure 3. Non-Orthogonal Binary Symmetric Relay Channel.
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3. Capacity Bounds for the Orthogonal BSRC: Infinite Memory Relay Case

In this section, we consider the cut-set upper bound and three lower bounds on the capacity: DF, PDF
and CF. These three bounds are evaluated based on the results in [2] for the general relay channel where
the relay has infinite memory and unlimited processing capability.

Proposition 1 (cutset bound). For the relay channel in Figure 2, the capacity is upper bounded by

RUB = min {1 +Hb(ε1 ∗ εr)−Hb(ε1)−Hb(εr), 2−Hb(ε1)−Hb(ε2)} . (7)

Proof. See Appendix A and also [14].

Proposition 2 (DF lower bound). For the relay channel in Figure 2, the capacity is lower bounded by

RDF = max{1−Hb(ε1) , min{1−Hb(εr), 2−Hb(ε1)−Hb(ε2)}} (8)

where the bound is achieved using the block Markov encoding scheme in [2] (known as DF relaying)
and the only-direct-transmission (i.e., when the relay is off).

Proof. See Appendix B.

Note that in Equation (8), we take the maximum of the rates achieved using the conventional DF [2]
and the only-direct-link transmission. In some cases it is possible to improve on DF by using PDF at the
relay. That is, the relay only decodes a part of the transmitted message. The achievable rate of PDF is
given by

RPDF = max
p(u,x,xr)

min{I(X,Xr;Y1, Y2), I(U ;Yr|Xr) + I(X;Y1, Y2|Xr, U)} (9)

where U denotes the part of the transmitted message that the relay decodes. (See Theorem 7 in [2] and
also [15].)
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Proposition 3 (PDF lower bound). For the relay channel in Figure 2, generalized block Markov encoding
attains the same rate as the modified DF given in Equation (8).

Proof. See Appendix C.

Corollary 1. DF is an optimal relaying strategy if Hb(ε1) +Hb(ε2)−Hb(εr) ≥ 1.

Proof. The proof follows from Propositions 2 and 1.

Proposition 4 (CF lower bound). For the relay channel in Figure 2, the capacity is lower bounded by

RCF =


1 +Hb(ε1 ∗ εr ∗ εq)−Hb(εr ∗ εq)−Hb(ε1), if 1 < Hb(ε2) +Hb(ε1 ∗ εr)

1 +Hb(ε1 ∗ εr)−Hb(εr)−Hb(ε1), if 1 ≥ Hb(ε2) +Hb(ε1 ∗ εr)
(10)

where εq satisfies
Hb(ε1 ∗ εr ∗ εq)−Hb(εq) +Hb(ε2) = 1 (11)

Proof. See Appendix D.

The bound in Equation (10) is achieved using the side-information encoding scheme in [2], known as
CF relaying.

Corollary 2. CF is an optimal relaying strategy if Hb(ε1 ∗ εr) +Hb(ε2) ≤ 1.

Proof. The proof follows from Propositions 4 and 1.

Figure 4. Optimal regions for ε2 = 0.05.
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Figures 4 and 5 show optimal regions in the plane [0, 1]× [0, 1] for ε2 set to 0.05 and 0.2, respectively.
One can see that for some parameters of εr and ε1, CF or DF is optimal.

From Figures 4 and 5, we see that DF is optimal when εr is small and ε1 is close to 0.5. When
ε1 = 0.5, the BSRC simplifies to a two-hop channel for which DF is capacity achieving. However, DF
is also optimal when the relay is relatively strong compared with the direct link.

From Figures 4 and 5, we similarly see that CF is optimal at the corner of the plane, i.e., when ε1 and
εr are small. As ε2 increases, the area of the region for which CF is optimal shrinks. This is due to the
fact that small value of ε2 allows the relay to use higher rate to describe the received signal to destination.
Small value of ε1 means the destination has better side-information in order to decode the reproduction
sequence generated at the relay, and small value of εr means that the relay receives a less-noisy sequence
on average that makes compression of the “true” signal easier.

Figure 5. Optimal regions for ε2 = 0.2.
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4. Capacity Bounds for the Orthogonal BSRC: Finite Memory Relay Case

We next consider the case when the relay has a finite memory length. For the Gaussian relay channel,
optimized memoryless relaying is investigated in [16–19]. Here we consider higher-dimension mappings
for the BSRC.

If the relay has a storage memory of k bits, it can process the last k − 1 and the presently received
symbol to generate k new symbols using k possibly different k-dimensional functions. This results
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in a low-complexity relaying protocol suitable for delay-sensitive or inexpensive applications. In the
following, we denote the relay functions by

fi : GFkb 7−→ GFb
xr,i = fi(yr,1, . . . , yr,k) (12)

for i ∈ {1, 2, . . . , k}. Note that we here consider the whole sub-block of k symbols to generate k new
symbols to be transmitted to the destination. This is different from the classical definition with strictly
causal relaying. We are allowed to do this, without any particular condition in signal reception at the
relay, since the relay has an orthogonal link to the destination.

4.1. Achievable Rate

For a given set of relay functions {fi}ki=1, the channel is parameterized by the pmf p(y|x), by defining
y ≡ (yk1,1, y

k
2,1) and x ≡ xk1, where

p (y|x) := p
(
yk1,1, y

k
2,1|xk1

)
=

∑
ykr,1∈GFk

b

p
(
yk1,1, y

k
2,1|ykr,1, xk1

)
p
(
ykr,1|xk1

)
=

∑
ykr,1∈GFk

b

p
(
yk1,1|xk1

)
p
(
yk2,1|ykr,1

)
p
(
ykr,1|xk1

)

=
∑

ykr,1∈GFk
b

k∏
i=1

p (y1,i|xi) p (yr,i|xi) p
(
y2,i|fi

(
ykr,1
))

=
∑

ykr,1∈GFk
b

k∏
i=1

[
(1− ε1)δb (y1,i ⊕ xi) + ε1δb (y1,i ⊕ xi ⊕ 1)

]
×

[
(1− εr)δb (yr,i ⊕ xi) + εrδb (yr,i ⊕ xi ⊕ 1)

]
×[

(1− ε2)δb
(
y2,i ⊕ fi

(
ykr,1
))

+ ε2δb
(
y2,i ⊕ fi

(
ykr,1
)
⊕ 1
) ]

(13)

Now one can apply the standard random coding argument for the equivalent discrete memoryless
point-to-point communication link with the input x and the output y whose relation is governed by
the pmf p (y|x) as follows. Generate 2(nk)Ck i.i.d. codewords where each has length kn and each k
subsequent symbols in every codeword is distributed according to p(xk1) (i.e., p(xkn1 ) =

∏n
i=1 p(x

k
1)).

Thus, the achievable rate using the finite memory relay is given by

Ck = sup
{fi}ki=1,p(x

k
1)

1

k
I(Xk

1 ;Y
k
1,1, Y

k
2,1) (14)

where the supremum is taken over the set of Boolean functions {fi}ki=1 and the joint pmf p(xk1) of k
symbols at the source. Since the channel is used k times, the mutual information in Equation (14) is
divided by k (see also [1,4]).

Achievable Rate for k = 1: The simplest case is the memoryless relay in which the relay just transmits
the received noisy bit to the destination without any further processing. That is xr,i = yr,i for 1 ≤ i ≤ n.
For this relay function, the optimal input distribution is X ∼ Ber(1

2
).
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Proposition 5. For the relay channel in Figure 2, the rate

C1 = 1 +Hb(ε1 ∗ εr ∗ ε2)−Hb(εr ∗ ε2)−Hb(ε1) (15)

is achievable.

Proof. See Appendix E.

We note that the rate C1 is also derived in [14] via a suboptimal evaluation of the CF lower
bound. However, here we arrive at this rate using a one-dimensional mapping without any need for
a compression codebook at the relay.

Computation of Ck for k ≥ 2 is a cumbersome task. Nevertheless, there is no unique set of relay
functions that is optimal for all channel parameters εr, ε1, ε2. To see this, consider the case with ε2 = 0.
For this case, the simple strategy with k = 1 used in Proposition 5 is optimal. However, this relay
function is not necessarily optimal for cases with ε2 6= 0 since one can potentially provide error protection
on the relay-destination link by utilizing functions with higher dimensions.

4.2. Mapping Optimization for an Arbitrary k

In the following, we confine the pmf at the source to be p(xk1) =
∏k

i=1 p(x), and p(x) = 1
2
δb(x) +

1
2
δb(x⊕ 1), i.e., X ∼ Ber(1

2
).

Lemma 1. The mutual information given in Equation (14) can be written as

1

k
I(Xk

1 ;Y
k
1,1, Y

k
2,1) = 1−Hb(ε1)−

1

k
E
[
log(p(yk2,1|yk1,1))

]
+

1

k
E
[
log(p(yk2,1|xk1))

]
(16)

where

p(yk2,1|xk1) = (1− ε2)k(1− εr)k
∑

ykr,1∈GFk
b

(
ε2

1− ε2

)DH(y
k
2,1,f(y

k
r,1))
(

εr
1− εr

)DH(y
k
r,1,x

k
1)

(17)

and

p(yk2,1|yk1,1) =

(1− ε1)k(1− ε2)k(1− εr)k
∑

ykr1∈GFk
b

(
ε2

1− ε2

)DH(y
k
2,1,f(y

k
r,1)) ∑

xk1∈GFk
b

(
εr

1− εr

)DH(y
k
r,1,x

k
1)
(

ε1
1− ε1

)DH(y
k
1,1,x

k
1)

.

(18)

Proof. See Appendix F.

To compute the rate in Equation (14), one needs to select the best functions among 2k2
k possible

choices, which has a exponential complexity. (For k = 4, there are approximately 1.8 × 1019 possible
functions.) In order to cope with the complexity, we implement an efficient hill-climbing search
algorithm as follows. For a given k, we first initialize the relay functions with a random mapping
and compute the rate using Lemma 1. Then we randomly select one function and one corresponding
dimension, and flip the mapping and recompute the rate. If the new mapping provides a higher
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rate, we accept the change. Otherwise we repeat the process until the mapping converges. Since
the algorithm by construction may terminate in a local optimum, we repeat the whole algorithm with
different initializations and pick the mapping that attains the highest rate.

One example of the optimized mapping for k = 4 when ε1 = ε2 = εr = 0.01 is

F =


0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1

1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0

 .
Here Fij denotes the output of the relay along the ith dimension for the jth input configuration (we have
1 ≤ i ≤ 4 and 1 ≤ j ≤ 24). The relay for a given combination of the received bits finds the decimal
representation and transmits the bits in the column given by the decimal representation plus one. For
example, for the received string 0000, the relay transmits the bits in the first column, i.e., 0111. By
studying the matrix F , we can get some insight into the underlying structure of the mapping. Finding
an efficient structure at the relay simplifies the design and the implementation of relaying. We employ
the Fourier transform to accomplish this task. Our use of the binary Fourier (or Hadamard) transform is
related to how it was used in, e.g., [20,21], to analyze the performance of quantizers over noisy channels.

4.3. Fourier Spectrum of the Optimized Mappings

In order to define the Fourier transform, we need an orthonormal basis [22]. Consider the following
set of functions

XS(x) : {−1,+1}k 7−→ {−1,+1}
XS(x) =

∏
i∈S

xi (19)

where S ⊆ {1, 2, . . . , k}. Then, any function f : {0, 1}k → {0, 1} can uniquely be represented as (We
use the one-to-one mapping 0⇐⇒ +1 and 1⇐⇒ −1.)

f =
∑

S⊆{1,2,...,k}

f̂(S)XS (20)

where f̂(S) is the Fourier coefficient of f and is given by

f̂(S) = 〈f,XS〉 =
1

2k

∑
x∈{+1,−1}k

f(x)XS(x)

= E [f · XS] (21)
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The expectation in Equation (21) is taken uniformly over x ∈ {+1,−1}k. Note that the Fourier
expansion of f can potentially have up to 2k terms. As an example consider the following randomly
chosen function.

x3 x2 x1 f

+ 1 + 1 + 1 + 1

+ 1 + 1 − 1 + 1

+ 1 − 1 + 1 − 1

+ 1 − 1 − 1 − 1

− 1 + 1 + 1 − 1

− 1 + 1 − 1 + 1

− 1 − 1 + 1 + 1

− 1 − 1 − 1 + 1

This function can be expanded as

f(x1, x2, x3) =
1

4
− 1

4
x1 +

1

4
x2 −

1

4
x3 −

1

4
x1x2 +

1

4
x1x3 +

3

4
x2x3 +

1

4
x1x2x3 (22)

That is, the Fourier spectrum has eight terms and the function is not linear. In general, we would like
a sparse Fourier spectrum for efficient implementation. (Sparsity of mappings allows to realize them
with much fewer multiplications and additions. This can be also compared to codes with low-density
generator/parity matrices that allow simpler encoding and decoding in general.)

Table 1 presents the Fourier expansion of optimized relay functions for k = 2, 3, 4, 6 when
ε1 = ε2 = εr = 0.01. Interestingly, we see that that the Fourier expansion of the optimized functions
is indeed sparse. Using the results in Table 1, we can rewrite the functions in the following form

f : {0, 1}k 7−→ {0, 1}k

xr = Akyr + bk (23)

where xr = [xr,1, . . . , xr,k]
T and yr = [yr,1, . . . , yr,k]

T , and Ak ∈ {0, 1}[k×k] and bk ∈ {0, 1}[k×1]. For
example for k = 6, we have

A6 =



0 1 1 0 1 0

1 0 1 1 0 1

0 1 0 1 1 0

1 1 1 1 0 0

1 0 0 0 1 1

0 1 1 1 0 1


, b6 =



0

1

1

1

0

1


Note that the mapping given in Equation (23) is not linear in the binary field, when bk 6= 0. However,

the linear mapping xr = Akyr gives the same performance as xr = Akyr + bk. In other words the
bias term bk does not improve the rate. This essentially follows from the data processing inequality.
Therefore, the underlying relay functions define a linear code of rate one on the noisy received bits at the
relay. Additionally, the code used at the relay performs joint source–channel coding, it therefore should
be good for both source and channel coding.
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Table 1. Fourier expansion of the optimized relay functions for the orthogonal BSRC with
ε1 = ε2 = εr = 0.01.

k = 2
f1(y

k
r1) = yr1

f2(y
k
r1) = yr2yr1

k = 3

f1(y
k
r1) = yr3yr2yr1

f2(y
k
r1) = −yr3yr1

f3(y
k
r1) = yr3yr2

k = 4

f1(y
k
r1) = −yr4yr3yr1

f2(y
k
r1) = −yr4yr2yr1

f3(y
k
r1) = −yr3yr2yr1

f4(y
k
r1) = yr4yr3yr2

k = 6

f1(y
k
r1) = yr5yr3yr2

f2(y
k
r1) = −yr6yr4yr3yr1

f3(y
k
r1) = −yr5yr4yr2

f4(y
k
r1) = −yr4yr3yr2yr1

f5(y
k
r1) = yr6yr5yr1

f6(y
k
r1) = −yr6yr4yr3yr2

4.4. Effect of Channel Parameters on the Structure of the Optimized Mappings

In this section, we investigate the structure of the optimized mappings for different channel
parameters. Our numerical search indicates that the linear mapping xr = Akyr is an efficient strategy
among all classes of mappings for low-dimensional relaying. That is, the relay employs the binary matrix
Ak to generate the relay outputs using k received bits.

Table 2 shows the optimized generator matrices Ak for various values of εr when k = 6,
ε1 = ε2 = 0.05. In particular, for εr = 0.25 the optimized generator matrix is the identity matrix, i.e.,
A6 = I6. For this case, the relay is better off transmitting the received noisy bits without any further
processing. However, as εr decreases, the relay starts combining the received bits at the relay before
transmitting. The number of ones in a row of the generator matrix indicates the number of inputs that the
relay combines. The density of ones in the generator matrices ρ := # of ones

k2
are also shown in Table 2.

We see that as εr decreases, ρ increases. That is, the relay starts to transmit combinations of more bits
in one single channel use. This occurs because of two main reasons: firstly when εr decreases the relay
receives less noisy bits on average and secondly the destination has some partial knowledge of individual
bits via the received signal from the source.

Table 3 shows the optimized generator matrices for various values of ε1 when k = 6, εr = 0.01

and ε2 = 0.1. We similarly see that as ε1 decreases, ρ increases. This is due to the fact that when ε1
decreases, the destination receives better descriptions of the transmitted bits via the source-destination
link. The relay then forwards combinations of several incoming bits when the destination has access to
more reliable side information.
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Table 2. Optimized generator matrices as a function of εr for k = 6 and ε1 = ε2 = 0.05.

εr 0.25 0.1 0.05 0.01 0.001 0.0001

A6



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 1 0

1 0 0 0 1 0

1 1 1 1 1 1





1 0 0 0 1 0

1 1 1 1 0 0

1 0 1 0 0 0

1 0 0 1 1 1

0 1 0 0 1 0

0 0 0 0 1 1





1 1 0 0 0 1

0 1 0 1 1 0

0 0 1 1 1 0

1 0 1 1 0 0

1 0 1 0 1 1

0 1 1 0 1 1





1 1 1 0 0 1

0 1 1 1 0 0

0 1 1 0 1 1

1 1 0 1 1 0

1 0 0 0 1 1

1 0 1 1 1 0





1 0 0 1 0 1

0 1 0 1 0 1

1 1 1 0 0 1

1 1 1 1 1 0

1 1 0 0 1 1

0 0 1 1 1 1


ρ 0.1667 0.3611 0.4444 0.5556 0.6111 0.6389

Table 3. Optimized generator matrices as a function of ε1 for k = 6 and εr = 0.01, ε2 = 0.1.

ε1 0.4 0.25 0.1 0.05 0.01 0.001

A6



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





0 1 1 0 0 0

1 0 0 1 0 0

0 0 1 0 0 1

1 0 0 0 0 1

0 1 0 0 1 0

0 0 0 1 1 0





1 1 0 0 1 1

0 1 0 1 0 1

0 1 1 0 1 0

1 0 0 1 1 1

1 0 1 0 1 0

1 0 1 1 0 0





1 1 1 0 1 0

1 0 1 1 0 0

1 0 1 0 1 1

0 1 1 1 1 1

1 0 0 1 1 0

1 1 0 1 0 1





1 0 1 0 1 1

1 1 0 1 0 1

0 1 0 1 1 1

1 0 1 1 1 0

1 1 1 0 1 0

0 1 1 1 0 1





1 1 1 1 0 0

0 1 1 1 1 1

1 1 1 0 1 0

1 0 1 1 1 1

1 1 1 0 0 1

1 1 0 1 1 1


ρ 0.1667 0.3333 0.5556 0.6389 0.6667 0.7500

Table 4. Optimized generator matrices as a function of ε2 for k = 6 and εr = 0.01, ε1 = 0.1.

ε2 0.4 0.25 0.05 0.01 0.001 0.0001

A6



0 1 1 1 1 1

1 1 1 1 0 1

1 0 1 1 1 1

1 1 1 0 1 1

1 1 1 1 1 0

1 1 0 1 1 1





1 1 0 1 1 0

0 1 1 0 1 1

1 1 1 1 0 0

1 1 0 1 0 1

1 0 1 0 1 1

0 0 1 1 1 1





0 1 1 1 1 1

1 0 1 1 0 1

0 1 0 1 0 1

1 1 1 0 1 1

0 1 0 0 1 1

1 0 0 0 1 1





0 1 1 0 1 0

0 1 0 1 1 0

0 0 0 1 1 1

1 1 1 1 1 0

1 0 1 0 1 1

1 0 0 1 0 1





0 0 1 0 0 1

0 1 0 1 0 1

1 1 0 0 0 1

0 1 1 0 1 0

1 0 0 0 0 0

0 1 0 1 1 0





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


ρ 0.8333 0.6667 0.6389 0.5833 0.4167 0.1667

Table 4 shows the optimized generator matrices for various values of ε2 when k = 6, εr = 0.01 and
ε1 = 0.1. We can see that as ε2 decreases, the density of ones ρ decreases as well. For ε2 = 0.0001,
we have A6 = I6. This is due to the fact that for small value of ε2, the relay can reliably transmits the
received bits to the destination. (Note that this strategy is optimal if ε2 = 0). However, for high values of
ε2, the relay combines several bits prior to the transmission. This helps the destination combat the noise
on the relay-destination link.

5. Numerical Examples

Figure 6 shows the capacity results for the orthogonal BSRC shown in Figure 2 as a function of εr
when ε1 = ε2 = 0.01. In this figure, we have plotted the cut-set upper bound (UB) (Equation (7)), rates
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achieved using decode-and-forward (DF) (Equation (8)), compress-and-forward (CF) (Equation (10)),
and optimized finite memory relay (Equation (14)) for different memory size. The relay functions are
optimized for the channel parameters ε1 = ε2 = εr = 0.01 and are given in Table 1.

From Figure 6, we see that the achievable rate of DF decreases as εr increases to 0.01. For εr ≥ 0.01,
the achievable rate of DF coincides with that achievable with direct transmission (i.e., the relay is off).
On the other hand, the rates achieved by CF coincides with the upper bound for the chosen channel
parameters since the condition in Corollary 2 is satisfied. More interestingly, optimized low-dimensional
relaying with k = 6 achieves rates close to those achieved by CF and operates close to the capacity.

Figure 6. Capacity results for the binary symmetric relay channel as a function of εr when
ε1 = ε2 = 0.01.
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6. Summary and Concluding Remarks

We introduced a binary symmetric relay channel with orthogonal components at the destination, and
investigated three main relaying strategies: decode-and-forward (DF) relaying, compress-and-forward
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(CF) relaying, and optimized low-dimensional relaying. We used a bit-switching numerical algorithm
to find optimized mappings. We initialized our algorithm with arbitrary random nonlinear mappings,
and after optimization based on Fourier analysis, we observed that all optimized mappings that we
found were linear. We also illustrated that one can obtain rates very close to the upper bound by
using the proposed optimized low-dimensional relaying scheme. It is worth noting that DF and CF
require codebooks with infinite block length codewords at the relay. This stands in a sharp contrast to the
proposed low-dimensional relaying scheme. Additionally, the suggested relaying protocol has low-delay
processing and paves the way for implementation of inexpensive relaying protocols. We finally note that
the sufficiency of linear mappings for the problem of optimal relaying remains open.
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Appendix

A. Proof of Proposition 1

In order to proceed, we first recite a lemma given in [13] (We thank one of the anonymous reviewers
for bringing this result to our attention.) that we occasionally use in the sequel.

Lemma 2. Consider a binary symmetric channel with input X and outputs Y1 and Y2, where

Y1 = X ⊕ Z1

Y2 = X ⊕ Z2

The random variable Z1 ∼ Ber(ε1) and is independent of Z2 ∼ Ber(ε2). The capacity of this channel is
given by

C = 1 +Hb(ε1 ∗ ε2)−Hb(ε1)−Hb(ε2) (24)

Proof. A proof of this lemma can be found in [24], but for completeness we present a slightly different
proof in the following. The channel is a standard 1× 2 SIMO (single-input multiple-output) link and its
capacity is given by

C = max
p(x)

I(X;Y1, Y2) (25)
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Next consider

C = H(Y1, Y2)−H(Y1, Y2|X)

= H(Y1, Y2)−H(Z1, Z2|X)

= H(Y1, Y2)−H(Z1)−H(Z2)

= H(Y1) +H(Y2|Y1)−Hb(ε1)−Hb(ε2)

= H(Y1) +H(Y2 ⊕ Y1|Y1)−Hb(ε1)−Hb(ε2)

≤ H(Y1) +H(Y2 ⊕ Y1)−Hb(ε1)−Hb(ε2)

= H(Y1) +H(Z2 ⊕ Z1)−Hb(ε1)−Hb(ε2)

≤ 1 +Hb(ε1 ∗ ε2)−Hb(ε1)−Hb(ε2) (26)

We finally note that the upper bound can be achieved by choosing X ∼ Ber(0.5).

Proof of Proposition 1: Using the cut-set bound [2], we have

C ≤ max
p(x,xr)

min{I(X,Xr;Y1, Y2), I(X;Y1, Y2, Yr|Xr)}

Now we bound each term.

I(X,Xr;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X,Xr)

= H(Y1, Y2)−H(Z1, Z2|X,Xr)

= H(Y1, Y2)−H(Z1)−H(Z2)

≤ H(Y1) +H(Y2)−H(Z1)−H(Z2)

≤ 2−Hb(ε1)−Hb(ε1) (27)

Similarly, we have

I(X;Yr, Y1, Y2|Xr) = I(X;Y1, Yr|Xr) + I(X;Y2|Y1, Yr, Xr)

= I(X;Y1, Yr|Xr) +H(Y2|Y1, Yr, Xr)

−H(Y2|Y1, Yr, Xr, X)

= I(X;Y1, Yr|Xr) +H(Z2|Y1, Yr, Xr)

−H(Z2|Y1, Yr, Xr, X)

= I(X;Y1, Yr|Xr)

= H(Y1, Yr|Xr)−H(Y1, Yr|X,Xr)

= H(Y1, Yr|Xr)−H(Z1, Zr|X,Xr)

= H(Y1, Yr|Xr)−H(Z1, Zr)

≤ H(Y1, Yr)−H(Z1, Zr)

= I(X;Y1, Yr)

≤ 1 +Hb(ε1 ∗ εr)−Hb(ε1)−Hb(εr) (28)
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where the last inequality follows from Lemma 2. Combining (27) and (28) and noting that (27) and (28)
are maximized when the input distribution is chosen as

p(x, xr) = p(x)p(xr) = [0.5δb(x) + 0.5δb(x⊕ 1)] [0.5δb(xr) + 0.5δb(xr ⊕ 1)]

yield the result.

B. Proof of Proposition 2

Using Theorem 1 in [2], the rate

RDF = max
p(x,xr)

min{I(X,Xr;Y1, Y2), I(X;Yr|Xr)}

is achievable. The first term is evaluated in Appendix A and is maximized when X and Xr are
independent and have uniform distribution. One can show the same distribution maximizes the second
term. This yields

RDF = min{1−Hb(εr), 2−Hb(ε1)−Hb(ε2)}. (29)

C. Proof of Proposition 3

Using Theorem 7 in [2] , the rate

RPDF = max
p(u,x,xr)

min{I(X,Xr;Y1, Y2), I(U ;Yr|Xr) + I(X;Y1, Y2|Xr, U)}

is achievable. (See also [15].) The first term is evaluated in Appendix A and is bounded as

I(X,Xr;Y1, Y2) ≤ 2−Hb(ε1)−Hb(ε2) (30)

Next consider

I(U ;Yr|Xr) + I(X;Y1, Y2|Xr, U)

= I(U ;Yr|Xr) +H(Y1, Y2|Xr, U)−H(Y1, Y2|X,Xr, U)

= I(U ;Yr|Xr) +H(Y1, Y2|Xr, U)−H(Z1, Z2|X,Xr, U)

= I(U ;Yr|Xr) +H(Y1, Y2|Xr, U)−H(Z1)−H(Z2)

= I(U ;Yr|Xr) +H(Y1|Xr, U) +H(Y2|Xr, U, Y1)−H(Z1)−H(Z2)

= I(U ;Yr|Xr) +H(Y1|Xr, U) +H(Z2|Xr, U, Y1)−H(Z1)−H(Z2)

= H(Yr|Xr)−H(Yr|Xr, U) +H(Y1|Xr, U)−H(Z1)

≤ H(Yr)−H(Yr|Xr, U) +H(Y1|Xr, U)−H(Z1)

≤ 1−Hb(ε1) +H(Y1|Xr, U)−H(Yr|Xr, U) (31)

Now we bound H(Y1|Xr, U) − H(Yr|Xr, U). First, define V := (Xr, U) where p(V = vi) = pi and∑
i pi = 1. Further assume that p(x = 0|V = vi) = δi, p(x = 1|V = vi) = 1− δi. Next consider
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H(Y1|Xr, U)−H(Yr|Xr, U) = H(X + Z1|V )−H(X + Zr|V )

=
∑
i

(H(X + Z1|V = vi)−H(X + Zr|V = vi)) pi

≤
∑
i

max
δi

(H(X + Z1|V = vi)−H(X + Zr|V = vi)) pi

= max
δi

(H(X + Z1|V = vi)−H(X + Zr|V = vi))
∑
i

pi

= max
δi

(H(X + Z1|V = vi)−H(X + Zr|V = vi))

= max
δi

(Hb(δi ∗ ε1)−Hb(δi ∗ εr)) (32)

In the following, let h(δ) := Hb(δ ∗ ε1)−Hb(δ ∗ εr) and max{ε1, εr} ≤ 0.5. We then obtain

∂h

∂δ
= (1− 2ε1) log

(
1− (δ ∗ ε1)
δ ∗ ε1

)
− (1− 2εr) log

(
1− (δ ∗ εr)
δ ∗ εr

)
∂2h

∂δ2
=

(
(1− 2εr)

2

(δ ∗ εr)(1− (δ ∗ εr))
− (1− 2ε1)

2

(δ ∗ ε1)(1− (δ ∗ ε1))

)
(33)

Now let g(ε) := (1−2ε)2
(δ∗ε)(1−(δ∗ε)) . One can show that ∂g

∂ε
≤ 0 if ε ≤ 0.5 and hence g(ε) is a non-increasing

function. Thus we conclude that{
εr ≤ ε1 =⇒ g(εr) ≥ g(ε1) =⇒ ∂2h

∂δ2
≥ 0 =⇒ h(δ) is convex

εr ≥ ε1 =⇒ g(εr) ≤ g(ε1) =⇒ ∂2h
∂δ2
≤ 0 =⇒ h(δ) is concave

(34)

Therefore {
h(δ) ≤ max{h(0), h(1)}, if εr ≤ ε1

h(δ) ≤ h(δ?), if εr ≥ ε1
(35)

where δ? is the solution of ∂h
∂δ

= 0. Finally we obtain the following bound

H(Y1|Xr, U)−H(Yr|Xr, U) ≤

{
Hb(ε1)−Hb(εr), if εr ≤ ε1

0, otherwise
(36)

Combining Equations (30), (31) and (36) proves that partial DF does not improve on DF for the BSRC.

D. Proof of Proposition 4

We use the equivalent formulation of the original CF (Theorem 6 in [2]) given in [4]. CF achieves
the rate

RCF = max
p(q)p(x|q)p(xr|q)p(ŷr|xr,yr,q)

min
{
I(X,Xr;Y1, Y2|Q)− I(Yr; Ŷr|X,Xr, Y1, Y2, Q),

I(X;Y1, Y2, Ŷr|Xr, Q)
}

(37)
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First consider

I(X,Xr;Y1, Y2|Q) = I(X;Y1, Y2|Q) + I(Xr;Y1, Y2|X,Q)
= I(X;Y1|Q) + I(X;Y2|Y1, Q) + I(Xr;Y2|X,Q) + I(Xr;Y1|Y2, X,Q)
= I(X;Y1|Q) + I(Xr;Y2|X,Q)
= I(X;Y1|Q) + I(Xr;Y2|Q)
≤ 2−Hb(ε1)−Hb(ε2) (38)

where the upper bound can be achieved by choosing X ∼ Ber(0.5) and Xr ∼ Ber(0.5).
In order to proceed we choose the following binary test channel:

Ŷr = Yr ⊕ Zq (39)

where Zq ∼ Ber(εq) and is independent of other random variables.
This yields

I(Yr; Ŷr|X,Xr, Y1, Y2, Q) = H(Ŷr|X,Xr, Y1, Y2, Q)−H(Ŷr|Yr, X,Xr, Y1, Y2, Q)

= H(Zr ⊕ Zq)−H(Zq) = Hb(εr ∗ εq)−Hb(εq) (40)

I(X;Y1, Y2, Ŷr|Xr, Q) = I(X;Y1, Ŷr|Xr, Q) + I(X;Y2|Y1, Ŷr, Xr, Q)

= I(X;Y1, Ŷr|Q)
≤ 1 +Hb(ε1 ∗ εr ∗ εq)−Hb(εr ∗ εq)−Hb(ε1) (41)

where the last inequality follows from Lemma 2 and it is achieved by choosing X ∼ Ber(0.5).
Putting all together, the following rate is achievable

RCF = max
εq∈[0,1]

min
{
2−Hb(ε1)−Hb(ε2)−Hb(εr ∗ εq) +Hb(εq),

1 +Hb(ε1 ∗ εr ∗ εq)−Hb(εr ∗ εq)−Hb(ε1)
}

(42)

Now define

R1(εq) := 2−Hb(ε1)−Hb(ε2)−Hb(εr ∗ εq) +Hb(εq)

R2(εq) := 1 +Hb(ε1 ∗ εr ∗ εq)−Hb(εr ∗ εq)−Hb(ε1) (43)

Using the fact that f(ε) := Hb(ε ∗ δ)−Hb(ε) is convex ∀δ ∈ [0, 1], we conclude that R1(εq) is concave
and R2(εq) is convex in εq. We next note that

max
εq

R1 = R1(0.5) = 2−Hb(ε1)−Hb(ε2)

min
εq

R2 = R2(0.5) = 1−Hb(ε1) (44)

Since R2(0.5) ≤ R1(0.5) we only need to consider two following cases:
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• Case 1: R1(0) < R2(0)

If R1(0) < R2(0) we have 1−Hb(ε2) < Hb(ε1 ∗ εr) and there exists εq such that R1(εq) = R2(εq).
Thus

RCF = 1 +Hb(ε1 ∗ εr ∗ εq)−Hb(εr ∗ εq)−Hb(ε1) (45)

is achievable where εq satisfies

Hb(ε1 ∗ εr ∗ εq)−Hb(εq) +Hb(ε2) = 1 (46)

• Case 2: R1(0) ≥ R2(0)

If R1(0) ≥ R2(0) we have 1−Hb(ε2) ≥ Hb(ε1 ∗ εr). Thus

RCF = max
εq

min{R1(εq), R2(εq)} = max
εq

R2(εq) = R2(0) = 1 +Hb(ε1 ∗ εr)−Hb(εr)−Hb(ε1)

(47)
is achievable.

E. Proof of Proposition 5

For the memoryless relay, we have xr = yr and hence

Y1 = X ⊕ Z1

Y2 = Xr ⊕ Z2 = X ⊕ Zr ⊕ Z2 = X ⊕ Zeq (48)

where Zeq := Zr ⊕ Z2 ∼ Ber(εr ∗ ε2). Then the achievable rate is given by C1 = maxp(x) I(X;Y1, Y2).
Now using Lemma 2, we obtain

C1 = 1 +Hb(ε1 ∗ εr ∗ ε2)−Hb(εr ∗ ε2)−Hb(ε1) (49)

F. Proof of Lemma 1

Consider

I(Xk
1 ;Y

k
1,1, Y

k
2,1) = I(Xk

1 ;Y
k
1,1) + I(Xk

1 ;Y
k
2,1|Y k

1,1)

(a)
= kI(X1;Y1) + I(Xk

1 ;Y
k
2,1|Y k

1,1)

= kI(X1;Y1) +H(Y k
2,1|Y k

1,1)−H(Y k
2,1|Y k

1,1, X
k
1 )

(b)
= kI(X1;Y1) +H(Y k

2,1|Y k
1,1)−H(Y k

2,1|Xk
1 )

= kI(X1;Y1) +H(Y k
2,1|Y k

1,1)−H(Y k
2,1|Xk

1 )

= k(1−Hb(ε1))− E
[
log2(p(y

k
2,1|yk1,1))

]
+ E

[
log2(p(y

k
2,1|xk1))

]
(50)
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where (a) holds since {Xi}ki=1 are i.i.d. and the channel is memoryless and (b) holds since
Y k
1,1 = Xk

1 ⊕ Zk
1,1 and Zk

1,1 is independent of other random sequences. The conditional probabilities
can be computed as follows

p(yk2,1|xk1) =
∑
ykr1

p(yk2,1|xk1, ykr,1)p(ykr,1|xk1)

=
∑
ykr1

p(yk2,1|ykr,1)p(ykr,1|xk1)

=
∑
ykr1

p(yk2,1|ykr,1)
k∏
i=1

p(yr,i|xi)

=
∑
ykr1

k∏
i=1

p(y2,i|fi(ykr,1))
k∏
i=1

p(yr,i|xi)

=
∑
ykr1

ε
DH(y

k
2,1,f(y

k
r,1))

2 (1− ε2)k−DH(y
k
2,1,f(y

k
r,1))

×εDH(y
k
r,1,x

k
1)

r (1− εr)k−DH(y
k
r,1,x

k
1)

= (1− ε2)k(1− εr)k ×∑
ykr1

(
ε2

1− ε2

)DH(y
k
2,1,f(y

k
r,1))
(

εr
1− εr

)DH(y
k
r,1,x

k
1)

(51)

We similarly obtain

p(yk2,1|yk1,1) =
∑
ykr1

p(yk2,1|yk1,1, ykr,1)p(ykr,1|yk1,1)

=
∑
ykr1

p(yk2,1|ykr,1)p(ykr,1|yk1,1)

=
∑
ykr1

p(yk2,1|ykr,1)
∑
xk1

p(ykr,1|yk1,1, xk1)p(xk1|yk1)

=
∑
ykr1

p(yk2,1|ykr,1)
∑
xk1

p(ykr,1|xk1)
p(yk1,1|xk1)p(xk1)

p(yk1,1)

=
∑
ykr1

k∏
i=1

p(y2,i|fi(ykr,1))
∑
xk1

k∏
i=1

p(ykr,i|xi)
k∏
i=1

p(y1,i|xi)

= (1− ε1)k(1− ε2)k(1− εr)k ×
∑
ykr1

(
ε2

1− ε2

)DH(y
k
2,1,f(y

k
r,1))

×

∑
xk1

(
εr

1− εr

)DH(y
k
r,1,x

k
1)
(

ε1
1− ε1

)DH(y
k
1,1,x

k
1)

(52)
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