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Abstract: To address the unknown nature of probability-sampling models, in this paper we 

use information theoretic concepts and the Cressie-Read (CR) family of information 

divergence measures to produce a flexible family of probability distributions, likelihood 

functions, estimators, and inference procedures. The usual case in statistical modeling is 

that the noisy indirect data are observed and known and the sampling model-error 

distribution-probability space, consistent with the data, is unknown. To address the 

unknown sampling process underlying the data, we consider a convex combination of two 

or more estimators derived from members of the flexible CR family of divergence 

measures and optimize that combination to select an estimator that minimizes expected 

quadratic loss. Sampling experiments are used to illustrate the finite sample properties of 

the resulting estimator and the nature of the recovered sampling distribution.  
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1. Introduction 

Uncertainty regarding statistical models and associated estimating equations and the data sampling-

probability distribution function create unsolved problems as they relate to information recovery. 

Although likelihood is a common loss function used in fitting statistical models, the optimality of a 

given likelihood method is fragile inference-wise under model uncertainty. In addition the precise 

functional representation of the data sampling process cannot usually be justified from physical or 

behavioral theory. Given this situation, a natural solution is to use estimation and inference methods 

that are designed to deal with systems that are fundamentally stochastic and where uncertainty and 

random behavior are basic to information recovery. In this context [1–2], the family of likelihood 

functionals permits the researcher to face the resulting stochastic inverse problem and exploit the 

statistical machinery of information theory to gain insights relative to the underlying causal behavior 

from a sample of data.  

In developing an information theoretic approach to estimation and inference, the Cressie-Read (CR) 

family of information divergences represents a way to link the model of the process to a family of 

possible likelihood functions associated with the underlying sample of data. Information divergences 

of this type have an intuitive interpretation reflecting the uncertainty of uncertainty as it relates to a 

model of the process and a model of the data. These power divergences give new meaning to what is a 

likelihood function and what is the appropriate way to represent the possible underlying sampling 

distribution of statistical model.  

One possibility for implementing this approach is to use estimating equations-moment conditions 

(prior information) to model the process and provide a link to the data. Discrete members of the CR 

family are then used to identify the weighting of the possible underlying density-likelihood function(s) 

associated with the data observations. The outcome reflects, in a probabilistic sense, what we know 

about the unknown parameters and possible density functions. In the case of a stochastic system in 

equilibrium, the process may be modeled as a single distribution within the CR framework. An 

advantage of this approach, in addition to its divergence-optimality base, is that it permits the 

possibility of flexible families of distributions that need not be Gaussian in nature. For discussions 

relative to the flexible family of distributions, under given values of moments and indirect noisy 

sample observations, see [3–7]. 

The paper is organized as follows: in Section 2 we discuss the CR family of divergence measures 

(DMs) and relate these DMs to the maximum likelihood (ML) principle. Given the framework 

developed in Section 2, Section 3 is concerned with developing a loss basis for identifying the 

probability space associated with data observations. In Section 4, the results of a sampling experiment 

are presented to illustrate finite sampling performance. Finally, in Section 5 we summarize extensions 

to the CR-Minimum Divergence (MD) family of estimators and provide conclusions and directions for 

future research. 

2. Minimum Power Divergence  

In identifying divergence measures that may be used as a basis for characterizing the data sampling 

process underlying observed data outcomes, we begin with the family of divergence measures 
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proposed by [1–2]. In the context of a family of goodness-of-fit test statistics (see [7]), Cressie and 

Read (CR) proposed the following power divergence family of measures:  

 (1) 

In (1), the value of indexes members of the CR family, represent the subject probability 
distribution, the are reference probabilities, and p and q are 1n vectors of and , 

respectively. The usual probability distribution characteristics of , 
1

1
n

ii
p


 , and 

1
1

n

ii
q


  are assumed to hold. The CR family of power divergences is defined through a class of 

additive convex functions that encompasses a broad family of test statistics, and represents a broad 

family of likelihood functional relationships within a moments-based estimation context, which will be 

discussed in Section 2.3. In addition, the CR measure exhibits proper convexity in p, for all values of 

and q, and embodies the required probability system characteristics, such as additivity and invariance 

with respect to a monotonic transformation of the divergence measures. In the context of extremum 

metrics, the general CR family of power divergence statistics represents a flexible family of pseudo-

distance measures from which to derive empirical probabilities.  
The CR statistic is a single index family of divergence measures that can be interpreted as 

encompassing a wide array of empirical goodness-of-fit and estimation criteria. As  varies, the 

resulting estimators that minimize power divergence exhibit qualitatively different sampling behavior. 

Using data consistent empirical sample moments-constraints such as 

, where , , andY X Z  are respectively a 1n , n k , n m
vector/matrix of dependent variables, explanatory variables, and instruments, and the parameter vector 

  is the objective of estimation, a solution to the stochastic inverse problem, based on the optimized 

value of , is one basis for representing a range of data sampling processes and likelihood 

function values. 

To place the CR family of power divergence statistics in an entropy perspective, we note that there 

are corresponding [8–10] families of entropy functionals-divergence measures. As demonstrated by [6], 

over defined ranges of the divergence measures, the CR and entropy families are equivalent. Relative 

to [8–10], the CR family has a more convenient normalization factor   1 / 1    and has proper 

convexity for all powers, both positive and negative. The CR family allows for separation of variables 

in optimization, over the range of   , when the underlying variables belong to stochastically 

independent subsystems, called the independent subsystems property [6]. This separation of variables 

permits the partitioning of the state space and is valid for divergences in the form of a convex function. 

2.1. The CR Family and Minimum Power Divergence Estimation 

In a linear model context, if we use (1) as the goodness-of-fit criterion, along with moment-

estimating function information, the estimation problem based on the CR divergence measure (CRDM) 

may, for any given choice of , be formulated as the following extremum-type estimator for : 
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where is taken as given, and B denotes the appropriate parameter space for . Note in (2) that ,iX  

and .iZ  denote the thi rows of X  and Z , respectively. This class of estimation procedures is referred to 

as Minimum Power Divergence (MPD) estimation and additional details of the solution to this 

stochastic inverse problem are provided in the sections ahead. The MPD optimization problem may be 

represented as a two-step process. In particular, one can first optimize with respect to the choice of the 

sample probabilities, , and then optimize with respect to the structural parameters , for any choice 

of the CR family of divergence measures identified by the choice of , given .  

It is important to note that the family of power divergence statistics defined by (1), is symmetric in 

the choice of which set of probabilities are considered as the subject and reference distribution 

arguments of the function (2). In particular, as noted by [11–12], whether the statistic is designated as 

, the same collection of members of the family of divergence measures are 

ultimately spanned, when considering all of the possibilities for  

2.2. Popular Variants of  , ,I p q  

Three discrete CR alternatives for  , ,I p q , where  1,0,1   , have received the most attention 

in the literature, and to our knowledge these are the only variants that have been utilized empirically to 
date. In reviewing these, we adopt the notation    CR , ,I  p q  , where the arguments pand qare 

tacitly understood to be evaluated at relevant vector values. In the two special cases where γ 0 or 1  , 

   CR 0  and CR 1 are to be interpreted as the continuous limits,  γ 0lim CR γ ,
 
and  γ 1lim CR γ , 

respectively. 
If we let 1

nnq = 1 , the reference distribution is the empirical distribution function (EDF) associated 

with the observed sample data, and also the nonparametric maximum likelihood estimate of the data 

sampling distribution. Minimizing  CR 1 is then equivalent to maximizing  
1
ln

n
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p

  and leads to 

the traditional maximum empirical log-likelihood (MEL) objective function. Minimizing  CR 0  is 

equivalent to maximizing  
1

ln
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i ii
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 , and leads to the maximum empirical exponential likelihood 

(MEEL) objective function, which is also equivalent to [13] entropy. Finally, minimizing  CR 1  is 

equivalent to maximizing 2
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 , and leads to the maximum log-Euclidean likelihood 

(MLEL) objective function. Note the latter objective function is also equivalent to minimizing the sum 

of squares function    1 1
n nn n  p 1 p 1 .  

With regard to MPD (  CR  family) estimators, under the usual assumed regularity conditions, all 

of the MPD estimators of obtained by optimizing the are consistent and asymptotically normally 

distributed. They are also asymptotically efficient, relative to the optimal estimating function (OptEF) 

estimator [14], when a uniform distribution, or equivalently the empirical distribution function (EDF), 

is used for the reference distribution. The solution to the constrained optimization problem yields 
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optimal estimates, , that cannot, in general, be expressed in closed form, and thus must 

be obtained using numerical methods. 

2.3. Relating Minimum Power Divergence to Maximum Likelihood 

The objectives of minimizing power divergence and maximizing likelihood are generally not 

equivalent. However, two of the historical variants presented in the preceding section have direct 

conceptual linkages to maximum likelihood concepts, and the third is an analog to least squares. The 
traditional MEL criterion  CR 1  coincides with the estimation objective of maximizing the joint 

empirical log likelihood,  
1
ln

n

ii
p

 , conditional on moment constraints,   ,E p h X 0 , where 

 Ep 
 
denotes an expectation taken with respect to the empirical probability distribution defined by 

p[15], [7]. In the sense of objective function analogies, the choice of γ 1   defines an empirical 

analog to the classical maximum likelihood approach, except that no explicit functional form for the 

likelihood function is assumed known or specified at the outset of the estimation problem.  

The  CR 0 criterion of minimizing  
1

ln
n

i ii
p p

  is equivalent to minimizing the Kullback-

Leibler (KL) information criterion defined by  1

1
ln /

n

i ii
p p n


    

1
ln ln

n

i ii
p p n


 , where the 

reference distribution, q, is specified to be the EDF, or uniform distribution, supported on the data 

observations [16]. Interpreting the estimation problem in the KL context, the estimation objective is to 
find the feasible probability distribution, p, that defines the minimum value of all possible expected 

log-likelihood ratios, 1
ln

p
E

n
 
 
 

p , subject to any imposed moment constraints. The expectation of the 

log-likelihood ratio has the restricted (by any moment constraints) likelihood in the numerator (i.e., the 
solved 'ip s ), and the unrestricted empirical distribution function (i.e., the uniform distribution) 

likelihood in the denominator.  
The  CR 1 solution seeks the empirical probability distribution, p, that minimizes the Euclidean 

distance of pfrom the EDF (uniform distribution), or equivalently, that minimizes the square of the 

Euclidean distance,    1 1
n nn n  p 1 p 1 . This estimation objective is effectively the least squares 

fit of the probability weights, p, to the empirical distribution function, 1
nn 1 , subject to the moment 

constraints   ,E p h X 0 , where   denotes whatever vector of parameters the moment conditions 

depend on.  
More generally, minimizing power divergence (1), with 1

iq n , can be interpreted as minimizing 

the empirical expectation of the  -power of the likelihood ratio. Given the adding up condition, 

1
1
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p


 , the objective function is equivalent to 1 1

1

n
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i
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pp
E p
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p . 

Because the likelihood function and the sample space are inexplicably linked, it would be useful, 

given a sample of indirect noisy observations and corresponding moment conditions, to have an 

optimum choice of a member of the CR family. It is typical in applied statistics, given a sample of data 

and corresponding moment conditions, that there is ambiguity-uncertainty regarding the choice of 

likelihood function.  

 

   ˆˆ γ  and γp β
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3. Identifying the Probability Space 

Given the CR family of divergence measures (1), indirect noisy data and linear functionals in the 

form of estimating equations-moments, the next question concerns how to go about identifying the 

underlying probability distribution function-probability space of a system or process. Since the data 

and the moments are directly linked, the divergence- measures permits us to exploit the statistical 

machinery of information theory to gain insights into the PDF behavior of stochastic systems and 

processes. The likelihood functionals-divergences have a natural interpretation in terms of uncertainty 

and measures of distance. Many formulations have been proposed for a proper selection of the 

probability space, but their applicability depends on characteristics of the data, such as stationarity of 

the noise process. In the sections ahead we make use of the CR family of divergence measures to 

choose the optimal probability system under quadratic loss. 

3.1. Distance–Divergence Measures 

In Section 2, we used the CR power divergence measure (1) to define, as   takes on different 

values, a family of likelihood function relationships. Given this family, we follow [17–18], and 

consider a parametric family of concave entropy-likelihood functions, which satisfy additivity and 

trace conditions. Using the CR divergence measures, this parametric family is essentially the linear 

convex combination of the cases where 0 and = 1    . This family is tractable analytically and 

provides a basis for joining (combining) statistically independent subsystems. When the base measure 

of the reference distribution q is taken to be a uniform probability density function (PDF), we arrive at 

a family of additive convex functions. In this context, one is effectively considering the convex 

combination of the MEL and maximum empirical exponential likelihood (MEEL) measures. From the 

standpoint of extremum-minimization with respect to p, the generalized divergence family reduces to: 

      *

1

1 ln / ln
n

i i i i i
i

S q p p q q p


   .

 
(3)

In the limit, as 0 , the minimum KL divergence I(p ||q) of the probability mass function p, with 

respect to q, is recovered. As 1 , the q-weighted MEL stochastic inverse problem I(q||p) results. 

This generalized family of divergence measures permits a broadening of the canonical distribution 

functions and provides a framework for developing a loss-minimizing estimation rule. In an extremum 

estimation context, when α  1/2, this results in what is known in the literature as Jeffrey’s J-

divergence [19]. In this case, the full objective function, J-divergence J(p||q)I(p||q) + I(q||p), is a 

convex combination of KL divergence I(p||q) and the reverse KL divergence I(q||p). In line with the 

complex nature of the problem, in the sections to follow, we demonstrate a convex estimation rule, 

which seeks to choose among MPD-type estimators to minimize quadratic risk (QR). 

3.2. A Minimum Quadratic Risk (QR) Estimation Rule 

To choose an estimation rule, we use the well-known squared error-quadratic loss criterion and 

associated QR function to make optimal use of a given set of discrete alternatives for the CR 

goodness-of-fit measures and associated estimators for  . In choosing an estimation rule, the objective 
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is to define the convex combination of a set of estimators for   that minimizes QR, where each 

estimator is defined by the solution to the extremum problem: 

      . .
1 1

ˆ arg max max , , | , 1, 0
n n

i i i i i i
i i

I p Y p p i
 

             pB

p q Z X


   .

 
(4)

 

The squared error loss function is defined by      ˆ ˆ ˆ,
          and has the corresponding 

QR function given by: 

                 
       ˆ ˆ ˆ ˆ, E , E . (5)

The convex combination of estimators is defined by: 

   
1 1

ˆ , where 0 , and 1.
J J

j j j j
j j

j
 

          
 

(6)

 

Given (6) the optimum use of the discrete alternatives under QR is determined by choosing the 

particular convex combination of the estimators that minimizes QR, as: 

   
1

ˆˆ ˆ
J

j j
j

     , where    ˆ arg min ,
CH




     ,

 
(7)

 

and CH denotes the J-dimensional convex hull of possibilities for the 1J     vector, defined by the 

non-negativity and adding-up conditions represented in (6). This represents, in a loss context, an 

appropriate choice of the  value in the definition of the CR power divergence criterion. 

3.3. The Case of Two CR Alternatives 

As an example, consider the case where there are two discrete alternative CR measures of interest. 

In this context, the objective is to make optimal use of the information contained in the two associated 

estimators of  ,  1
ˆ   and  2

ˆ  . The corresponding QR function may be written as: 

  

               1 2 1 2

,

ˆ ˆ ˆ ˆE 1 1 ,

 

                      

  

         
(8)

 

and can be represented in terms of the QR functions of  1
ˆ   and  2

ˆ   as: 

  

               22
1 2 1 2

,

ˆ ˆ ˆ ˆ, 1 , 2 1 E

  

               
 

 

         
(9)

 

To   minimize ,   , the first-order condition, with respect to  , is given by: 
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Solving for the optimal value of  yields: 

        

           

2 1 2

1 2 1 2

ˆ ˆ ˆ, E

ˆ
ˆ ˆ ˆ ˆ, , 2E

        
  

          
 

     

       
,
 

(11)
 

and the optimal convex-combined estimator is defined as: 

       1 2
ˆ ˆˆ ˆ ˆ1         . (12)

By construction,  ̂  is QR superior to either  1
ˆ   or  2

ˆ  , unless the optimal convex 

combination resides at one of the boundaries for  , or the two estimators have identical risks and 

     1 2
ˆ ˆE

     
 
     0. In any case, QR-wise, the resulting estimator  ̂  is no worse than 

either  1
ˆ   or  2

ˆ  . 

3.4. Empirical Calculation of   

To implement the optimal convex combination of estimators empirically, a value for̂  in (12) is 

needed. The calculation of the exact ̂  value in (12) requires unknown parameters as well as unknown 

probability distributions. Thus, one must seek an estimate of ̂  based on sample observations. 

Working toward a useful estimate for ̂ , note that:  

         

                 

           

1 2 1 2

1 1 2 2 1 2

1 2 1 2

ˆ ˆ ˆ ˆE

ˆ ˆ ˆ ˆ ˆ ˆE E 2E

ˆ ˆ ˆ ˆ, , 2E .

   

     

     

   
 
                    
     

      
 

   

           

       

 
(13)

 

Thus, an unbiased estimate of the denominator term in (11) is given directly by calculating 

         1 2 1 2
ˆ ˆ ˆ ˆ         . Given the consistency of both estimators, this value would 

consistently estimate the denominator of (11) as well. 
Deriving an estimate of the numerator in (11) is challenging since in general, the estimators  ˆ   

are biased. Thus, neither the risk term nor the subtracted expectation of the cross-product term in (11) 

can be simplified. This complication persists, even if the estimators are calculated from independent 

samples. Under independence, the risk function   2
ˆ ,    does not merely simplify to a function of 

variances as in [7]. The term      1 2
ˆ ˆE

     
 
     remains nonzero and, in fact, is equal to a 



Entropy 2012, 14              

 

 

2435

cross product of bias vectors,      1 2
ˆ ˆbias bias

   . However, making the usual assumption that 

the moment conditions are correctly specified, the  ˆ   estimators are consistent under regularity 

conditions no more stringent than the usual conditions imposed to obtain consistency in the 

generalized methods of moments context or in classical linear models. Thus, as an approximation, one 

might ignore the bias terms because they converge to zero as n increases. 

Ignoring the bias terms, and assuming the estimators  1
ˆ   and  2

ˆ   are based on two 

independent samples of data, the expression for the optimal   simplifies to the following: 

   
       

2

1 2

ˆ
ˆ

ˆ ˆ

tr Cov

tr Cov tr Cov


 

  



 
.
 

(14)
 

In effect, the use of this ̂  in forming a convex combination of the two estimators can be viewed as 

pursuing an objective of minimizing the variation in the resultant estimator (12). If we make use of the 

optimum   in the optimal convex estimator in (12), the result comes out in the form of a Stein-like 

estimator [20-21], where for a given samples of data, shrinkage is from  2
ˆ  to  1

ˆ  .The level of 

shrinkage is determined by the relative bias-variance tradeoff. 

A question that remains is the finite sampling performance of the estimators based on the estimated 

value ̂ . To provide some perspective on the answer to this question, in the next section, we present 

the results of a sampling experiment that implements (14), in choosing a convex combination of the 

estimators  ˆ 1  and  ˆ 0 . The objective is to define a new estimator via a combination of both 

estimators that is superior to either in terms of quadratic loss. 

4. Finite Sample Performance 

To illustrate finite sample performance of a convex combination of  ˆ 1  and  ˆ 0 , we follow [7] 

and consider a simple data sampling process involving an instrumental variable model similar to that 

used by [22]. The sampling model is: 

. , 1,...,
i i i

i i i

y x

x v i n

  

   z
 

(15)

 

where iy  denotes outcomes of the variable of interest, ix  denotes outcomes of a scalar endogenous 

regressor, .iz  denotes a 1 2  row vector of instrumental variable outcomes, and n denotes sample size. 

In the sampling experiment, the value of   is set equal to 1, and .iz  and  ,i iv   are independent and 

iid outcomes with probability distributions,  2,N 0 I , and, 
0 1

,
0 1

N
     
        

, respectively. The 

theoretical first stage 2R is given by 2

1
R

 


  
, and we let, 

 
    

, so that 
2

2
2

2

2 1
R




 
. In this 

sample design the value of   determines the degree of endogeneity, and 2R determines the strength of 
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the instruments .iz  for ix , with  

1/ 2
2

22 1

R

R

 
  
  

. We examine sample of sizes 100 250n and , 

with 0.5   and 2 0.5.R    

The covariance matrices used to implement the optimal convex combination weight in (14) (which 

are variances in this case because the  ˆ s  are scalars), are of the form [15]:

 

           
11

2

. . . .
1 1 1

ˆ ˆˆ ˆ ˆ ˆvar
n n n

i i i i i i i i i i i
i i i

p x p y x p x



  

                            
  z z z z

 
(16)

 

where the  ˆ ip s  are the data or probability weights calculated in the solution to the estimation 

problem, when either 1 0.or      The calculated convex weight (14) simplifies to 

  
     

ˆvar 0
ˆ

ˆ ˆvar 1 var 0


 

   
, and the convex combination estimator is given by

       1 0        . 

The results for the sampling experiment are presented in Table 1. It is evident that, across all 

scenarios, the convex combination of  ˆ 1   and  ˆ 0  estimators is substantially superior, under 

quadratic loss, to either of the individual estimators. It is also evident that the risks of the individual 

estimators are quite close in magnitude to one another across all scenarios. As expected the MEL 

 1    estimator is generally slightly better than the estimator based on the  Kullback-Leibler 0   

distance measure for the larger sample size of 250, but not uniformly for the smaller sample size of 100. 

Given the similarity in mean squared error (MSE) performance, it is not surprising that the optimal 

' s used in forming the convex combination had an average value of .5, which is consistent with the 

Kullback-Leibler balanced J-divergence. As the degree of endogeneity increases (i.e., when 
increases) and the effectiveness of the instruments decreases (i.e., when 2R  decreases), the QR of all 

of the estimators increases, but the overall performance of the estimators, and especially the convex 

combination estimator, remains very good. 

Table1. MSE Results for Convex Combinations of  ˆ 1   and  ˆ 0 . 

Scenario  2n, , R    ˆMSE 1     ˆMSE 0   ˆ 1    std  ̂    ˆMSE  
100,0.25,0.75  0.00343 0.00364 0.49712 0.29082 0.00180 
100,0.5,0.5 0.01129 0.01113 0.49996 0.07340 0.00528 
100,0.75,0.25 0.03801 0.03159 0.48670 0.30753 0.02105 
250,0.25,0.75 0.00122 0.00136 0.49978 0.01591 0.00062 
250,0.5,0.5 0.00437 0.00452 0.50158 0.02813 0.00219 
250,0.75,0.25 0.01309 0.01323 0.50031 0.07018 0.00639 

5. Concluding Remarks 

In this paper, we have suggested estimation possibilities not accessible by considering individual 

members of the CR family. This was achieved by taking a convex combination of estimators 
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associated with two members of the CR family, under minimum expected quadratic loss. The sampling 

experiments reported illustrate superior finite sample performance of the resulting convex estimation 

rules. In particular, we recognize that relevant statistical distributions underlying data sampling 

processes that result from solving MPD-estimation problems may not always be well described by 

popular integer choices for the index value in the CR divergence measure family. Building on the 

problem of identifying the probability space that is noted in Section 3, we demonstrate that it is 

possible to derive a one-parameter family of appropriate likelihood function relationships to describe 

statistical distributions. One possibility for the one-parameter family is essentially a convex 

combination of the CR integer functionals, and 1   . This one-parameter family of additive-trace 

form of CR divergence functions leads to an additional rich set of possibly non-Gaussian distributions 

that broadens the set of probability distributions that can be derived from the CR power divergence family. 

With this new flexible family, one can develop a new family of estimators and probability distributions.  

The methodology introduced in this paper is very general, and there is no reason to focus 

exclusively on combinations of only the estimators associated with and 1   . Other choices 

of  can be considered in forming combinations, and there is the interesting question for future work 

regarding the most useful intial choices of  to consider when combining estimators from the CR 

family. Moreover, there is also no reason to limit combinations to only two alternative CR estimators, 

and combinations of three or more estimators could be considered and possibly lead to even greater 

gains in estimating efficiency.  

Looking ahead we note that physical and behavioral processes and systems are seldom in 

equilibrium, and new methods of modeling and information recovery are needed to explain the hidden 

dynamic world of interest and understand the dynamic systems that produce the indirect noisy effects 

data that we observe. The information theoretic methods presented in this paper represent a basis for 

modeling and information recovery for systems in disequilibrium and provide a framework for 

capturing temporal-causal information.  
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