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Abstract:

 This analysis introduces a generalization of the basic statistical concepts of expectation values and variance for non-Euclidean metrics induced by [image: there is no content]-norms. The non-Euclidean [image: there is no content] means are defined by exploiting the fundamental property of minimizing the [image: there is no content] deviations that compose the [image: there is no content] variance. These [image: there is no content] expectation values embody a generic formal scheme of means characterization. Having the p-norm as a free parameter, both the [image: there is no content]-normed expectation values and their variance are flexible to analyze new phenomena that cannot be described under the notions of classical statistics based on Euclidean norms. The new statistical approach provides insights into regression theory and Statistical Physics. Several illuminating examples are examined.
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1. Introduction


2500 years after the Pythagorean discipline and the “self-imposed" intense study on the arithmetic, geometric and harmonic means, the power-means of the elements [image: there is no content], yi∈Dy⊆ℜ,∀i=1,…,N, given by Mp([image: there is no content])=(∑i=1Nyip/N)1/p, were introduced [1] as suitable generalization of the former Pythagorean ones, for [image: there is no content], respectively. An even more general characterization, preceded of the power-means, concerns the Kolmogorov–Nagumo means [2,3], also known as [image: there is no content]-means, which are expressed in terms of a strictly monotonic function [image: there is no content], as [image: there is no content].



Hardy et al. [4] showed that the [image: there is no content]-means are characterized by various fundamental properties of the ordinary arithmetic means. Later, Ben-Tal [5] showed that the [image: there is no content]-means are indeed ordinary arithmetic means defined on linear spaces with suitably chosen operations of addition and multiplication. The latter justifies the [image: there is no content]-means alternative names of “quasilinear" [4] or “quasiarithmetic” [6]. The series [image: there is no content] can be rearranged, according to the y-values of its elements, to the set [image: there is no content], where each value [image: there is no content] has possibility [image: there is no content], with [image: there is no content] being the number of elements [image: there is no content] that follow the equality yi=[image: there is no content] (for examples, see [7]). However, the probability distribution [image: there is no content] can be constructed directly in association with [image: there is no content], and without the necessity of the series [image: there is no content]. Then, the relation pk=pk([image: there is no content]),∀k=1,…,W can be derived. These weighted [image: there is no content]-means were introduced by [8], and expressed in terms of the probability distribution [image: there is no content], namely, Mφ([image: there is no content])=φ-1[∑k=1Wpkφ([image: there is no content])], giving advance to the axiomatic theory of information functions [9].



The [image: there is no content]-means are found to have useful applications in a variety of topics, namely, in statistics [10], in decision theory [11], in signal processing [12], in thermostatistics [13,14], etc. Within the framework of signal processing, [12] succeeded in specifying classes of signals associated with the quasiarithmetic mean of two variables. However, the main efforts to use the [image: there is no content]-means to this topic, are typically addressed in signal denoising processes. For example, by applying the power-means, the moving average shifts towards small signal values for small p and emphasizes large signal values for large p, thus highlighting the fluctuations of the preferred scaling. As soon as the nonlinear function [image: there is no content] is appropriately chosen, [image: there is no content]-means-based filters can efficiently reduce noise at a preferred scale of signal values. Another significant nonlinear filtering scheme, having interesting properties in signal denoising, is based on the moving median, instead of the moving [image: there is no content]-means technique [15,16]. Lately, the median value found to play a key-point role in signal processing optimization and block entropy analysis [7,17]. The median is based on the non-Euclidean norm [image: there is no content] (Taxicab norm), and thus, it does not embody the characterization of [image: there is no content]-means, which are in their basis Euclidean, i.e., they are induced by the Euclidean norm [image: there is no content] [18].



In [7] a novel generalized characterization of means was introduced, namely, the non-Euclidean means, based on metrics induced by [image: there is no content] norms, wherein the median is included as special case for [image: there is no content] ([image: there is no content]), while the non-Euclidean [image: there is no content]-means can also be defined. (See also the work of [19], where the general clustering approaches is investigated using, among others, similar well-defined means based on non-Euclidean optimization.) In this way, the [image: there is no content] expectation value of a given energy spectrum [image: there is no content] is defined, representing the non-Euclidean adaptation of internal energy [image: there is no content]. (This issue is mentioned in Section 3.1; it can be further examined in the framework of non-Euclidean-normed Statistical Mechanics.)



The Euclidean norm [image: there is no content] is also known as “Pythagorean" norm. Hereafter, we prefer referring to the non-Pythagorean norms as non-Euclidean, inheriting the same characterization to Statistics. One may adopt the more explicit characterizations of “non-Euclidean-normed" statistics, for avoiding any confusion with the non-Euclidean metric of the (Euclidean-normed) Riemannian geometry.



The paper is organized as follows. In Section 2, the [image: there is no content] means are defined, resulting from the minimization of the respective [image: there is no content] deviations. Similarly, the more generic Φ-normed [image: there is no content]-means are also defined. The general scheme of means characterization, wherein the [image: there is no content] means are embodied, is given. In Section 3, the concept of [image: there is no content]-expectation values is thoroughly studied. The [image: there is no content] means are expressed in terms of the [image: there is no content] operator, which helps to automatically retrieve the non-Euclidean representation of a formulation from its respective Euclidean one. The non-Euclidean expectation and variance operators are accordingly deduced. Several examples of Statistical Mechanics are examined: gas in thermal equilibrium, space plasmas out of thermal equilibrium, and multi-dimensional quantum harmonic oscillator at thermal equilibrium. Section 4 introduces the [image: there is no content] variance; its expression is justified and examined in detail. In Section 5, some further analytical and numerical examples are examined. It is shown that in the case of symmetric distributions of data, the whole set of [image: there is no content] means degenerate to one single value, while for asymmetric ones, spectrum-like range of [image: there is no content] means is generated. In addition, we deal with numerical data of the magnitude of Earth’s total magnetic field. Finally, Section 6 draws the conclusions.




2. The Generalized Formal Scheme of Means Characterization


2.1. The Means Characterization Based on Optimization Methods


The non-Euclidean means [image: there is no content], based on [image: there is no content] norms, are defined as follows


∑k=1Wpk|[image: there is no content]-[image: there is no content]|[image: there is no content]sign([image: there is no content]-[image: there is no content])=0



(1)




where the median [image: there is no content] and the arithmetic mean [image: there is no content] follow as special cases for the Taxicab [image: there is no content] and Euclidean [image: there is no content], respectively. Both the median [image: there is no content] and arithmetic [image: there is no content] means can be implicitly written in the form of Equation (1) as ∑k=1Wpksign([image: there is no content]-[image: there is no content])=0 and ∑k=1Wpk|[image: there is no content]-[image: there is no content]|sign([image: there is no content]-[image: there is no content])=0 (⇔[image: there is no content]=∑k=1Wpk[image: there is no content]), respectively. These forms can be thought as the result of the corresponding optimizations of the Total Absolute Deviations TAD([image: there is no content];α)=∑k=1Wpk|[image: there is no content]-α| (also called Total Boundary Area - TBA), and the Total Square Deviations TSD([image: there is no content];α)2=∑k=1Wpk|[image: there is no content]-α|2, for describing the optimal values α*=[image: there is no content] and α*=[image: there is no content], respectively [7,18,20]. Similarly, the [image: there is no content] mean [image: there is no content] emerges from minimizing the Total p-Deviations, i.e.,


TDp([image: there is no content];α;p)p=∑k=1Wpk|[image: there is no content]-α|p



(2)




The optimization leads to (i) the normal Equation (1), from which the optimal parameter α*=[image: there is no content] can be derived as an implicit expression of p, (ii) the total deviations minimum value TDp,Min([image: there is no content];p)p=∑k=1Wpk|[image: there is no content]-α*|p, which is the pth absolute moment at the [image: there is no content] mean α*=[image: there is no content]. Therefore, the Euclidean mean [image: there is no content], known as the one minimizing the (Euclidean) variance, is generalized to the [image: there is no content] mean [image: there is no content], which is the one minimizing the [image: there is no content] variance, a quantity proportional to TDp([image: there is no content];α;p)p (Section 3.1, Section 4).



The generalized [image: there is no content][image: there is no content]-means [image: there is no content] can be defined given the strictly monotonic function φ:[image: there is no content]→zk=φ([image: there is no content]),∀k=1,…,W, i.e.,


∑k=1Wpk|φ([image: there is no content])-φ([image: there is no content])|[image: there is no content]signφ([image: there is no content])-φ([image: there is no content])=0



(3)




which is the normal equation derived from the Total [image: there is no content]-Deviations,


TD[image: there is no content]([image: there is no content];α;p)p=∑k=1Wpk|φ([image: there is no content])-φ(α)|p



(4)




Thereafter, we arrive at the classical [image: there is no content]-means [image: there is no content] by considering the Euclidean norm. Even further, by considering an arbitrary functional norm [image: there is no content] ([image: there is no content]), the Total [image: there is no content]-Deviations are formulated


ΦTD[image: there is no content]([image: there is no content];α)=∑k=1WpkΦ|φ([image: there is no content])-φ(α)|



(5)




leading to the normal equation


∑k=1WpkΦ´|φ([image: there is no content])-φ(μ[image: there is no content])|signφ([image: there is no content])-φ(μ[image: there is no content])=0



(6)




from which we obtain the Φ-normed [image: there is no content]-means μ[image: there is no content]. It is noted that the solution of Equation (5) is generally called M-estimator, a broad class of estimators, which are obtained by minimizing the sums of functions of data. An M-estimator can be defined to be a zero of an estimating function that often is the derivative of another statistical function. When this differentiation is possible, leading to Equation (6), the M-estimator is said to be of ψ-type. (For more on M-estimators theory, see [21,22].)




2.2. Formal Scheme of Means Characterization


The characterization of means based on optimization methods has already been found useful, providing insights into the optimization theory and its applications (e.g., see [7]). The most important application involves reestablishing the concept of expectation values. However, we have to be certain that the optimization characterization of means, as described in Section 2.1, can embody the general scheme of means characterization.



Aczél [23] suggested an axiomatic characterization of means, settled by five fundamental properties of the ordinary arithmetic means, and succeeded to reproduce the [image: there is no content]-means. In particular, any univalued, bivariable function [image: there is no content], [image: there is no content] constitutes a general mean of [image: there is no content], if the following preconditions are fulfilled: (i) Continuity; (ii) Strict monotonicity: if [image: there is no content] (>), then M(y1,y2)<M(y1´,y2) (>), and the same holds for [image: there is no content] ; (iii) Bisymmetry: [image: there is no content]; (iv) Reflexivity: [image: there is no content]; (v) Symmetry: [image: there is no content]. Aczél also proved [24] that, if and only if the (i)–(iv) preconditions are fulfilled, then [image: there is no content], ∀y1,y2∈Dy, [image: there is no content], and [image: there is no content]: strictly monotonic function. For [image: there is no content], (v) is also fulfilled, hence, [image: there is no content] coincides with the [image: there is no content]-mean of [image: there is no content], i.e., [image: there is no content].



Aczél also pointed [23] that the “internness” property, i.e., [image: there is no content], follows from preconditions (i), (ii), (iv). However, it is evident that the internness, together with the continuity (i), leads to the reflexivity (iv). This remark implies that we can settle the internness as precondition, instead of the strict monotonicity and reflexivity. (Besides, the median does not follow strict monotonicity, while it follows the internness. In addition, internness ensures that the mean shall preserve the units of y-values under units-transformations.) Then, turning aside of preconditions (ii) and (iii) that entail the Euclidean character of [image: there is no content]-means, an alternative characterization of means can be given by the univalued, N-multivariable function M([image: there is no content]), fulfilling the three preconditions: (i) Continuity; (ii) Internness: Min([image: there is no content])≤M([image: there is no content])≤Max([image: there is no content]); (iii) Symmetry: For yi→yji,∀i=1,…,N: [image: there is no content]={yji}i=1N, then M([image: there is no content])=M({yji}i=1N). (This characterization considered also by [25] for [image: there is no content].)



It can be easily verified that the non-Euclidean, Φ-normed, [image: there is no content]-means [image: there is no content] obey to the above characterization. Throughout, we deal with the [image: there is no content] means [image: there is no content]. The uniqueness of [image: there is no content] means can be provided for any [image: there is no content]. (The restriction [image: there is no content] is required for the triangle inequality of the norm’s definition to hold.) In particular, the non-zero derivative


∂p∂[image: there is no content]=(p-1)∑k=1Wpk|[image: there is no content]-[image: there is no content]|p-2∑k=1Wpk|[image: there is no content]-[image: there is no content]|[image: there is no content]sign([image: there is no content]-[image: there is no content])ln(|[image: there is no content]-[image: there is no content]|),∀p>1



(7)




and the fact that the derivatives of any order of [image: there is no content](p), inductively, are analytically expressed in terms of the (univalued) Euclidean mean [image: there is no content](p)|[image: there is no content]=[image: there is no content], can ensure for the uniqueness of [image: there is no content], for a given [image: there is no content] (for [image: there is no content], see [7]). Note that for the specific case where ∃k=k′:yk′=[image: there is no content], then for [image: there is no content], Equation (7) gives ∂p/∂[image: there is no content]≃(p-1)/[(yk′-[image: there is no content])ln(|yk′-[image: there is no content]|)]→∞, i.e., ∂[image: there is no content]/∂p→0.





3. The Concept of [image: there is no content]-Expectation Values


3.1. The Non-Euclidean Norm Operator [image: there is no content]


The non-Euclidean [image: there is no content]-expectation value [image: there is no content] is implicitly given by


∑k=1Wpk|[image: there is no content]-[image: there is no content]|[image: there is no content]sign([image: there is no content]-[image: there is no content])=0



(8)




and it is apparent that the most of the fundamental properties of the Euclidean expectation value are not inherited by the non-Euclidean expectation values. In particular, we distinguish among others, the following two Euclidean properties: (i) ⟨y⟩2=∑k=1Wpk[image: there is no content] (by definition), and (ii) ∂∂β⟨y⟩2=∑k=1W∂pk∂β[image: there is no content], for a given parameter β, for which [image: there is no content], ∀k=1,…,W, and [image: there is no content]=[image: there is no content]([image: there is no content];β). Now, we examine whether the above two properties can be fulfilled even for the case of non-Euclidean [image: there is no content]-expectation value [image: there is no content], and a suitably transformed data set [image: there is no content], namely, (i) [image: there is no content]=∑k=1Wpkyk(p), and (ii) ∂∂β[image: there is no content]=∑k=1W∂pk∂βyk(p). Indeed, this is true for the specific transformation [image: there is no content]:[image: there is no content]→yk(p)≡[image: there is no content]([image: there is no content]), ∀k=1,…,W, where [image: there is no content] denotes the non-Euclidean norm operator, i.e.,


[image: there is no content]([image: there is no content])=|[image: there is no content]-[image: there is no content]|[image: there is no content]sign([image: there is no content]-[image: there is no content])(p-1)ϕp+[image: there is no content]



(9)




where ϕp≡∑k=1Wpk|[image: there is no content]-[image: there is no content]|p-2. Finally, [image: there is no content] exhibits the following properties:

	(i)

	
The non-Euclidean mean of [image: there is no content] is the Euclidean mean of {[image: there is no content]([image: there is no content])}k=1W


[image: there is no content]=⟨[image: there is no content](y)⟩2=∑k=1Wpk[image: there is no content]([image: there is no content])



(10)








	(ii)

	
Zero-mean of {∂∂β[image: there is no content]([image: there is no content])}k=1W,


0=∑k=1Wpk∂∂β[image: there is no content]([image: there is no content]),or,∂∂β[image: there is no content]=∑k=1W∂pk∂β[image: there is no content]([image: there is no content])



(11)








	(iii)

	
Norm-derivative (Equation (7)):


∂[image: there is no content]∂p=∑k=1W∂pk∂p[image: there is no content]([image: there is no content])+∑k=1Wpk[image: there is no content]([image: there is no content]-[image: there is no content])ln|[image: there is no content]-[image: there is no content]|



(12)






⇒∂[image: there is no content]∂p=∑k=1Wpk[image: there is no content]([image: there is no content]-[image: there is no content])ln|[image: there is no content]-[image: there is no content]|,if∂pk∂p=0



(13)








	(iv)

	
In the Euclidean case, [image: there is no content] degenerates to the identity operator [image: there is no content] .




	(v)

	
Linear operations: [image: there is no content](λ[image: there is no content]+c)=λ[image: there is no content]([image: there is no content])+c,∀λ,c∈ℜ.



Hence, ⟨y-[image: there is no content]⟩p=⟨[image: there is no content](y-[image: there is no content])⟩2=0, which reads Equation (8).




	(vi)

	
Non-additivity of [image: there is no content]: [image: there is no content]([image: there is no content]+zk)≠[image: there is no content]([image: there is no content])+[image: there is no content](zk).




	(vii)

	
Inverse of non-Euclidean norm operator, [image: there is no content], [image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]=1^,


[image: there is no content]([image: there is no content])=|[image: there is no content]-[image: there is no content]|1[image: there is no content]sign([image: there is no content]-[image: there is no content])[(p-1)ϕp]11-p+[image: there is no content]



(14)













As we mentioned in property (v), Equation (8) can be rewritten in the form ⟨[image: there is no content](y-[image: there is no content])⟩2=0, or C·∑k=1Wpk|[image: there is no content]-[image: there is no content]|[image: there is no content]sign([image: there is no content]-[image: there is no content])=0, with [image: there is no content]. Obviously, this leads to Equation (8), for any value of the scalar [image: there is no content]. However, property (ii) is fulfilled if and only if C has the specific expression [image: there is no content] (see further below). Property (ii) is important when we incorporate the non-Euclidean-normed Statistics in Statistical Mechanics: (a) The Canonical probability distribution can be automatically derived and explicitly expressed. (If the scalar C were expressed by any other formulation, after the extremization of entropy in the Canonical Ensemble, we would not be able to solve in terms of the probability, namely, to express explicitly the probability in terms of the energy.) (b) The basic relation that connects Statistical Mechanics with Thermodynamics has to remain the same with the classical case. Namely, the classical relation between the derivative of the partition function [image: there is no content] and the mean energy (internal energy) [image: there is no content] has to remain invariant, independently of the p-norm. In other words, if [image: there is no content](εk)=C|εk-[image: there is no content]|[image: there is no content]sign(εk-[image: there is no content])+[image: there is no content], then the specific expression of the scalar [image: there is no content], yields the following scheme:


[image: there is no content]=-∂ln[image: there is no content]∂β⇔C=1(p-1)ϕp⇔∑k=1Wpk∂∂β[image: there is no content](εk)=0



(15)




where the non-Euclidean [image: there is no content] expectation value of energy states [image: there is no content] yields the internal energy [image: there is no content]=[image: there is no content], while the [image: there is no content] Canonical partition function [image: there is no content] (in Boltzmann–Gibbs Statistical Mechanics) is given by [image: there is no content]([image: there is no content])=∑k=1Wexp[-β[image: there is no content](εk)]. Indeed, we have


-∂ln[image: there is no content]∂β=∂(Cβ)∂β∑k=1Wpk|εk-[image: there is no content]|[image: there is no content]sign(εk-[image: there is no content])+[image: there is no content]+1-C(p-1)∑k=1Wpk|εk-[image: there is no content]|p-2β∂[image: there is no content]∂β=[image: there is no content]+1-C(p-1)ϕpβ∂[image: there is no content]∂β,








which equals [image: there is no content], if and only if [image: there is no content]. On the other hand, we have


∑k=1Wpk∂∂β[image: there is no content](εk)=∂C∂β∑k=1Wpk|εk-[image: there is no content]|[image: there is no content]sign(εk-[image: there is no content])+∂[image: there is no content]∂β×1-C(p-1)∑k=1Wpk|εk-[image: there is no content]|p-2=∂[image: there is no content]∂β1-C(p-1)ϕp,








which equals zero, leading to Equation (11), if and only if [image: there is no content].



Given the set of states [image: there is no content] of a physical quantity, which are included in the Euclidean representation of a formulation F[[image: there is no content]], the respective non-Euclidean representation can be often retrieved automatically by replacing [image: there is no content] with [image: there is no content]([image: there is no content]), ∀k=1,…,W, i.e., Fp[[image: there is no content]]=F[{[image: there is no content]([image: there is no content])}k=1W]. As an example, the [image: there is no content] Canonical partition function in Boltzmann–Gibbs Statistical Mechanics is given by


Z([image: there is no content])≡∑k=1Wexp(-βεk)⇒[image: there is no content]([image: there is no content])=Z({[image: there is no content](εk)}k=1W),








where [image: there is no content] is a discrete energy spectrum.



Consequently, according to the above considerations, the non-Euclidean [image: there is no content]-expectation estimator [image: there is no content], acting on a random variable Y, is given by


[image: there is no content](Y)=[image: there is no content][image: there is no content](Y)



(16)




where [image: there is no content] ([image: there is no content]) is the classical (Euclidean) expectation estimator.



On the other hand, the non-Euclidean [image: there is no content]-variance estimator [image: there is no content] has to result to the Total p-Deviations of Equation (2), or at least, to be proportional to that, such that its minimization leads to Equation (1). This can be achieved by setting,


[image: there is no content]=E2^(Y-⟨Y⟩p)[image: there is no content](Y-⟨Y⟩p)



(17)




(Section 4 revisits the concept of non-Euclidean [image: there is no content]-variance, providing a convincing and consistent justification of Equation (17).) Finally, given a set of random variables [image: there is no content], the non-Euclidean covariance estimator ([image: there is no content])ij is given by


([image: there is no content])ij=[image: there is no content](Yi-⟨Yi⟩p)[image: there is no content](Yj-⟨Yj⟩p)



(18)








3.2. The Non-Euclidean [image: there is no content]-Mean Estimator and Its Expectation Value


Two basic theorems of the ordinary expectation values are inherited to the non-Euclidean ones: (1) The [image: there is no content]-expectation value of the [image: there is no content]-mean estimator [image: there is no content] is equal to the [image: there is no content]-expectation value [image: there is no content] of any of the independent and identically distributed random variables [image: there is no content]. (2) The [image: there is no content]-mean estimator [image: there is no content] converges to its [image: there is no content]-expectation value, ⟨[image: there is no content]⟩p=[image: there is no content]([image: there is no content])=[image: there is no content], as [image: there is no content].



Given the sampling [image: there is no content], the non-Euclidean, [image: there is no content]-mean estimator [image: there is no content]=[image: there is no content]([image: there is no content];p) is implicitly expressed by


∑i=1N|yi-[image: there is no content]([image: there is no content];p)|[image: there is no content]sign[yi-[image: there is no content]([image: there is no content];p)]=0



(19)







Then, the non-Euclidean [image: there is no content]-expectation value of [image: there is no content], namely, ⟨[image: there is no content]⟩p≡[image: there is no content]([image: there is no content]([image: there is no content];p)), is implicitly given by


∫⋯∫{yj∈Dy}j=1N[image: there is no content]([image: there is no content];p)-⟨[image: there is no content]⟩p[image: there is no content]sign[[image: there is no content]([image: there is no content];p)-⟨[image: there is no content]⟩p]×L([image: there is no content])dy1…dyN=0



(20)




where L([image: there is no content]) is the normalized joint probability density, so that


∫⋯∫{yj∈Dy}j=1NL([image: there is no content])dy1…dyN=1



(21)







Consider the sampling [image: there is no content], yi∈Dy⊆R,∀i=1,…,N, of the symmetrically distributed random variables [image: there is no content]. Namely, the joint distribution density has the property L([image: there is no content])=L(y1...[image: there is no content]...yi...yN)=L(y1...yi...[image: there is no content]...yN), ∀i,k(≠i)=1,…,N.



Lemma 1: 

The symmetrically distributed random variables [image: there is no content] are characterized by the same non-Euclidean [image: there is no content]-expectation value, namely, ⟨Yi⟩p=[image: there is no content](Yi)=[image: there is no content]∈R,∀i=1,…,N, implicitly given by


∫⋯∫{yj∈Dy}j=1Nyi-[image: there is no content][image: there is no content]signyi-[image: there is no content]L([image: there is no content])dy1…dyN=










=∫yi∈Dyyi-[image: there is no content][image: there is no content]signyi-[image: there is no content]Ly(yi)dyi=0



(22)




where [image: there is no content], ∀i=1,…,N, is the marginal distribution density, which is identical for all the random variables [image: there is no content].





Lemma 2: 

Let the auxiliary functionals [image: there is no content], with Gi=Gi([image: there is no content];p)≡yi-[image: there is no content]([image: there is no content];p), ∀i=1,…,N. Then, their [image: there is no content]-expectation values are zero, namely, ⟨Gi⟩p=[image: there is no content](Gi)=0, ∀i=1,…,N.





Theorem 1: 

Consider the sampling [image: there is no content], yi∈Dy⊆R,∀i=1,…,N, of the symmetrically distributed random variables [image: there is no content]. According to Lemma 1, the random variables are characterized by the same non-Euclidean [image: there is no content]-expectation value, namely, ⟨Yi⟩p=[image: there is no content](Yi)=[image: there is no content]∈R,∀i=1,…,N, which is implicitly expressed by Equation (22). Then, the [image: there is no content]-expectation value of the [image: there is no content]-mean estimator [image: there is no content] is equal to [image: there is no content], i.e., ⟨[image: there is no content]⟩p=[image: there is no content]([image: there is no content]([image: there is no content];p))=[image: there is no content]:


∫⋯∫{yj∈Dy}j=1N|[image: there is no content]([image: there is no content];p)-[image: there is no content]|[image: there is no content]sign[[image: there is no content]([image: there is no content];p)-[image: there is no content]]×L([image: there is no content])dy1…dyN=0



(23)









Theorem 2: 

Consider the sampling [image: there is no content], yi∈Dy⊆R,∀i=1,…,N, of the independent and identically distributed random variables [image: there is no content]. The [image: there is no content]-mean estimator [image: there is no content] converges to its [image: there is no content]-expectation value, ⟨[image: there is no content]⟩p=[image: there is no content][[image: there is no content]([image: there is no content];p)]=[image: there is no content], as [image: there is no content], namely, lim[image: there is no content][image: there is no content]=⟨[image: there is no content]⟩p=[image: there is no content]. Remark: The independent and identically distributed random variables are also symmetrically distributed. Then, from Theorem 1 we have ⟨[image: there is no content]⟩p=[image: there is no content][[image: there is no content]([image: there is no content];p)]=⟨Yi⟩p=[image: there is no content](Yi)=[image: there is no content]. The [image: there is no content]-expectation value ⟨Yi⟩p=[image: there is no content] is calculated given the marginal distribution density [image: there is no content], ∀i=1,…,N. However, the expression of this distribution is in the generic case unknown, and thus, we estimate [image: there is no content] by means of [image: there is no content] for [image: there is no content].






3.3. Examples


In the following three examples from Statistical Mechanics, we examine the systems of (1) gas in thermal equilibrium, (2) space plasmas out of thermal equilibrium, and (3) multi-dimensional quantum harmonic oscillator at thermal equilibrium. The non-Euclidean-normed internal energy [image: there is no content] is derived by utilizing the classical Euclidean probability distribution of Canonical Ensemble.



3.3.1. Gas at Thermal Equilibrium


For the continuous energy spectrum [image: there is no content] with distribution [image: there is no content] and degeneracy [image: there is no content], the [image: there is no content] internal energy [image: there is no content] is given by


∫0∞p(ε)g(ε)|ε-[image: there is no content]|[image: there is no content]sign(ε-[image: there is no content])=0



(24)







At classical thermal equilibrium, the energy distribution is given by the Boltzmann–Gibbs distribution [image: there is no content]. The degeneracy is [image: there is no content], where f denotes the degrees of freedom. Hence, the internal energy, [image: there is no content]/(kBT), is implicitly expressed in terms of p, f, as follows


∫0∞e-xxf2-1|x-[image: there is no content]kBT|[image: there is no content]signx-[image: there is no content]kBT=0



(25)




where we set [image: there is no content]. In the Euclidean case, the internal energy is [image: there is no content]. In the non-Euclidean case, this is written as [image: there is no content]=([image: there is no content]/2)kBT, where [image: there is no content] represents the reflected degrees of freedom; for sufficiently high number of degrees we find [image: there is no content]≃f+0.66·(p-2).




3.3.2. Plasma Out of Thermal Equilibrium


Classical systems are said to be in thermal equilibrium – the concept that any flow of heat (thermal conduction, thermal radiation) is in balance. However, thermal equilibrium is not the only possible state that is stationary (i.e., the phase space distribution does not explicitly depend on time). For example, space plasmas are systems residing in stationary states but out of thermal equilibrium. For these systems, the energy distribution is well-described by the empirical kappa distribution (see [26] and references therein). Moreover, the kappa distribution was shown to be connected [26] with the solid background of non-extensive Statistical Mechanics [27], and represents the probability distribution that maximizes entropy in the Canonical Ensemble. The kappa distribution is the generalization of the classical Boltzmann–Gibbs exponential distribution that describes systems only at thermal equilibrium. The temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems. The invariant form of the kappa distribution, in which the temperature T, the kappa index [image: there is no content] and the total degrees of freedom f are all independent variables [28], is given by


P(ε;T;[image: there is no content];f)∝1+1[image: there is no content]·εkBT-[image: there is no content]-1-f2



(26)




where the kappa index ([image: there is no content]>0) determines a measure of how far the system is from the thermal equilibrium [29]. The kappa distribution recovers the Boltzmannian exponential distribution for [image: there is no content]→∞, which is the value of the kappa index characterizing thermal equilibrium. The smallest possible value of the kappa index is [image: there is no content]→0, and determines the furthest stationary state from thermal equilibrium [30].



In Figure 1 the kappa distribution P(ε;T;[image: there is no content];f)g(ε)×(kBT) is depicted in terms of [image: there is no content] for [image: there is no content]=0.01,0.1,1,10. The internal energy [image: there is no content] is given by


∫0∞1+x[image: there is no content]-[image: there is no content]-1-f2xf2-1|x-[image: there is no content]kBT|[image: there is no content]signx-[image: there is no content]kBT=0



(27)




(Again, we set [image: there is no content] and the degeneracy is [image: there is no content].) In Figure 2a we depict the internal energy, [image: there is no content]/(1/2kBT) with respect to the degrees of freedom f, for [image: there is no content] and for kappa indices [image: there is no content]=1.5 and [image: there is no content]=100 (this practically equals the Boltzmannian exponential distribution at thermal equilibrium). Figure 2b plots the internal energy over the degrees of freedom, [image: there is no content]/(f/2kBT), for the same p and [image: there is no content]. Figure 2c shows the dependence on the kappa index (for [image: there is no content]). Interestingly, the internal energy is kappa-dependent for any of the non-Euclidean norms, i.e., [image: there is no content]=[image: there is no content]/2kBT, with [image: there is no content]=[image: there is no content]([image: there is no content];p). (Hence, T does not well-define the kinetic temperature for [image: there is no content] [26,30].) Note that the integral converges only for [image: there is no content]>p-2, which generalizes the inequality [image: there is no content]>0 of the Euclidean case.


Figure 1. The kappa distribution of energy, P(ε;T;[image: there is no content];f)g(ε)×(kBT), depicted in a log-log scale for [image: there is no content]=0.01 (red), [image: there is no content] (blue), 1 (green), 10 (magenta), and for [image: there is no content].



[image: Entropy 14 02375 g001 1024]





Figure 2. The dependence of the internal energy on the degrees of freedom f and the kappa index [image: there is no content]. (a) Plot of [image: there is no content]/(1/2kBT)vs. the degrees of freedom f, for [image: there is no content] (red), 2 (blue), [image: there is no content] (green), and [image: there is no content]=1.5 (solid), and 100 (dash). (b) Plot of [image: there is no content]/(f/2kBT), vs. f, for the same p and [image: there is no content]. (c) The same plot as (b), but vs. [image: there is no content] and for [image: there is no content]. We observe larger deviation from the Euclidean norm for smaller kappa indices. Note that the graph is restricted to [image: there is no content]>p-2 (see text).



[image: Entropy 14 02375 g002 1024]









3.3.3. D-Dimensional Quantum Harmonic Oscillator in Thermal Equilibrium


For the energy states [image: there is no content] with degeneracy [image: there is no content] that are associated with the discrete energy distribution [image: there is no content], the [image: there is no content] internal energy [image: there is no content] is


∑n=1Wpngn|εn-[image: there is no content]|[image: there is no content]sign(εn-[image: there is no content])=0



(28)




with the Boltzmann’s energy distribution [image: there is no content] at thermal equilibrium. The D-dimensional quantum harmonic oscillator has discrete energy spectrum [image: there is no content] with degeneracy gn=(nn+D-1)∝(n+D-1)!/n!, ∀n=0,1,2,... Then, the internal energy [image: there is no content] is implicitly given by


∑n=0∞e-ℏωkBTn·|n+12-[image: there is no content]ℏω|[image: there is no content]signn+12-[image: there is no content]ℏω·(n+D-1)!n!=0



(29)




In Figure 3a, we depict [image: there is no content]/(ℏω) with respect to [image: there is no content], for [image: there is no content] and [image: there is no content]. The relevant heat capacity, [image: there is no content]=(∂[image: there is no content]/∂T)V, is shown in Figure 3b. For high temperatures, the Dulong–Petit limit is generalized to [image: there is no content]≃12[image: there is no content]·kBT+αp·ℏω, and heat capacity [image: there is no content]≃12[image: there is no content]·kB, where the reflected degrees of freedom are [image: there is no content]≡2D+0.6·(p-2); the involved constant is [image: there is no content]. Each dimension of the Euclidean quantum oscillator has two degrees of freedom so that [image: there is no content]; the non-Euclidean quantum oscillator deviates proportionally to the factor [image: there is no content]-f2∝p-2. In Figure 3c,d we depict [image: there is no content] and [image: there is no content] as a function of the dimensionality D, for [image: there is no content] and [image: there is no content]. While for the Euclidean norm the heat capacity gives [image: there is no content]/kB=D, for the sub- and super-Euclidean norms we have [image: there is no content]/kB<D and [image: there is no content], respectively. Finally, we remark that the heat capacity appears to have periodic cusps that become smaller in higher temperatures.


Figure 3. The internal energy and heat capacity of the D-dimensional quantum harmonic oscillator for non-Euclidean norms (∀p) at thermal equilibrium ([image: there is no content]→∞). (a), (b) The internal energy [image: there is no content]/(ℏω) and heat capacity [image: there is no content], are respectively plotted vs. the temperature [image: there is no content], for [image: there is no content] (red), 2 (blue), [image: there is no content] (green), and [image: there is no content]. (c), (d) Similar to (a) and (b), but plotted as functions of the dimensionality D, for [image: there is no content].
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4. The Non-Euclidean [image: there is no content]-Variance of the [image: there is no content]-Expectation Value


4.1. Preliminaries: Formulations


We study the [image: there is no content]-variance, defined either in the discrete description [image: there is no content], [image: there is no content]∈Dy⊆R,∀k=1,…,W, with probability distribution [image: there is no content],


[image: there is no content]p=∑k=1Wpk|[image: there is no content]-[image: there is no content]|p(p-1)∑k=1Wpk|[image: there is no content]-[image: there is no content]|p-2



(30)




with [image: there is no content] implicitly given by Equation (8), or in the continuous description [image: there is no content], with probability distribution [image: there is no content],


[image: there is no content]p=∫y∈Dyp(y)|y-[image: there is no content]|pdy(p-1)∫y∈Dyp(y)|y-[image: there is no content]|p-2dy



(31)




with [image: there is no content] implicitly given by


∫y∈Dyp(y)|y-[image: there is no content]|[image: there is no content]sign(y-[image: there is no content])dy=0



(32)








4.2. Examples


4.2.1. Example 1: Gaussian distribution


Consider the Gaussian probability distribution density


fG(y;μ,σ)=12π1σe-12[image: there is no content](y-μ)2



(33)







Then, the [image: there is no content] variance is given by


[image: there is no content]p=∫-∞+∞|y-μ|pe-12[image: there is no content](y-μ)2dy(p-1)∫-∞+∞|y-μ|p-2e-12[image: there is no content](y-μ)2dy=[image: there is no content][image: there is no content]∫-∞+∞|u|pe-12u2du∫-∞+∞|u|p-2e-12u2du=










[image: there is no content][image: there is no content]∫0+∞upe-12u2du∫0+∞up-2e-12u2du=[image: there is no content]2[image: there is no content]∫0+∞zp+12-1e-zdz∫0+∞z[image: there is no content]2-1e-zdz=[image: there is no content]2[image: there is no content]Γ(p+12)Γ([image: there is no content]2)=[image: there is no content]



(34)




where we have set [image: there is no content], and [image: there is no content]. Thus, the [image: there is no content] variance yields the well-known Euclidean variance [image: there is no content] of the Gaussian distribution.




4.2.2. Example 2: Generalized Gaussian distribution


Consider the Generalized Gaussian probability distribution density,


fGG(y;μ,σ;Q,p)=[image: there is no content]1σe-[image: there is no content]|y-μσ|Q



(35)




where [image: there is no content] is the shape parameter, [image: there is no content] is the normalization constant, and [image: there is no content] is calculated by setting [image: there is no content]p≡[image: there is no content],


[image: there is no content]p=∫-∞+∞|y-μ|pe-[image: there is no content]|y-μσ|Qdy(p-1)∫-∞+∞|y-μ|p-2e-[image: there is no content]|y-μσ|Qdy=[image: there is no content][image: there is no content]∫-∞+∞|u|pe-[image: there is no content]|u|Qdu∫-∞+∞|u|p-2e-[image: there is no content]|u|Qdu=










[image: there is no content][image: there is no content]∫0+∞upe-[image: there is no content]uQdu∫0+∞up-2e-[image: there is no content]uQdu=[image: there is no content]ηQ,p-2Q[image: there is no content]∫0+∞zp+1Q-1e-zdz∫0+∞z[image: there is no content]Q-1e-zdz=[image: there is no content]ηQ,p-2Q[image: there is no content]Γ(p+1Q)Γ([image: there is no content]Q)=[image: there is no content]



(36)




where we have set [image: there is no content], z≡[image: there is no content]uQ, and


[image: there is no content]≡1[image: there is no content]Γ(p+1Q)Γ([image: there is no content]Q)Q2











Of particular interest is the case where the shape parameter equals the norm, [image: there is no content], namely,


fGG(y;μ,σ;p)=Cp1σe-ηp|y-μσ|p



(37)




with


ηp=1[image: there is no content]Γ(1+1p)Γ(1-1p)p2=sin(πp)Γ(1p)2πp(p-1)p2








(Note that [image: there is no content]=μ for both the examples. See Section 5.1.)





4.3. Justification of the [image: there is no content]-Variance Expression


Let the set of [image: there is no content] independent and identically distributed random variables with sampling values [image: there is no content], yi∈Dy⊆R,∀i=1,…,N.



First, we consider that each variable is distributed as [image: there is no content], namely, by the Gaussian probability distribution density


fG(yi;μ,σ)=12π1σe-12[image: there is no content](yi-μ)2



(38)




∀i=1,…,N. Then, the likelihood function is constructed


Ly([image: there is no content];μ,σ)=∏i=1NfG(yi;μ,σ)=(2πσ)-Ne-12[image: there is no content]∑i=1N(yi-μ)2










⇒ln[Ly([image: there is no content];μ,σ)]=-N2ln(2π)-Nlnσ-12[image: there is no content]∑i=1N(yi-μ)2



(39)




Then, ∂∂μln[Ly([image: there is no content];μ;σ)]=0 leads to


∑i=1Nyi-μ=0⇒μ=1N∑i=1Nyi



(40)




while ∂∂σln[Ly([image: there is no content];μ;σ)]=0 leads to


-N1σ+1σ3∑i=1Nyi-μ2=0⇒[image: there is no content]=1N∑i=1Nyi-μ2



(41)







Thus, for the normally distributed [image: there is no content], the best estimators for the true value of the parameters μ and [image: there is no content] are the Euclidean estimators of the mean and variance, that is μ^2,N([image: there is no content])=1N∑i=1Nyi and [image: there is no content]^2,N([image: there is no content])=1N∑i=1Nyi-μ2, respectively. What is important here is not the variance [image: there is no content] of the theoretical distribution density [image: there is no content], but the variance S2^2,N of the Euclidean mean estimator μ^2,N([image: there is no content]) [31], given by


1S2^2,N=-∂2∂μ2ln[Ly([image: there is no content];μ;σ)]=N1[image: there is no content]=N1[image: there is no content]^2,N



(42)




so that the value of μ, estimated by [image: there is no content], has a variance S2^2,N, given by


S2^2,N=1N[image: there is no content]^2,N



(43)







Now consider that each variable is distributed as [image: there is no content], namely, by the General Gaussian probability distribution density of Equation (35),


fGG(yi;μ,σ;p)=Cp1σe-ηp|yi-μσ|p



(44)




∀i=1,…,N. Then, the likelihood function is constructed


Ly([image: there is no content];μ,σ;p)=∏i=1NfGG(yi;μ,σ;p)=CpNσ-Ne-ηpσp∑i=1N|yi-μ|p










⇒ln[Ly([image: there is no content];μ,σ;p)]=NlnCp-Nlnσ-ηpσp∑i=1N|yi-μ|p



(45)




Then, ∂∂μln[Ly([image: there is no content];μ,σ;p)]=0 leads to


∑i=1Nyi-μ[image: there is no content]sign(yi-μ)=0



(46)




Thus, for [image: there is no content] distributed by the General Gaussian, the best estimator for the true value of the parameter μ is the non-Euclidean [image: there is no content]-mean estimator [image: there is no content]([image: there is no content];p), defined in Equation (19).



In addition, ∂∂σln[Ly([image: there is no content];μ,σ;p)]=0 leads to


-N1σ+ηppσp+1∑i=1Nyi-μp=0⇒σpηpp=1N∑i=1Nyi-μp



(47)




and thus, the variance S2^p,N of the estimator [image: there is no content]([image: there is no content];p) is given by


1S2^p,N=-∂2∂μ2ln[Ly([image: there is no content];μ,σ;p)]=ηppσp(p-1)∑i=1Nyi-μp-2=N(p-1)∑i=1Nyi-μp-2∑i=1Nyi-μp≡N1[image: there is no content]^p,N








or


S2^p,N=1N[image: there is no content]^p,N



(48)




which is similar to Equation (43) after replacing the Euclidean variance, [image: there is no content]^2,N, with the non-Euclidean one, [image: there is no content]^p,N. Finally, the [image: there is no content] variance (e.g., as given in Equation (30)) can be written in the form of Equation (17), i.e.,


[image: there is no content]p=∑k=1Wpk|[image: there is no content]-[image: there is no content]|p(p-1)∑k=1Wpk|[image: there is no content]-[image: there is no content]|p-2=∑k=1Wpk([image: there is no content]-[image: there is no content])|[image: there is no content]-[image: there is no content]|[image: there is no content]sign([image: there is no content]-[image: there is no content])(p-1)ϕp=∑k=1Wpk([image: there is no content]-[image: there is no content])[image: there is no content]([image: there is no content]-[image: there is no content])=⟨(y-[image: there is no content])[image: there is no content](y-[image: there is no content])⟩2.








Note that the [image: there is no content] mean [image: there is no content] (Equations (1) and (8)) is derived from the minimization of [image: there is no content]p(α)=1(p-1)ϕpTDp([image: there is no content];α;p)p, which is proportional to the total deviations TDpp (Equation (2)).



Moreover, total deviations TDp([image: there is no content];α;p) can be expanded at the minimum [image: there is no content],


TDp([image: there is no content];α;p)p=A0(p)+A1(p)(α-α*)+A2(p)(α-α*)2+O[(α-α*)3]



(49)




where A0(p)=TDp,Min([image: there is no content];p)p=∑k=1Wpk|[image: there is no content]-α*(p)|p is the Total p-Deviations minimum value, A1(p)=-p∑k=1Wpk|[image: there is no content]-α*(p)|[image: there is no content]sign([image: there is no content]-α*(p))=0 is the Total p-Deviation first derivative (in terms of the parameter α), which is equal to zero, while the curvature factor [image: there is no content] is given by


A2(p)=p(p-1)2∑k=1Wpk|[image: there is no content]-α*(p)|p-2



(50)




As it is shown in [7], the variance [image: there is no content]p that is proportional to the square error of the optimal value [image: there is no content] is inversely proportional to [image: there is no content],


[image: there is no content]p∝1(p-1)∑k=1Wpk|[image: there is no content]-α*(p)|p-2



(51)




On the other hand, it is expected that the variance [image: there is no content]p will be proportional also to [image: there is no content], namely,


[image: there is no content]p∝∑k=1Wpk|[image: there is no content]-α*(p)|p



(52)




which completes the proportionality of Equation (51), leading to Equation (30).



There are two more ways to show the specific expression of [image: there is no content]-variance: The proportionality factor C connects, either the variance with the Total Deviations, i.e., [image: there is no content]p=C·TDpp, or the energy states [image: there is no content] with the “[image: there is no content] energy states” {[image: there is no content](εk)}k=1W, i.e., [image: there is no content](εk-[image: there is no content])=C|εk-[image: there is no content]|[image: there is no content]sign(εk-[image: there is no content]). The property (ii) of the non-Euclidean norm operator [image: there is no content] holds if and only if [image: there is no content]. This can be shown in the following two ways: (1) Due to the property (ii) of the non-Euclidean norm operator, the respective Canonical probability distribution can be automatically derived. Indeed, the internal energy constraint [image: there is no content]=∑k=1Wpk[image: there is no content](εk) leads to the derivative ∂∂pj∑k=1Wpk[image: there is no content](εk)=[image: there is no content](εj), so that by maximizing Boltzmann-Gibbs entropy we end up with pk∼e-β[image: there is no content](εk). (2) The connection with thermodynamics can be achieved if and only if [image: there is no content] (Equation (15)).





5. Further Analytical and Numerical Examples


5.1. Analytical Example: The Spectrum of the [image: there is no content] Means and Its Degeneration


For a continuous description of data [image: there is no content], where [image: there is no content] is a continuous index, the [image: there is no content]-expectation value [image: there is no content] is given by


∫t∈Dt|y(t)-[image: there is no content]|[image: there is no content]sign[y(t)-[image: there is no content]]dt=0



(53)




Given the probability distribution of y-values, [image: there is no content], the [image: there is no content]-expectation value is given by Equation (32). Consider now the equidistribution of data in the interval [image: there is no content]. From Equation (32) we have


∫01|y-[image: there is no content]|[image: there is no content]sign(y-[image: there is no content])dy=0⇔∫0[image: there is no content]([image: there is no content]-y)[image: there is no content]dy=∫[image: there is no content]1(y-[image: there is no content])[image: there is no content]dy⇔[image: there is no content]p=(1-[image: there is no content])p⇔[image: there is no content]=12∀p≥1.








The fact that [image: there is no content] is independent of p, is a general result of symmetric probability distributions. Indeed, consider a distribution [image: there is no content], [image: there is no content], symmetric at [image: there is no content], i.e., p(-y)=p(y)∀y∈[-c,c]. Then,


∫-ccp(y)|y|[image: there is no content]sign(y)dy=0,








(the sign is odd function, while [image: there is no content] is even). Hence, given the uniqueness of [image: there is no content] for a given p, we conclude in [image: there is no content]=0,∀p≥1.



Therefore, in the case where the distribution [image: there is no content] is symmetric, the whole set of [image: there is no content]-values degenerate to one single value, which can be found thus, by the usual Euclidean norm, namely [image: there is no content]=⟨y⟩2. (The opposite statement is also true.) However, when [image: there is no content] is asymmetric, a spectrum-like range of different [image: there is no content]-values is generated [7]. For example, the distribution [image: there is no content] in the interval [image: there is no content] is symmetric for [image: there is no content], but becomes asymmetric for [image: there is no content]. Then, we find [image: there is no content]≃12-341p+1δ+Oδ2.




5.2. Numerical Example: Earth’s Magnetic Field


We consider the time series of the Earth’s magnetic field magnitude (in nT). In particular, we focus on a stationary segment recorded by the GOES-12 satellite between the month 1/1/2008 and 1/2/2008, that is a sampling of one measurement per minute, constituting a segment of [image: there is no content] data points, depicted in Figure 4a. This segment is characterized by a roughly symmetric distribution [image: there is no content] (in nT-1), depicted in Figure 4b, resulting to a narrow spectrum of [image: there is no content]-values, depicted in Figure 4c. Notice that the extreme values of [image: there is no content] do not coincide with the respective for [image: there is no content] and [image: there is no content]. Indeed, a minimum of the [image: there is no content]-expectation values, that is ⟨B⟩p,min≈96.614 nT, can be found for the non-Euclidean norm [image: there is no content], while a maximum value of about ⟨B⟩p,max≈98.819 nT, is located at [image: there is no content]. As [image: there is no content], [image: there is no content] tends to [image: there is no content] nT. Hence, it is evident that [image: there is no content] means [image: there is no content] are not indispensably monotonic functions of p.


Figure 4. The magnitude of the Earth’s total magnetic field. (a) The time series recorded between 1/1/2008 and 1/2/2008. (b) The relevant distribution [image: there is no content] is roughly symmetric. As a result, the numerically calculated [image: there is no content]-expectation values, [image: there is no content], configure a narrow spectrum within the interval between the two horizontal dotted lines, where the dependence of [image: there is no content]-values on the p-norm is shown within the magnified inset (c).



[image: Entropy 14 02375 g004 1024]








The expectation value [image: there is no content] is given by the estimator [image: there is no content]([image: there is no content];p). On the other hand, the error δ[image: there is no content] is given by the square root of the variance S2^p,N of the estimator [image: there is no content]([image: there is no content];p), that is


δ[image: there is no content]=S^p,N=1Nσ^p,N=1N1[image: there is no content]∑i=1NBi-[image: there is no content]p∑i=1NBi-[image: there is no content]p-2



(54)







In Figure 5a,b, the [image: there is no content]-expectation value of the Earth’s magnetic field magnitude (shown in Figure 4a), [image: there is no content], together with its error δ[image: there is no content], are respectively depicted as functions of the p-norm. A local minimum of the error δ[image: there is no content] can be detected for [image: there is no content], for which [image: there is no content]≈97.88 nT and δ⟨B⟩p,min≈0.071 nT, shown in the magnified inset of Figure 5c.


Figure 5. The [image: there is no content]-expectation value of the magnitude of the Earth’s total magnetic field (shown in Figure 4a), [image: there is no content], together with its error δ[image: there is no content], are depicted as functions of the p-norm (panels (a) and (b), respectively). A local minimum of the error is found close to the Euclidean norm, i.e., for [image: there is no content], as it is shown within the magnified inset (c).
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For [image: there is no content] the error increases as p increases, until it reaches a local maximum at [image: there is no content], for which [image: there is no content]≈97.07 nT and δ⟨B⟩p,max≈0.091 nT. Then, for [image: there is no content] the error decreases monotonically as p increases. We can readily derive that δ[image: there is no content]≈12(Bmax-Bmin)1N1[image: there is no content]→0, as [image: there is no content].



For [image: there is no content] the error increases as p decreases, but numerous fluctuations appear that become more dense as [image: there is no content]. This “instability cloud” is due to the reading errors of the data values, with their effect being magnified as [image: there is no content] tends to zero. This effect can be demonstrated in Figure 6, where the error δ[image: there is no content] is depicted when an additive noise is inserted into the [image: there is no content] values. In particular, we consider the perturbed values [image: there is no content], where B˜i≡Bi+ϵri, ∀i=1,…,N, with [image: there is no content], being equidistributed in [image: there is no content] and [image: there is no content] is the amplitude of the perturbations. We set [image: there is no content] nT, which is equal to the resolution (reading error) of the values [image: there is no content]. In Figure 6a we set [image: there is no content] nT, while in Figure 6c we set [image: there is no content] nT. In Figure 6b we depict the unperturbed error for convenience. We observe that the “instability cloud”, occurred for [image: there is no content], is different for the three cases [image: there is no content], 0, and [image: there is no content] (nT). However, the minimum at [image: there is no content] remains unaffected.


Figure 6. The error δ[image: there is no content] is depicted with additive equidistributed noise inserted into the [image: there is no content] values ([image: there is no content]). The amplitude of the noise is equal to the resolution of the values [image: there is no content]. Namely, we set [image: there is no content] nT (a), and [image: there is no content] nT (c). In panel (b) we depict the unperturbed error for convenience. The magnified panels (d), (e) and (f) of the respective panels (a), (b) and (c) demonstrate the minimum error at [image: there is no content] that remains unaffected, for amplitudes of additive noise less or equal to the reading error, i.e., [image: there is no content] nT, in contrast to the fluctuations, appearing for [image: there is no content], which are affected by the additive noise.
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The existence of a local minimum of the error, such as the minimum at [image: there is no content], is of great importance. It suggests that for this specific norm, the expectation value comes with the minimum error. Therefore, after the total deviations minimization that leads to the normal Equation (1) from which the optimal parameter [image: there is no content] is derived, the optimization is completed by determining the specific norm [image: there is no content] for which the variance [image: there is no content](p) has a local minimum (if that exists). The importance of the local minimum of [image: there is no content]p(p) is that for any deviation of the norm at p=[image: there is no content], either p<[image: there is no content], or p>[image: there is no content], the error increases, introducing thus, a type of norm-stability. Hence, the [image: there is no content]-norm that corresponds to the minimized error, [image: there is no content], is distinguished. It is interesting that the norm [image: there is no content] is very close to the Euclidean one ([image: there is no content]). However, it has to be stressed out that there is not any universally preferred norm, since this is dependent on the specific data values.



Both the diagrams of the [image: there is no content] mean [image: there is no content](p) and its relevant error δ[image: there is no content](p), depicted in terms of the norm p, constitute a “metricogram". In a metricogram, we are able to observe the whole spectrum of the [image: there is no content] mean and its error, and to recognize the preferable norms.







6. Conclusions


This analysis introduced a possible generalization of the basic statistical concepts of the expectation value and variance for non-Euclidean metrics induced by [image: there is no content] norms. The Euclidean [image: there is no content] mean is derived by minimizing the sum of the total square deviations [image: there is no content], which is the Euclidean variance. Similarly, the non-Euclidean [image: there is no content] means were developed by minimizing the sum of the [image: there is no content] deviations TDpp, which is proportional to the [image: there is no content] variance. The main advantage of the new statistical approach is that the p-norm is a free parameter, thus both the [image: there is no content]-normed expectation values and their variance are flexible to analyze new phenomena that cannot be described under the notions of classical statistics based on Euclidean norms.



As it was shown, the [image: there is no content] means embody a generic formal scheme of means characterization, given the sampling values [image: there is no content]. This involves the existence of a univalued, N-multivariable function M([image: there is no content]), fulfilling the following three preconditions: (i) Continuity; (ii) Internness; (iii) Symmetry. (This axiomatic scheme of means characterization generalizes the one proposed by Aczél [23], which led to the Euclidean [image: there is no content]-means.)



The [image: there is no content] expectation values can be expressed in terms of the operator [image: there is no content], which helps to automatically retrieve the non-Euclidean representation of a given formulation, for which the Euclidean representation is known. This idea was utilized to derive the [image: there is no content]-variance [image: there is no content]p, the derivative ∂∂β[image: there is no content] (with respect to a parameter β, [image: there is no content]=[image: there is no content](β)), and the novel representation of several fundamental notions of Statistical Mechanics (based on the [image: there is no content]-norm), e.g., Canonical probability distribution and partition function.



The [image: there is no content]-mean estimator, [image: there is no content]=[image: there is no content]([image: there is no content];p), of a sampling values [image: there is no content] of the independent and identically distributed random variables [image: there is no content] was defined. It is characterized by the following properties: (i) ⟨[image: there is no content]([image: there is no content];p)⟩p=[image: there is no content], and (ii) [image: there is no content]→[image: there is no content] as [image: there is no content], where [image: there is no content] is the [image: there is no content]-expectation value of each of the [image: there is no content] random variables. These properties are similar to the known Euclidean ones, namely, (i) ⟨1N∑i=1Nyi⟩2=[image: there is no content], and (ii) 1N∑i=1Nyi→[image: there is no content] as [image: there is no content].



The expression of the [image: there is no content] variance [image: there is no content]p was shown by four different ways: (a) The maximization of the likelihood function, constructed by N independent and identically distributed random variables [image: there is no content], led to the [image: there is no content]-mean estimator [image: there is no content] and its [image: there is no content] variance [image: there is no content]^p,N, if [image: there is no content], ∀i=1,…,N, namely, the random variables are distributed according to the General Gaussian distribution with shape parameter equal to the p-norm. (b) The variance [image: there is no content]p is proportional to the total deviations (residuals) [image: there is no content] (Equation (49)), and to the inverse of the curvature factor [image: there is no content], given in Equation (50). The next two ways utilize the fact that the property (ii) of the operator [image: there is no content] holds if and only if the proportionality factor C, that connects, either the variance with the Total p-Deviations, i.e., [image: there is no content]p=C·TDpp, or the energy states [image: there is no content] with the “[image: there is no content] energy states” {[image: there is no content](εk)}k=1W, i.e., [image: there is no content](εk-[image: there is no content])=C|εk-[image: there is no content]|[image: there is no content]sign(εk-[image: there is no content]), is given by the one single expression [image: there is no content]: (c) Derivation of the Canonical probability distribution of [image: there is no content]-normed Statistical Mechanics. (d) Connection with thermodynamics, e.g., [image: there is no content]=-∂ln[image: there is no content]∂β.



We remark the difference between the extracted expression of the [image: there is no content] deviation σp, and the one considered in the literature, σ˜p, that is


σp=1[image: there is no content]∑k=1Wpk|[image: there is no content]-[image: there is no content]|p∑k=1Wpk|[image: there is no content]-[image: there is no content]|p-2,σ˜p=∑k=1Wpk|[image: there is no content]-⟨y⟩2|pp



(55)




which is supposed to represent the generalization of σ2=∑k=1Wpk|[image: there is no content]-⟨y⟩2|2. The correct expressions of the [image: there is no content] means and variance can be crucial for providing insights into the fundamental numerical tools of data analysis, such as the moving averages techniques for smoothing, the multifractal detrended fluctuation analysis (MF-DFA) (e.g., see [32,33]), the singular spectrum analysis technique [34], etc. Having found a new class for the mean and variance, it is straightforward to develop an unbiased estimator for the population coefficient of variation (e.g., for Euclidean norm, see [35]).



Several analytical and numerical examples were examined. When the distribution of the data values is symmetric, the whole set of [image: there is no content] means degenerates to one single value, while when it is asymmetric, a spectrum-like range of [image: there is no content] means is generated. In addition, we dealt with the numerical data of the Earth’s magnetic field magnitude.



The mean value is uniquely defined and dependent on the p-norm. The error of the mean is also dependent on the p-norm, leading to a variant weight of the mean (inverse square). In a metricogram, we observe the whole spectrum of the [image: there is no content] mean [image: there is no content](p) and its relevant error δ[image: there is no content](p), depicted in terms of the p-norm, where we can detect any preferable norms. For example, for the numerical example of the Earth’s magnetic field magnitude (time series recorded within January of 2008), a preferable norm was found for [image: there is no content], for which ∂∂pδ[image: there is no content](p)=0, ∂2∂p2δ[image: there is no content](p)>0.



The classical concept of expectation values was generalized to the non-Euclidean [image: there is no content]-normed representation, highlighting its implication in Statistical Mechanics. Indeed, the [image: there is no content] expectation value of a given energy spectrum [image: there is no content] represents the non-Euclidean adaptation of the internal energy [image: there is no content]. This is an issue that has to be considered in Statistical Mechanics: Several pedagogical examples were examined: gas in thermal equilibrium, space plasmas out of thermal equilibrium, and multi-dimensional quantum harmonic oscillator at thermal equilibrium.
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