
Entropy 2012, 14, 2311-2323; doi:10.3390/e14112311 
 

entropy 
ISSN 1099-4300 

www.mdpi.com/journal/entropy 
Article 

On the Smoothed Minimum Error Entropy Criterion  

Badong Chen 1,2,* and Jose C. Principe 1 

1 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, 
USA; E-Mail: principe@cnel.ufl.edu 

2 Department of Precision Instruments and Mechanology, Tsinghua University, Beijing, 100084, 
China 

* Author to whom correspondence should be addressed; E-Mail: chenbd04@mails.tsinghua.edu.cn. 

Received: 9 July 2012; in revised form: 1 November 2012 / Accepted: 1 November 2012 /  
Published: 12 November 2012 
 

Abstract: Recent studies suggest that the minimum error entropy (MEE) criterion can 
outperform the traditional mean square error criterion in supervised machine learning, 
especially in nonlinear and non-Gaussian situations. In practice, however, one has to 
estimate the error entropy from the samples since in general the analytical evaluation of 
error entropy is not possible. By the Parzen windowing approach, the estimated error 
entropy converges asymptotically to the entropy of the error plus an independent random 
variable whose probability density function (PDF) corresponds to the kernel function in the 
Parzen method. This quantity of entropy is called the smoothed error entropy, and the 
corresponding optimality criterion is named the smoothed MEE (SMEE) criterion. In this 
paper, we study theoretically the SMEE criterion in supervised machine learning where the 
learning machine is assumed to be nonparametric and universal. Some basic properties are 
presented. In particular, we show that when the smoothing factor is very small, the 
smoothed error entropy equals approximately the true error entropy plus a scaled version 
of the Fisher information of error. We also investigate how the smoothing factor affects the 
optimal solution. In some special situations, the optimal solution under the SMEE criterion 
does not change with increasing smoothing factor. In general cases, when the smoothing 
factor tends to infinity, minimizing the smoothed error entropy will be approximately 
equivalent to minimizing error variance, regardless of the conditional PDF and the kernel. 
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1. Introduction 

The principles and methods in Shannon’s information theory have been widely applied in statistical 
estimation, filtering, and learning problems [1–18]. The learning process is essentially a procedure of 
information processing with the goal of decreasing data redundancy in the presence of uncertainty and 
encoding the data into a model, and hence it is intrinsically related to information theory. An 
information theoretic description of learning processes was given in [10], where learning is defined as 
a process in which the system’s subjective entropy or, equivalently, its missing information decreases 
in time. The mathematical concept of information was also brought to biologically plausible 
information processing [11]. In addition, a unifying framework for information theoretic learning 
(ITL) has been presented in [18].  

From a statistical viewpoint, learning can be thought of as approximating the a posteriori 
distribution of the targets given a set of examples (training data). Figure 1 shows a general scheme of 
supervised machine learning, where the desired system output Y  (the teacher) is assumed to be related 
to the input signal X  through a conditional probability density function (PDF) ( )Y Xp y x , and the 

learning machine (model) is represented by a parametric mapping ( ).,g W , where dW ∈  denotes a 

parameter vector that needs to be estimated.  

Figure 1. A general scheme of supervised machine learning. 

X Y

ˆE Y Y= −

( )Y Xp y x

( ).,g W
Ŷ

 
 
The learning goal is then to adapt the parameterW such that the discrepancy between the model 

output ( )ˆ ,Y g X W=  and the desired output Y  is minimized. How to measure the discrepancy (or 
model mismatch) is a key aspect in learning. One can use a statistical descriptor of the error 
( ˆE Y Y= − ) distribution as the measure of discrepancy. The most popular descriptors are the second 
order moments (variance, correlation, etc.), which combined with the Gaussian assumption, in general 
leads to mathematically convenient and analytically tractable optimal solutions. A typical example is 
the mean square error (MSE) criterion in least-squares regression. However, the second order statistics 
as optimality criteria may perform poorly especially in nonlinear and non-Gaussian (e.g., heavy-tail or 
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finite range distributions) situations. Recently, the error entropy, as an information theoretic alternative 
to MSE, has been successfully applied in supervised adaptive system training [12–17]. The minimum 
error entropy (MEE) criterion usually outperforms MSE criterion in many realistic scenarios, since it 
captures higher-order statistics and information content of signals rather than simply their energy. 
Under the MEE criterion, the optimal weight in Figure 1 will be: 

( )

[ ]

* arg min

    arg min ( ) log ( )

    arg min log ( )

d

d

d

W

E E
W

E
W

W H E

p x p x dx

p E

∈

∈

∈

=

= −

= −

∫
Ε

 (1) 

where ( )H E  denotes the Shannon entropy of the error E , (.)Ep  denotes the error PDF, and Ε  

denotes the expectation operator. Throughout this paper, “log” denotes the natural logarithm. The 
formulation (1) can be generalized to other entropy definitions, such as the α -order Renyi 
entropy [18]. Since entropy is shift invariant, the error PDF (.)Ep  is in general restricted to zero mean 

in practice. 
The learning machine in Figure 1 can also be a nonparametric and universal mapping (.)g . Familiar 

examples include the support vector machine (SVM) [19,20] and kernel adaptive filtering [21]. In this 
case, the hypothesis space for learning is in general a high (possibly infinite) dimensional reproducing 
kernel Hilbert space (RKHS) H , and the optimal mapping under MEE criterion is:  

* arg min ( ) log ( )E E
g

g p x p x dx
∈

= − ∫
H

 (2) 

To implement the MEE learning, we should evaluate the error entropy. In practice, however, the 
error distribution is usually unknown, and the analytical evaluation of error entropy is not possible. 
Thus we have to estimate the error entropy from the samples. One simple way is to estimate the error 
PDF based on available samples, and plug the estimated PDF directly into the entropy definition to 
obtain the entropy estimator. In the literature there are many techniques for estimating the PDF of a 
random variable based on its sample data. In ITL, the most widely used approach is the Parzen 
windowing (or kernel density estimation) [22]. By Parzen windowing, the estimated error PDF is:  

( )
1

1ˆ ( )
N

E i
i

p x x e
N λκ

=

= −∑  (3) 

where ( )( ) (1 )x xλκ λ κ λ=  is the kernel function with smoothing factor (or kernel size) 0λ > , κ  is a 

continuous density, and { } 1

N
i i

e
=

 are error samples which are assumed to be independent and identically 

distributed (i.i.d.). As sample number N →∞ , the estimated PDF will uniformly converge (with 
probability 1) to the true PDF convolved with the kernel function, that is 

( )ˆ ( ) * ( )N
E Ep x p xλκ

→∞⎯⎯⎯→  (4) 

where * denotes the convolution operator. Then, by the Parzen windowing approach (with a fixed 
kernel function λκ ), the estimated error entropy will converge almost surely (a.s.) to the entropy of the 

convolved density (see [22,23]). Thus, the actual entropy to be minimized is: 
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( ) ( ) ( )* ( ) log * ( )E EH E Z p x p x dxλ λλ κ κ+ = −∫  (5) 

where Z  denotes a random variable that is independent of X , Y , E , and has PDF ( ) ( )Zp x xκ= . 

Note that the PDF of the sum of two independent random variables equals the convolution of their 
individual PDFs. Here, we call the entropy ( )H E Zλ+  the smoothed error entropy, and Z  the 

smoothing variable. Under the smoothed MEE (SMEE) criterion, the optimal mapping in (2) becomes: 

( )

( ) ( )

* arg min

    arg min * ( ) log * ( )
g

E E
g

g H E Z

p x p x dxλ λ

λ

κ κ

∈

∈

= +

= − ∫
H

H

 (6) 

Although SMEE is an actual learning criterion (as sample number N →∞ ) in ITL, up to now its 
theoretical properties have been little studied. In this work, we study theoretically the SMEE criterion. 
The rest of the paper is organized as follows: in Section 2, we present some basic properties of the 
SMEE criterion. In Section 3, we investigate how the smoothing factorλ affects the optimal solution. 
Finally in Section 4, we give the conclusion.  

2. Some Basic Properties of SMEE Criterion 

In this section, some basic properties of SMEE criterion are presented. We assume from now on, 
without explicit mention, that the learning machine is a nonparametric and universal mapping (.)g . In 
addition, the input vector X  belongs to an m-dimensional Euclidean space, mX ∈ , and for 
simplicity, the output Y  is assumed to be a scalar signal, Y ∈ .  

Property 1: Minimizing the smoothed error entropy will minimize an upper bound of the true error 
entropy ( )H E . 

Proof: According to the entropy power inequality (EPI) [1], we have: 

( )( ) ( )( ) ( )( )exp 2 exp 2 exp 2H E Z H E H Zλ λ+ ≥ +  (7) 

It follows that: 

( ) ( )( ) ( )( )( )1 log exp 2 exp 2
2

H E H E Z H Zλ λ≤ + −  (8) 

Thus, minimizing the smoothed error entropy ( )H E Zλ+  minimizes an upper bound of ( )H E . 

Remark 1: Although this property does not give a precise result concerning SMEE vs. MEE, it suggests 
that minimizing the smoothed error entropy will constrain the true error entropy to small values. 

Property 2: The smoothed error entropy is upper bounded by ( )( )2 2 21 log 2
2 E Zeπ σ λ σ+ , where 2

Eσ  and 
2
Zσ  denote the variances of E  and Z , respectively, and this upper bound is achieved if and only if 

both E  and Z  are Gaussian distributed. 

Proof: The first part of this property is a direct consequence of the maximum entropy property of the 
Gaussian distribution. The second part comes from Cramer’s decomposition theorem [24], which 
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states that if 1X  and 2X  are independent and their sum 1 2X X+  is Gaussian, then both 1X  and 2X  

must also be Gaussian.  

Remark 2: According to Property 2, if both E and Z are Gaussian distributed, then minimizing the 
smoothed error entropy will minimize the error variance.  

Property 3: The smoothed error entropy has the following Taylor approximation around 0λ = : 

( ) ( ) ( ) ( )2 2 21
2 ZH E Z H E J Eλ λ σ ο λ+ = + +  (9) 

where ( )2ο λ  denotes the higher-order infinitesimal term of Taylor expansion, and ( )J E  is the Fisher 

information of E , defined as: 

( )
2

log ( )EJ E p E
E

⎡ ⎤∂⎛ ⎞= ⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦
Ε  (10) 

Proof: This property can be easily proved by using De Bruijn’s identity [25]. For any two independent 
random variables 1X  and 2X , 1 2,X X ∈ , De Bruijn’s identity can be expressed as  

( ) ( )
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∂
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where 
2

2
Xσ  denotes the variance of 2X  (Classical deBruijn identity assumes that 2X  is Gaussian. Here, 

we use a generalized deBruijn identity for arbitrary (not necessarily Gaussian) 2X  [25]). So, we have: 
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∂
+ =

∂
 (12) 

and hence, we obtain the first-order Taylor expansion: 
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 (13) 

Remark 3: By Property 3, with smallλ , the smoothed error entropy equals approximately the true error 
entropy plus a scaled version of the Fisher information of error. This result is very interesting since 
minimizing the smoothed error entropy will minimize a weighted sum of the true error entropy and the 
Fisher information of error. Intuitively, minimizing the error entropy tends to result in a spikier error 
distribution, while minimizing the Fisher information makes the error distribution smoother (smaller 
Fisher information implies a smaller variance of the PDF gradient). Therefore, the SMEE criterion 
provides a nice balance between the spikiness and smoothness of the error distribution. In [26], the 
Fisher information of error has been used as a criterion in supervised adaptive filtering.  

Property 4: Minimizing the smoothed error entropy ( )H E Zλ+  is equivalent to minimizing the 

mutual information between E Zλ+  and the input X , i.e., ( ) ( )arg min arg min ;
g g

H E Z I E Z Xλ λ
∈ ∈

+ = +
H H

. 
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Proof: Since mutual information ( ) ( ) ( );I X Y H X H X Y= − , where ( )H X Y  denotes the conditional 

entropy of X  given Y , we derive: 
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where (a) comes from the fact that the conditional entropy ( )H Y Z Xλ+  does not depend on the 

mapping (.)g . 

Property 5: The smoothed error entropy is lower bounded by the conditional entropy ( )H Y Z Xλ+ , 

and this lower bound is achieved if and only if the mutual information ( ); 0I E Z Xλ+ = .  

Proof: As ( ) ( ) ( );I E Z X H E Z H Y Z Xλ λ λ+ = + − + , we have: 

( ) ( ) ( )

( )
( )

;

                 
b

H E Z H Y Z X I E Z X

H Y Z X

λ λ λ

λ

+ = + + +

≥ +
 (15) 

where (b) is because of the non-negativeness of the mutual information ( );I E Z Xλ+ . 

Remark 4: The lower bound in Property 5 depends only on the conditional PDF of Y  given X  and the 
kernel function λκ , and is not related to the learning machine. Combining Property 5 and Property 2, 

the smoothed error entropy satisfies the following inequalities: 

( ) ( ) ( )( )2 2 21 log 2
2 E ZH Y Z X H E Z eλ λ π σ λ σ+ ≤ + ≤ +  (16) 

Property 6: Let ( ) ( ), * ( )Y Xy x p y x yλ λρ κ κ  be the smoothed conditional PDF of Y  given X x= , 

where the convolution is with respect to y . If for every mx∈ , ( ),y x λρ κ  is symmetric (not 

necessarily about zero) and unimodal in y∈ , then the optimal mapping in (6) equals (almost 
everywhere):  

( )*( ) ,g x y y x dy cλρ κ= +∫  (17) 

where c∈  is any constant. 
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Proof: The smoothed error PDF ( )* (.)Ep λκ  can be expressed as: 

( )
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 (18) 

where ( )F x  denotes the distribution function of X . From (18), we see that the SMEE criterion can be 
formulated as a problem of shifting the components of a mixture of the smoothed conditional PDFs so 
as to minimize the entropy of the mixture. Then Property 6 holds since it has already been proved 
in [27] that, if all components (conditional PDFs) in the mixture are symmetric and unimodal, the 
conditional mean (or median) will minimize the mixture entropy. The constant c  is added since the 
entropy is shift-invariant (in practice we usually set 0c = ).  

3. How Smoothing Factor Affects the Optimal Solution 

The smoothing factor λ  is an important parameter in SMEE criterion, which controls the 
smoothness of the performance surface. In the following, we will investigate how the smoothing factor 
affects the optimal solution (optimal mapping) *(.)g . 

When 0λ = , the smoothed error entropy becomes the true error entropy, and the SMEE criterion 
reduces to the original MEE criterion. When 0λ > , the two criteria are different and, in general have 
different solutions. However, in some situations, for any λ , the SMEE criterion yields the same 
solution as the MEE criterion.  

Proposition 1: If the desired output Y  is related to the input signal X  through the nonlinear regression 
model ( )Y f X N= + , where f  is an unknown nonlinear mapping, and N  is an additive noise that is 
independent of X  and Z , then for any λ , the optimal solution under SMEE criterion is: 

*( ) ( )g x f x c= +  (19) 

Proof: For any mapping g∈H , and any λ , we have: 

( ) ( )
[ ] [ ]( )
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H U V U

H V U

H V

λ λ

λ

+ = + − +

= − + +

= +

≥ +
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where ( ) ( )U f X g X= − , V N Zλ= + , and (c) comes from the fact that U  and V  are independent. 
The equality in (20) holds if and only if U  is δ  distributed, that is, U  is a constant. This can be easily 
proved as follows. 
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If U  is a constant, the equality in (20) will hold. Conversely, if the equality in (20) holds, we can 
prove that U  is a constant. Actually, in this case, U  and U V+  are independent, and hence, 

( )[ ] [ ] [ ]E E EU V U U V U+ = + . It follows that: 
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⎡ ⎤
⎢ ⎥⎣ ⎦

 (21) 

which implies that the variance of U  is zero (i.e., U  is a constant). Therefore we have *( ) ( )g x f x c= + . 

Remark 5: Proposition 1 implies that for the nonlinear regression problem, the optimal solution under 
the SMEE criterion does not change with the smoothing factor provided that the additive noise is 
independent of the input signal.  

If the unknown system (the conditional PDF) is not restricted to a nonlinear regression model, 
under certain conditions the optimal solution of SMEE can still remain unchanged with the smoothing 
factor λ . Specifically, the following proposition holds. 

Proposition 2: If the conditional PDF ( )Y Xp y x  and the kernel function ( )yλκ  are both symmetric 

(not necessarily about zero) and both unimodal in y∈ , then for any λ , the SMEE criterion 
produces the same solution: 

( )*( ) Y Xg x yp y x dy c= +∫  (22) 

Proof: By Property 6, it suffices to prove that the smoothed conditional PDF ( ). ,x λρ κ  is symmetric 

and unimodal. This is a well-known result and a simple proof can be found in [28]. 

Remark 6: Note that the optimal solution under the minimum error variance criterion is also given 
by (22). In particular, if setting 0c = , the solution (22) becomes the conditional mean, which 
corresponds to the optimal solution under the MSE criterion. 

Proposition 3: Assume that the conditional PDF ( ).Y Xp x  is symmetric (not necessarily unimodal) 

with uniformly bounded support, and the kernel function λκ  is a zero-mean Gaussian PDF with 

variance 2λ . Then, if smoothing factor λ  is larger than a certain value, the optimal solution under the 
SMEE is still given by (22). 

Proof: By Property 6, it is sufficient to prove that if smoothing factor λ  is larger than a certain value, 
the smoothed conditional PDF ( ). ,x λρ κ  is symmetric and unimodal. Suppose without loss of 

generality that the conditional PDF ( ).Y Xp x  is symmetric about zero with bounded support [ ],B B− , 

0B > . Since kernel function (.)λκ  is a zero-mean Gaussian PDF with variance 2λ , the smoothed PDF 

( ). ,x λρ κ  can be expressed as: 
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where (d) follows from ( ) ( )Y X Y Xp x p xτ τ= − . Clearly, ( ),y x λρ κ  is symmetric in y . Further, we 

derive:  
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If 2Bλ ≥ , we have:  
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We give below a simple proof of (25). It suffices to consider only the case 0y ≥ . In this case, we 
consider two subcases: 

(1) y B≥ : In this case, we have [ ]0, Bτ∀ ∈ , ( ) 0y τ− ≥ , and hence: 

( ) ( ) ( ) ( )
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(2) 0 y B≤ < : In this case, we have [ ]0, Bτ∀ ∈ , 0 2y y Bτ τ λ≤ − ≤ + ≤ ≤ . Since x λ∀ ≤ :  
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we have ( ) ( ) ( )
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, and it follows easily that:  
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Combining (24), (26) and (28), we get 0y∀ ≥ , ( ), 0y x
y λρ κ∂

≤
∂

. Therefore (25) holds, which 

implies that if 2Bλ ≥  the smoothed PDF ( ). ,x λρ κ  is symmetric and unimodal, and this completes 

the proof of the proposition. 
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Remark 7: Proposition 3 suggests that under certain conditions, when λ  is larger than a certain value, 
the SMEE criterion yields the same solution as the minimum error variance criterion. In the next 
proposition, a similar but more interesting result is presented for general cases where no assumptions 
on the conditional PDF and on the kernel function are made.  

Proposition 4: When the smoothing factor λ →∞ , minimizing the smoothed error entropy will be 
equivalent to minimizing the error variance plus an infinitesimal term.  

Proof: The smoothed error entropy can be rewritten as: 

( )

( )

1 1 log

1                   log
2

H E Z H E Z H E Z

H Z tE t

λ λ λ
λ λ

⎛ ⎞⎡ ⎤ ⎛ ⎞+ = + = + +⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠

= + −

 (29) 

where 21t λ= . Since the term 1 log
2

t−  does not depend on learning machine, minimizing 

( )H E Zλ+  is equivalent to minimizing ( )H Z tE+ , that is: 

( ) ( )min  min
g g

H E Z H Z tEλ
∈ ∈

+ ⇔ +
H H

 (30) 

By De Bruijn’s identity (11):  

( ) ( )2

0

1
2 E

t

H Z tE J Z
t

σ
=

∂
+ =

∂
 (31) 

When λ  is very large (hence t  is very small):  

( ) ( ) ( ) ( )2

2 E
tH Z tE H Z J Z tσ ο+ = + +  (32) 

Combining (30) and (32) yields:  

( ) ( ) ( )2 2min   min Eg g
H E Z t

J Z t
λ σ ο

∈ ∈

⎛ ⎞
+ ⇔ +⎜ ⎟⎜ ⎟

⎝ ⎠H H
 (33) 

which completes the proof. 

Remark 8: The above result is very interesting: when the smoothing factorλ is very large, minimizing 
the smoothed error entropy will be approximately equivalent to minimizing the error variance (or the 
mean square error if the error PDF is restricted to zero-mean). This result holds for any conditional 
PDF and any kernel function. A similar result can be obtained for the nonparametric entropy estimator 
based on Parzen windows. It was proved in [14] that in the limit, as the kernel size (the smoothing 
factor) tends to infinity, the entropy estimator approaches a nonlinearly scaled version of the 
sample variance.  

4. Conclusions  

Traditional machine learning methods mainly exploit second order statistics (covariance, mean 
square error, correlation, etc.). The optimality criteria based on second order statistics are 



Entropy 2012, 14 2321 
 
computationally simple, and optimal under linear and Gaussian assumptions. Although second order 
statistics are still prevalent today in the machine learning community and provide successful 
engineering solutions to most practical problems, it has become evident that this approach can be 
improved, especially when data possess non-Gaussian distributions (multi-modes, fat tails, finite 
range, etc.). In most situations, a more appropriate approach should be applied to capture higher order 
statistics or information content of signals rather than simple their energy. Recent studies suggest that 
the supervised machine learning can benefit greatly from the use of the minimum error entropy (MEE) 
criterion. To implement the MEE learning, however, one has to estimate the error entropy from the 
samples. In the limit (when sample size tends to infinity), the estimated error entropy by Parzen 
windowing converges to the smoothed error entropy, i.e., the entropy of the error plus an independent 
random variable with PDF equal to the kernel function used in Parzen windowing, so the smoothed 
error entropy is the actual entropy that is minimized in the MEE learning.  

In this paper, we study theoretically the properties of the smoothed MEE (SMEE) criterion in 
supervised machine learning and, in particular, we investigate how the smoothing factor affects the 
optimal solution. Some interesting results are obtained. It is shown that when the smoothing factor is 
small, the smoothed error entropy equals approximately the true error entropy plus a scaled version of 
the Fisher information of error. In some special situations, the SMEE solution remains unchanged with 
increasing smoothing factor. In general cases, however, when the smoothing factor is very large, 
minimizing the smoothed error entropy will be approximately equivalent to minimizing the error 
variance (or the mean square error if the error distribution is restricted to zero-mean), regardless of the 
conditional PDF and the kernel function. 

This work does not address the learning issues when the number of samples is limited. In this case, 
the problem becomes much more complex since there is an extra bias in the entropy estimation. We 
leave this problem open for future research. The results obtained in this paper, however, are still very 
useful since they provide theoretical solutions to which the empirical solution (with finite data) must 
approximate.  
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