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Abstract: In evolutionary biology, attention to the relationship between stochastic
organisms and their stochastic environments has leaned towards the adaptability and learning
capabilities of the organisms rather than toward the properties of the environment. This
article is devoted to the algorithmic aspects of the environment and its interaction with living
organisms. We ask whether one may use the fact of the existence of life to establish how
far nature is removed from algorithmic randomness. The paper uses a novel approach to
behavioral evolutionary questions, using tools drawn from information theory, algorithmic
complexity and the thermodynamics of computation to support an intuitive assumption about
the near optimal structure of a physical environment that would prove conducive to the
evolution and survival of organisms, and sketches the potential of these tools, at present alien
to biology, that could be used in the future to address different and deeper questions. We
contribute to the discussion of the algorithmic structure of natural environments and provide
statistical and computational arguments for the intuitive claim that living systems would not
be able to survive in completely unpredictable environments, even if adaptable and equipped
with storage and learning capabilities by natural selection (brain memory or DNA).
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1. Why Biology Looks so Different from Physics

Chemical and physical laws are assumed valid anywhere in the universe while biology only describes
terrestrial life (even exo- or astrobiology has only DNA-based terrestrial life for an example). In this
sense, physics is unrestricted in its domain; anything happening in the universe is always potentially a
falsification of a physical theory, which is not only possibly not true for biology, but unlikely [1]. Other
sciences, however, are domain specific. We do not assume that life or biology needs to be the same
everywhere in the universe. Likewise medicine, insofar as it is a science, is species specific.

Hopfield once asked the very same question we address here [2], and advocated a computational
approach of the kind that he himself adopted [3]. In a recent commentary (TWiT, This WEEK in
TECH, episode 195 for May 18, 2009: A Series of Tube Tops) Stephen Wolfram advanced a provocative
assertion concerning biology and math:

People think of biology as a very accidental science. One where what we have today is
a result of a whole series of accidents . . . But they think of mathematics, for example, as
the exact opposite. As a very non-accidental, completely sort of determined-by-higher-
principles kind of science . . . I actually think it’s the opposite way round.

What Wolfram suggests—and this has its basis in [4]—is not too far afield of claims made by other
pioneers such as Hopfield [3], viz., that the special features of biology as a field are apparent rather
than actual, because rather than being accidental, biological phenomena are more likely subject to
informational rather than physical laws. Hopfield underscores the fact that there seems to be no particular
reason to believe that biology is ultimately markedly different from physics, insofar as we understand
physics as having laws. If this is the case, information and computation may someday describe and
provide laws for biological phenomena, just as they are already providing tools to help develop new
physical models (e.g., theories of quantum gravity) [5].

1.1. Individuation and the Value of Information

The problem of what makes biology different from physics can be translated into what makes their
objects of study different, and differences may be sought not only between the two fields but within
each field as well. What makes the objects of study in these fields different? The usual position is that
in physics there are laws of increasing accuracy and of a fundamental character describing the world.
In biology, by contrast, objects and particular mechanisms seem more important than general laws.
General laws have been claimed for biology, such as Fisher’s fundamental theorem [6]. Evolution is in a
strong sense a theory of information transfer, describing the process of transmitting messages containing
biological information, with mutation a phenomenon of information change and a source of variation.
As such, it is very much in line with contemporary developments in physics, where information plays a
vital role.

To take an example from physics, entangled particles are indistinguishable from each other. We know
that there are two particles only because the system would behave differently were there just one, but
there is no way to actually distinguish one particle from the other (some exotic theories even suggest that
there is in fact just a single particle, behaving as if it were several. In Feynman’s Nobel Lecture delivered
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on December 11, 1965 he relates the story of Wheeler, his thesis advisor, calling him by phone to say:
“Feynman, I know why all electrons have the same charge and the same mass . . . Because, they are all
the same electron!”). The fact that particles can be treated as identical has important consequences, as
they become pure information in statistical mechanics rather than objects, from which probabilities may
be calculated.

Biology may be no different. We have always been able to identify different organisms (even of
the same species), as they have exclusive particularities that make them distinct. Every organism has
a different genome, and even before the discovery of genetic inheritance, taxonomists had established
a species classification based on morphological characteristics, which has proved remarkably robust,
surviving into the age of the genome. Moreover, natural selection is meaningless if its definition does
not encompass fitness, as indexed by the ability of an organism to produce viable offspring—which
makes the number of individual organisms (rather than their singular qualities) integral to the reckoning
of fitness. For that matter, most of modern biology is about individuation, the shift from the study of a
particular entity or collection of entities to the study of indistinguishable objects. Genes, for example,
are taken as indistinguishable units, not only within a species but also within an organism. One does
not count how many times the same gene occurs in a single organism (this would mean counting at least
one per cell). Instead, one gene is taken to represent all others of the same type. Just as with elementary
particles, what makes a gene a gene is not the particularities of the physical object but the information
about the said object (for particles, their mass, energy, etc.; for genes, the proteins they encode, etc.).
What makes a particle a specific particle and a gene a specific gene is nothing but information.

2. Stochastic Environments and Biological Thermodynamics

What can be learned about the relationship between the information content of a stochastic
environment and its degree of predictability and structure versus randomness from the way in which
organisms gather information from it in order to survive and reproduce?

Stochasticity is a commonly studied property of the environment (e.g., [7]) in which organisms live,
and has to do with the constant changes that lead to the modification of the short-term or long-term
behavior of individuals or populations (through the DNA).

That information is as essential to the development of modern biology as it has been for physics is
borne out by the fact that a central element in living systems turns out to be digital: DNA sequences
refined by evolution encode the components and provide complete instructions for producing an
organism. It is therefore natural to turn to computer science, with its concepts designed to characterize
digital information, and also to computational physics, in order to understand the process of life.

It is our belief that the theory of computation and information may be used to understand fundamental
aspects of life, as we have argued before [8,9]. For example, computational thermodynamics provides a
new way to study and understand a fundamental property of reality, viz., structure.

Information confers an advantage on living organisms, but organisms must also cope with the cost
of information processing. Ultimately the limits are set by thermodynamics, and the link between
thermodynamics and information has traditionally been computation [10–12] as information processing.



Entropy 2012, 14 2176

Information processing in organisms should be understood as the process whereby the organism
compares its knowledge about the world with the observable state of the world at a given time; in
other words, the process whereby an organism weighs possible future outcomes against its present
condition. While the larger the number and the more accurate the processed observables from the
environment, the better the predictions and decisions, organisms cannot spend more energy than the
total return received from information. We will explain how we think organisms can be modeled using
instantaneous descriptions written in bits, their states being updated over time as they interact with the
environment. Then we will use this argument to show that thermodynamic trade-offs provide clues to
the degree of structure and predictability versus randomness in a stochastic natural environment. The
sense in which we use the term algorithmic structure throughout this paper is as opposed to randomness
(high Kolmogorov complexity, see Section 3.1).

2.1. The Information Content of Life

An organism is an open thermodynamic system, exchanging energy with its environment in the
form of heat, work and the energy extracted from biochemical compounds. One can set up an
appropriate framework that takes into consideration the dynamics of the interaction of organisms with
their environments by using an abstract model of information processing subject to the laws of physics.
This model of organisms extracting energy directly from information is really a thought experiment to
arrive at the fundamental principles. We do not require or necessarily believe that organisms actually
do what the computational framework suggests, only that organisms are subject to the limits of the
computational framework just as they are to physical laws.

Classical mechanics is reversible [13] and hence deterministic in a strict sense. One can only find
asymmetries of the kind imposed by the second law of thermodynamics in the context of statistical
mechanics. Hence the environment in which an organism may live is deterministic in a very strict
sense, yet it is often modeled stochastically, because organisms have access only to a finite amount
of information and they update their knowledge states dynamically at different rates for different
phenomena, making the environment seem apparently random and unpredictable in practice—given the
implicit determinism of classical mechanics.

Computation can serve as a framework for investigating issues of thermodynamics. Of course, there
are ontological commitments—two, to be precise—but these can be kept simple and reasonable, as they
are common. One is that an organism’s behavior is subject to principles of computation just as it is to
physical laws, and the other is that an organism has access to only a finite amount of information. In the
following sections, we will show how thermodynamics can be employed to explain some of the behavior
of living systems.

2.2. Requisite Variety

Cybernetician Ross Ashby proposed the law of requisite variety [14]. This states that an organism, in
order to survive in its environment, must possess at least the same degree of differentiation (variety) as
that characterizing the environment. For example, if an environment presents seven different situations
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relevant to the organism, organisms surviving in that environment must possess sufficient differentiation
to be able to distinguish at least those seven situations.

The law of requisite variety suggests that less predictable environments will require more
algorithmically complex organisms to be able to survive in them. For example, the foraging strategy
of organisms depends on the predictability/structure of the environment. Even when there is a degree
of randomness, different distributions demand different behaviors. For example, patchy environments
are best explored using Lévy flights [15], while homogeneous, unstructured environments are often
explored using Brownian motion by simple organisms, while certain other organisms (e.g., some slime
moulds or mycelium fungi) may implement strategies close to an exhaustive search. Usually, abundant
environments will demand less complexity of organisms compared with environments of scarcity, since
less discrimination is required for survival.

Ashby’s Law of Requisite Variety suggests that if the features of an environment E that are
evolutionarily relevant to an organism have variety x, then an organism surviving in E must have at
least a representation of E that has a variety of x.

2.3. Markov Chains

Markov chains are a common modeling tool in ecology. A Markov chain is a random process (i.e.,
a set of random variables) where the forthcoming state is only determined by the present state (i.e., the
process is memoryless). Note that a random process with memory can be viewed as a Markov chain
taking tuples of states as state space. Time may be discrete or continuous. In the case of a Markov chain
modeling the real world, the number of random variables of {Xt} can be unbounded, either because the
environment can be regarded as an open system or because one can incorporate more random variables
at every possible scale. An organism’s representation of the world, however, is always limited, not only
because it has access to limited resources, but also because organisms can only process a finite amount
of relevant information in order to make a decision. An example of a Markov chain is shown in Figure 1.

Figure 1. An example of a simple 5-state Markov chain with simple transition probabilities
represented as a stochastic finite-state automaton diagram.
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To reduce uncertainty, an organism gathers information from its environment and continually updates
its representation of the world. However, this process is subject to a decision as to whether the cost
of gathering information exceeds the potential return (in units of energy). For example, as suggested
in [16], in an extremely random environment nothing would be known about the location and quantity
of food, and a forager would only obtain this information by sampling, which will be more costly on
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average than the value accruing from finding and ingesting the food. It is also pointed out in [16] that
while food represents a short-term benefit, the information accumulated from the experience of finding
food is a long-term benefit, because the experience can be used to learn and predict (in the probabilistic
algorithmic sense [17,18], as used, for example, in machine learning). Nevertheless, prediction in
ecological systems is limited, as discussed in [19], among other reasons because there is only partial
access to all the environmental variables.

3. Computation and Life

Among Turing’s most important contributions to science is his definition of universal computation,
integral to his attempt to mechanize the concept of a computing machine. A universal (Turing) machine
is an abstract device capable of carrying out any computation for which a program can be written. More
formally, given a fixed description of Turing machines, we say that a Turing machine U is universal if
for any input s and Turing machine M , U(〈M〉, s) halts if M halts on s and outputs M(s); and does not
halt if M(s) does not. In other words, U is capable of running any Turing machine M with input s.

A digital computer allows us to physically realize this concept, and as suggested in [20], there is no
better place in nature where a process similar to the way Turing machines work can be found than in
the unfolding of DNA transcription. For DNA is a set of instructions contained in every living organism
with a script empowering organisms to self-replicate. In fact, it is today common, even in textbooks,
to consider DNA as the digital repository of the organism’s development plan, and the organism’s
development itself is not uncommonly thought of as a mechanical, computational process in biology.

Chaitin, one of the founders of algorithmic information theory [21], recently suggested [22,23] that:

DNA is essentially a programming language that computes the organism and its functioning;
hence the relevance of the theory of computation for biology.

Brenner said much the same thing in his recent essay in Nature [20]:

The most interesting connection with biology, in my view, is in Turing’s most important
paper: ‘On computable numbers with an application to the Entscheidungsproblem’.

He continues:

Arguably the best examples of Turing’s and von Neumann’s machines are to be found
in biology. Nowhere else are there such complicated systems, in which every organism
contains an internal description of itself.

Indeed, a central element in living systems turns out to be digital: DNA sequences refined by evolution
encode the components and drive the development of all living organisms. All examples of life we
know have the same (genomic) information-based biology. Information, in living beings, is maintained
one-dimensionally through a double-stranded polymer called DNA. Each polymer strand in the DNA
contains exactly the same information, coded in the form of a sequence of four different pairs of bases.
In attempting to deepen our understanding of life, it is therefore natural to turn to computer science.

Important concepts in the theory of computation can help us understand aspects of behavior
and evolution, in particular concepts drawn from algorithmic complexity and computational
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thermodynamics. Witness, for instance, the fact that the instructions for life are stored in sequences
of DNA, and in identifiable units of information (genes), albeit in a convoluted fashion—full of intricate
paths and complicated connections and unpredictable outcomes. Even in the 1960s biologists such as
G.C. Williams, for example, made rough calculations of the amount of information an organism’s DNA
could contain [24].

Computer simulations performed as part of research into artificial life have reproduced various
features of evolution [4,25,26], all of which have turned out to be deeply connected to the concept
of (Turing) universal computation [27]. Not taking into account this phenomenon of pervasive
computational universality in biology, treating it as a mere technicality with little relevance and
consequently avoiding it, is a mistake. As we have claimed before [8], our knowledge of life may
be advanced by studying notions at the edge of decidability and uncomputability (e.g., as we define it,
algorithmic probability is a non-computable measure, but its importance for us lies in the fact that it can
be approximated). The concept of Turing universality (and of a universal Turing machine) should simply
be treated as a physical system whose richness allows us to study a low level of basic systems behavior
without having to worry about particular causes for particular behaviors. The property that makes a
Turing machine Turing universal is its ability to simulate the behavior of any other computer program or
specific Turing machine. Hence, its introduction as a tool should not alienate researchers, leading them
to treat it as a mere abstract concept with no practical relevance to biology.

To grasp the role of information in biological systems, think of a computer as an idealized information
processing system. Today, from a practical point of view it is fairly easy to understand how energy may
be converted into information [11,12,28]. Computers may be thought of as engines transforming energy
into information (the information may already be there, but without energy one is unable to extract it).
One way of looking at this is set forth by Bennett [12], who suggests using a sequence of bits as fuel,
relating information on a tape of a Turing machine to the amount of energy one can extract out of it.
In [5] there is an explanation of how a binary tape can be used to produce work and how information
may therefore be converted into energy.

3.1. Complexity and Algorithmic Structure

The algorithmic complexity CU(s) of a string s with respect to a universal Turing machine U ,
measured in bits, is defined as the length in bits of the shortest (prefix-free) Turing machine U that
produces the string s and halts [17,18,21,29]. Formally,

CU(s) = min{|p|, U(p) = s} where |p| is the length of p measured in bits. (1)

This complexity measure clearly seems to depend on U , and one may ask whether there exists
a Turing machine that yields different values of CU(s) for different U . The ability of universal
machines to efficiently simulate each other implies a corresponding degree of robustness. The invariance
theorem [18,21] states that ifCU(s) andCU ′(s) are the shortest programs generating s using the universal
Turing machines U and U ′ respectively, their difference will be bounded by a constant independent of s.
Formally:
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|CU(s)− CU ′(s)| ≤ c
U,U′ (2)

Hence it makes sense to talk about C(s) without the subscript U . From Equation 1 and based on the
robustness provided by Equation 2, one can formally call a string s a Kolmogorov (or algorithmically)
random string if K(s) ∼ |s| where |s| is the length of the binary string s. Hence, an object with high
Kolmogorov complexity is an object with low algorithmic structure, because Kolmogorov complexity
measures randomness—the higher the Kolmogorov complexity, the more random.
C(s) as a function is, however, not computable, which means that no algorithm returns the length

of the shortest program that produces s (by reduction to the halting problem). But C(s) is semi lower
computable (for formal proofs see [30]), meaning that it can be approximated from above, for example,
via lossless compression algorithms.

It is also worth mentioning that while the environment is required to have algorithmic
structure (hence low Kolmogorov complexity), the type of randomness in the environment
that we argue must be surpassed by algorithmic structure is apparent randomness (i.e., not
necessarily algorithmic—uncomputable—randomness, given that the question of whether uncomputable
randomness occurs in nature is still an open problem with little hope to be answered soon, if
someday). Lossless compression algorithms are useful in this approach, as they take advantage of
regularities in data in order to compress it, but what compression algorithms detect is precisely apparent
randomness. In this sense, there is a parallelism with the way that organisms subjectively perceive their
environment. Losslessly compressing a string is, however, a sufficient test of non-randomness, hence of
algorithmic structure.

3.2. The Information Content of Organisms and the Extraction of Energy from Strings

The energy (W ) reserves in an organismM are fixed at any given time t, and an organism’s description
at a given time is assumed to be finite (which in our context means that the information in bits to describe
the organism is of finite length). Formally, we can write:

Wmax = max{W (M)|min{p(s)|Up =M}} (3)

where p(s) is a program with input s running on a universal Turing machine U producing M . The
maximum information-processing capability of a system is given by Wmax, the maximum energy
(Feynman calls it fuel [28]) value of the organism from the minimum description length of M . Even
if the value of Wmax is not computable given that C(s) is not (cf. Section 3.1), it represents a theoretical
limit, as one can safely assume that an organism cannot deal with more information than it is capable
of storing and that can be reflected in its description in bits. Hence Wmax supplies a thermodynamic
limit on the amount of information that M can convert into energy at a time t. Then the organism cannot
process more information than Wmax nor can it transform more bits into energy than Wmax.

In terms of information, the thermodynamical upper limit of the total information that can be
transformed into energy is determined by the minimal description of the organism. A useful
representation of how to extract work out of binary sequences using a Turing machine with a piston
can be found in [28,31]. When the piston of a machine expands due to its having been set in the
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correct position—based on accurate knowledge of a bit—one can extract work, but if the piston is not
set properly then it contracts, producing negative work, taking the machine back to its initial position
on average (assuming positive energy is tantamount to forward movement and negative to backward
movement), like a one-dimensional random walk.

This has two immediate consequences. One is that the energy of M is finite, but also that there is in
principle a minimum amount of information different from zero, which an organism can trade with when
updating its internal representation of the state of the world.

4. Life, Predictability and Structure

In Schrödinger’s What is life? (1944) [32] we read:

In calling the structure of the chromosomes a code-script, we mean that the
all-penetrating mind, once conceived by Laplace . . . could tell from their structure how the
egg would develop . . .

Today, it can be safely said that the code-script has been fully decoded, yet we are incapable of
arbitrary prediction. This is not a problem having to do with DNA conceived as a program, but a property
of computational irreducibility, as stressed by Wolfram [4]. Wolfram shows that simple computer
programs are capable of producing apparently random (not algorithmically random) behavior. Wolfram’s
cellular automaton Rule 30 is the classic example, as it is by most standards the simplest possible cellular
automaton, yet we know of no way to shortcut its evolution other than by running the rule step by step.
This was already known for some mathematical objects, such as the mathematical constant π or

√
2,

which have simple representations, as they are computable numbers (one can algorithmically produce
any arbitrary number of digits) the digits of whose decimal expansions look random. However, a formula
has been found to shortcut the digits of π in bases that are powers of 2n, where one does not need to
compute the first digits in order to calculate a digit in any position of its 2n-ary expansion [33].

Biological evolution and ecology are intimately linked, because the reproductive success of an
organism depends crucially on its reading of the environment. If we assume that the environment is
modeled as a Markov chain, we can map the organism’s sensors with a Hidden Markov Model (HMM).
In such models, the state of the world is not directly observable. Instead, the sensors are a probabilistic
function of the state. HMM techniques can solve a variety of problems: filtering (i.e., estimating the
current state of the world), prediction (i.e., estimating future states), smoothing (i.e., estimating past
states), and finding the most likely explanation (i.e., estimating the sequence of environmental states
that best explains a sequence of observations according to a certain optimality criterion). HMMs have
become a popular computational tool for the analysis of sequential data.

Following standard mathematical terminology, let us identify the environment as an HMM denoted
by {Xt}, a sequence of t random variables partially accessed by an organism using the sequence of
observables {Yt}, with Yt ∈ Y corresponding to the hidden states. There are t states of the environment
(e.g., “sunny”, “predator nearby”, “cold”, etc.), but organisms can only have partial access to them
through Yt. For every state Xt there is a chance that an organism will perform one of a number of
possible activities depending on the state of the environment.
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In the simulation of a stochastic process, we attempt to generate information about the future based
on the observation of the present and eventually of the past. However, implicit in the Markov model is
the notion that the past and the future are independent. Particularly from the perspective of an observer,
the model is memoryless. In this case it is said that the HMM is of the order m = 0, which simply
means that Pr(Xt+1 = x|Xt = y), i.e., the probability of the random variable X being x at time t
depends only on X = y at time t. If the distribution of the states at time t + 1 is the same as that at
time t, the Markov process is called stationary [34]. The stationary Markov process then has a stationary
probability distribution, which we will assume throughout the paper in the interests of mathematical
simplicity (without loss of generalization). An m-order HMM is an HMM that allows transitions with
probabilities among at mostm−1 states before the source state, which means that one can take advantage
of correlations among these states for learning and predicting. In linguistics, for example, a 0-order
HMM allows the description of a single gram distribution of letters (e.g., in several languages “e” is
the most common letter), versus a 1-order HMM that provides information about bigrams, determining
with a certain probability the letter that precedes or follows another letter (in English, for example, “h”
following “t” is among the most common bigrams, so once a “t” is spotted one can expect an “h” to
follow, and the probability of its so doing is high compared with, say, the probability of an ”h” following
a “z”.) In a 2-HMM one can rule out the trigram “eee” in English, assigning it a probability 0 because
it does not occur, while “ee” can be assigned a reasonable non-zero probability. In what follows we will
use the HMM model to discuss potential energy extraction from a string.

4.1. Simulation of Increasingly Predictable Environments

There are 2n distinct binary strings of length n. The probability of picking 1 among the 2n is 1/2n. We
are interested in converting information (bits) into energy, but putting bits together means working with
strings. Every bit in a string represents a state in the HMM; it will be 0 or 1 according to a probability
value (a belief). So in this example, the organism processes information by comparing every possible
outcome to the actual outcome, starting with no prior knowledge (the past is irrelevant). We know that
for real organisms, the (evolutionary) past is very relevant, and it is often thought of in terms of a genetic
history. This is indeed how we will conceptualize it. We will take advantage of what an HMM allows us
to describe in order to model this “past”.

Landauer’s Principle [11,12] states that erasing (or resetting) one bit produces 1kT log 2 joules of
heat, where T is the ambient temperature and k is Boltzmann’s constant (1.38065× 10−23 J K−1). Then
it follows that an organism with finite storage memory updates its state st+1 according to a series of n
observations at time t+ 1 by a process of comparison. And if st+1 differs from st by j bits, then at least
jTk log(2) joules will be spent, according to Landauer’s Principle, to reset the bits of st to st+1.

Pollination, for example, is the result of honeybees’ ability to remember foraging sites, and is
related to the honeybee memory endurance, hence its learning and storing capabilities. Honeybees use
landmarks, celestial cues and path integration to forage for pollen and nectar and natural resources like
propolis and water [35].
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But st+1 and st can only differ by at most n bits, and they may do so by chance at most n/2 on
average, in a random environment modeled by a 0-order HMM (a system with no memory). If every bit
is equally likely, the probability of occurrence of any string of length n is 1/2n.

Each of the strings can have n−i different i bits, with i ∈ {0, . . . , n}. This difference can be measured
by the Hamming distance d between strings of the same size.

4.2. Energy Groups

It follows that the number of “energy” groups according to the number of bits is precisely n. This is
because if one arbitrarily chooses “1” as a bit that will reconfigure a tape (see Section 3.2) to produce
energy, one can extract k bits of energy out of a string of length n given by the binomial formula:

C(n, k) =
n!

k!(n− k)!
(4)

For example, from a one bit binary string, 0 or 1 unit of energy can be extracted, depending on whether
the string is 0 or 1 (in the simulations below we will actually assume that 0 returns−1 of energy, which is
a fair assumption according to the one-dimensional random walk behavior of a Turing machine equipped
with a piston, as described in Section 3.2).

For length n = 2 we have the possible binary strings 00, 01, 10 and 11. If 1 is the energy returning
bit, we have it that 00 returns no energy, 01 and 10 each provides 1 unit of energy, and 11 provides 2
units of energy, that is 1, 2, 1. For n = 3, the energy distribution among all the 2n strings is 1, 3, 3, 1,
and for n = 4, the distribution is 1, 4, 6, 4, 1 (see Figure 2). Evidently the maximum energy return of
a binary string is bounded by the length of the string, that is maxE = |s| = n. The minimum energy
return is always 0 for any n (the string 0n, that is the repetition of n 0s).

For random strings one would produce on average n/2 joules, but to reach thermodynamic
equilibrium one can take “0” as a negative return of energy, hence “-1” for these purposes. Thus from
a random string one would get 0 units of energy on average. Strings like 01 and 10 are considered
energetically equivalent, given that each bit is independent in the stochastic environment, and the
organism may expect one or another bit. In other words, if the organism expects a 1 in a string of
2 bits, the position of the bit in the string is irrelevant. It can come in first or second place in the 2 bit
string; only when it occurs for the first time will it produce energy (compare again to the piston scenario
in Section 3.2).

There are n+1 energy groups from the 2n strings of length n (see Figures 2 and 3). One can see then
how energy groups can form, each representing the possible amount of energy extracted from a sequence
configuration (fixing the expected configuration). In such a case, a string like 0101 produces the same
amount of energy as 1010, but also as 110 and 101. In general, for strings of length n, the maximum
amount of energy one can extract is n, but with different probabilities (depending on the number of
energy groups) one can actually get any integer value in the interval [−n, n]. Among the 2n strings of
length n, there are the energy groups E(1) = 1 and E(0) = −1, each returning a different amount of
free energy. For strings of 2 bits we have E(00), E(01), E(10) and E(11), with −1, 0 and 2 as possible
energy returns, hence only 3 groups. Therefore, the number of groups is given by the number of different
energy returns. This probability can be calculated from C as follows:
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p(i) =
1

C(n,
∑

i si)
(5)

which is the probability of extracting i joules out of string s. Better said, it is the probability of getting a
string with i joules. If looking to produce negative work out of zeroes, then the probability of getting i
joules can be calculated by:

p(i) =
1

C(n,max(
∑

i si, n−
∑

i si))
(6)

Figure 2. Energy groups: Possible extraction values from the different energy groups among
all the 2n strings of increasing length n = 4, . . . , 7. Each figure can be read as follows:
Taking the first plot (top left), there is 1 string that has an energy return of 0 units of energy
(0000); 4 strings that return 1 unit of energy (e.g., 0100); 6 strings that return 2 units of
energy (e.g., 1100); 4 other strings that return 3 units of energy (e.g., 0111) and finally 1
string that can return the maximum energy (1111).

By turning from a 0-order (Figure 2) to an m-order HMM, one can model the organism’s ability to
capture patterns of up to length m+ 1 (by assigning probabilities based on a distribution of frequencies
from experience, or learning). The energy one can extract from the environment is statistically described
by the skewness of the probability distribution for energy extraction from strings decreasingly random
in nature. For a 0-order HMM, the skewness (the degree of asymmetry of a distribution) of the normal
distribution for p = 0.5 is evidently 0 (symmetric, evenly distributed, see Figure 2), but as soon as the
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HMM is of order 1 (see Figure 3) probabilities among states can have values different from p = 0.5, and
the skewness is negative for p > 0.5, which means that the bulk of the distribution has shifted to the right
and one can have a positive exchange of energy in an environment with some predictability.

Figure 3. Shift of the distributions of energy groups for strings of increasing length
n = 4, . . . , 7, modeling a very simple potential predictable environment represented by a
1-order HMM (compared with a 0-order HMM in Figure 2) in a scenario for p 6= 0.5, where
given a state, an organism can potentially make an optimal choice based on the transition
value of the next state according to p. The bulk of the values, measured by a negative
skewness, clearly lie to the right of the mean, indicating the predictability of the environment
(mirrored by the learning capabilities of living organisms) and therefore a possible positive
energy extraction.

It is clear that different energy groups grow at different rates for increasing string length n (one way
to visualize this is by plotting the Pascal triangle using the binomial formula). The number of strings of
length n grows at 2n while the number of strings from which energy can be extracted grows at a slower
rate than 2n (for example, the number of strings that provide maximum energy is always 1, and hence
remains constant—the strings of n 1s). Thus, one can see how the equilibrium of energy returns pulls the
distribution to the mean average, having as a consequence no positive energy return. The possibility of
modeling transitions with probability p 6= 0.5, however, increases the number of strings with a positive
energy return.
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In other words, if an organism S is a finite state automaton able to make predictions about binary
strings of at most length n (hence with memory capacity of length n) and the environment E is another
finite-state automaton capable of generating strings of length m, if n > m then S can predict any pattern
produced by E. However if n < m then S will be able to predict only patterns of length smaller than n
and will miss those greater than m, potentially 2m−n. Taken to the limit, if n is too short, or m too large
compared with n, then S will miss most patterns in E.

4.3. Organisms Survive (only) in Predictable Environments

It is clear how living organisms convert information into energy by using information in locating food,
for example, or in figuring out how to navigate within a habitat, in learning how to hunt, in securing a
mate, etc. As we argue, however, the extent to which an organism is adapted to or is able to produce
offspring in a particular environment depends on a positive exchange ratio between information and
energy. For an organism to make use of acquired information (e.g., for learning) it must be able to store
it. In the context of biological systems, upon making an observation an organism must record both the
stimulus and its appropriate response (e.g., Pavlov’s dog). Memory is a vital characteristic for many
organisms (such as honeybees, which develop memory through learning gradually over time [36,37])
and therefore requires the persistence of periodic structures.

The previous rationale allows us to describe how an organism with finite memory will use and
convert energy at an abstract fundamental thermodynamic level to keep up with the information from
its environment and update its current state. For example, when foraging, honeybees form simple
associations between landmarks in order to navigate along their flight path. Honeybees also use the
direction of sunlight as an indication when traveling along familiar routes during the process of path
integration. For these reasons [38,39], honeybees can fly back to their hives in complicated situations.

Natural selection has equipped organisms to cope with trade-offs involving memory capabilities, time
spent and energy return, enabling them to take these into account when deciding whether to undertake
certain actions in return for spending resources. Take cheetahs, for example, who spend most of their
energy in the very first instants of a hunt. Because they are not able to keep up the speed of pursuit for
longer periods, they have to size up a situation and hit upon the near optimal starting point for a chase.

So what does the existence of living organisms tell us about structure versus randomness in nature?
That one would need to attribute incredible power to living organisms, power to overcome a random
environment having no structure, or alternatively, to accept that a stochastic environment in which living
organisms can survive and reproduce needs a degree of structure.

What computational thermodynamics tells us about nature is that organisms cannot survive in a
random world, because in order to exchange energy for information about the world, the organism needs
a minimum degree of predictability, or else it will not be able to take advantage of the information it
has acquired and stored. Hence, an organism in a random world cannot survive due to fundamental
thermodynamic limits.
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4.4. DNA, Memory in Simple Organisms and Reactive Systems

Our argument might seem to depend on the physical memory of an organism, but it has been shown
that reactive systems, for example, can exhibit non-trivial behavior without need of an explicit memory.
A classical example is the kind of “vehicle” proposed by Braitenberg [40]. These vehicles make simple,
direct connections between sensors and actuators. For example, a vehicle with two photosensors on its
sides (left and right) connected to opposing wheel motors (left sensor to right motor, right sensor to left
motor) exhibits phototaxis. This is because the sensor closer to the light will cause the opposing motor
to spin faster, turning the vehicle towards the light. If the vehicle turns too much, the other sensor will
counteract this movement, and both sensors and motors will coordinate until the light source is reached.
This behavior does not require an explicit memory, but it does require information stored in the design
details of the system, perhaps mirroring what happens in very simple living organisms (such as insects,
or simpler organisms such as bacteria), where DNA is the result of the state of the world acting directly
on the information stored and codified by genes, as explained by Fisher [6], and hence just another type
of memory.

The difference between a reactive system—such as a Braitenberg vehicle—and a representational
system (where bits in a memory represent aspects of the environment) is at the level of the location of
the relevant information of the system. On the one hand, representational systems can store information
in a specific location, generally updated many times during the lifespan of an organism. This is useful
when the sensor channel capacity (maximum information that can be transmitted over a communications
channel) is low compared with the environmental complexity, since not all of the relevant information
can be sensed at once. On the other hand, reactive systems do not store information. Nevertheless,
relevant information is required for computation to take place. In principle, a reactive system could
perform tasks of the same complexity as a representational system [41], but the reactive system would
require a sensor channel capacity equal to or greater than the memory size of the representational system.
For example, if an environment requires 4 bits of relevant information to be processed by an organism to
survive, this could be achieved by a reactive system with four 1-bit sensors (each sensor having a 1-bit
channel capacity), or by a representational system with a single 1-bit sensor and a 4-bit memory. The
trade-off is similar to that of storing everything about the environment in the DNA or letting organisms
evolve brains capable of storing information that is more volatile.

Given the fact that reactive systems also need to process relevant information from their environment,
as stated by Ashby’s law of requisite variety [14], our argument applies to both representational
and reactive systems. These are finite, in memory and channel capacity, so the predictability of
their environment is also limited. Representational systems are useful for prediction, while reactive
systems are useful for adaptation. But computationally, either system requires the same environmental
predictability in order to survive, independent of the particular strategy or mechanism used. How
to balance memory and channel capacity is certainly an interesting topic, mirrored in the trade-off
aforementioned (DNA storage versus brain storage), but it is beyond the scope of this paper.
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5. Conclusions

It is interesting to note that some species enhance their fitness by modifying their environments,
bringing about an increase in predictability, a clear evolutionary advantage. This seems particularly
obvious in the human species’ ability to fashion stable and predictable environments for itself. Using
some aspects of information theory, algorithmic complexity and computational thermodynamics, we
have captured some of these properties and made explicit their importance for the organism from the
standpoint of the environment. In evolutionary terms, it is difficult to justify how biological algorithmic
complexity could significantly surpass that of the environment itself. If the organism’s representation
of the environment E has algorithmic complexity x, E should have a complexity of no less than x. We
have advanced the claim that the algorithmic complexity of biological systems follows the algorithmic
complexity of the environment (a similar approach to a related biological question is presented in [42]).

The paper advances an information-theoretic reasoning about the relation of biology to other
algorithmic complexity and computational thermodynamics, stresses the applicability of the theory of
information and computation to biology (particularly evolutionary theory), and sketches the applicability
of the theory of algorithmic complexity to biology and the relevance of the close connections between
information theory and thermodynamics to biology.

Using these tools, we have substantiated the intuitively correct assumption that natural environments
must have a minimum of algorithmic structure and predictability prevailing over randomness in order
for life to evolve. Our argument does not imply that organisms necessarily do things exactly as we have
described, nor that in a structured environment life will necessarily evolve, especially because evolution
requires a certain variability that is absent in fully predictable environments. But we have advanced
the claim that computational principles also apply to biological systems, and can therefore be used to
study fundamental limits and tradeoffs as we have done so here and also before (see e.g., [43]). Whether
some degree of apparent randomness is necessary, for example, is another interesting question that arises
from this analysis. In a fully predictable environment where benefit returns are constant, one would
be at a loss to explain why living organisms would evolve. Therefore, paradoxically, the environment
seems to require structure and apparent randomness for living systems to evolve. However, our argument
justifies the belief that life could only have evolved in an environment where randomness is superseded
by algorithmic structure, allowing living organisms to build upon predictable phenomena.
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