
Entropy 2012, 14, 32-57; doi:10.3390/e14010032 

entropy
ISSN 1099-4300 

www.mdpi.com/journal/entropy 
Article 

Statistical Dynamical Closures and Subgrid Modeling for 
Inhomogeneous QG and 3D Turbulence 

Jorgen S. Frederiksen 

Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, 
PMB#1, Aspendale, Victoria, 3195, Australia; E-Mail: Jorgen.Frederiksen@csiro.au 

Received: 8 November 2011; in revised form: 27 December 2011 / Accepted: 28 December 2011 / 
Published: 4 January 2012 

Abstract: Statistical dynamical closures for inhomogeneous turbulence described by 
multi-field equations are derived based on renormalized perturbation theory. Generalizations 
of the computationally tractable quasi-diagonal direct interaction approximation for 
inhomogeneous barotropic turbulent flows over topography are developed. Statistical 
closures are also formulated for large eddy simulations including subgrid models that 
ensure the same large scale statistical behavior as higher resolution closures. The focus is 
on baroclinic quasigeostrophic and three-dimensional inhomogeneous turbulence although 
the framework is generally applicable to classical field theories with quadratic nonlinearity.  
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1. Introduction 

In recent years there have been significant advances in the formulation and applications of 
subgrid-scale parameterizations to quasigeostrophic (QG) and three-dimensional (3D) turbulence 
as reviewed by Frederiksen and O’Kane [1]. Statistical dynamical closure theory or stochastic 
modeling methods form the basis of much of this work. Results from the two methods may be very 
similar as discussed by Frederiksen and Kepert [2]. Perhaps this is to be expected since closures 
such as Kraichnan’s [3] direct interaction approximation (DIA) for homogeneous turbulence and 
Frederiksen’s [4] quasi-diagonal direct interaction approximation (QDIA) for inhomogeneous 
turbulence have underpinning exact generalized Langevin representations that guarantee realizability 
and positive definite energy spectra. 
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Kraichnan’s DIA closure represented a major advance in the statistical theory of homogeneous 
turbulence. Herring [5] and McComb [6,7] independently developed the self consistent field theory 
(SCFT) and local energy transfer theory (LET) respectively. These three non-Markovian closures for 
homogeneous turbulence have subsequently been shown to form a class of renormalized closures that 
differ only in whether and how a fluctuation dissipation theorem (FDT) is applied [8,9]. Kraichnan [10] 
also developed a DIA closure for inhomogeneous turbulence but recognized that, because this general 
theory required the computation of the full covariance and response function matrices as well as the 
full three-point functions, it was computationally intractable at any reasonable resolution. 

Frederiksen [4] formulated a computationally tractable non-Markovian closure theory, the 
quasi-diagonal direct interaction approximation (QDIA), for inhomogeneous turbulent flows and 
applied it to the subgrid modeling problem for barotropic flows over topography on an f-plane.
Generalizations of the theory, to inhomogeneous turbulent flows on a �-plane with applications to 
Rossby wave dispersion and predictability, were made by Frederiksen and O’Kane [11]. The statistical 
closure has been implemented numerically and extensively tested and applied to problems in 
dynamics, predictability, data assimilation and subgrid modeling. O’Kane and Frederiksen [12] 
compared the performance of the f-plane QDIA closure with the statistics of large ensembles of direct 
numerical simulations in a suite of studies for inhomogeneous turbulent flows over topography. They 
found that their numerically implemented QDIA closure has similar performance to the DIA for 
homogeneous turbulence and is only a few times more computationally intensive. As in earlier 
homogeneous DIA, SCFT and LET closure calculations [8,13,14] they employed a cumulant update 
restart procedure [15] to enhance the performance of the QDIA. They also explored the efficacy of a 
regularization procedure, similar to that employed by Frederiksen and Davies [14] for homogeneous 
turbulence, which corresponds to an empirical vertex renormalization and ensures that the QDIA has 
the right power law behavior. The regularized QDIA was found to be in excellent agreement with the 
statistics of direct numerical simulation (DNS), both at the large scales and in the enstrophy cascading 
inertial range. Further, the homogeneous and inhomogeneous closure studies indicate that the 
regularization parameter that localizes interactions is essentially universal.  

The �-plane QDIA closure [11] was found to be as successful as the f-plane QDIA in applications in 
a series of studies. Frederiksen and O’Kane [11] studied Rossby wave dispersion due to the interaction 
of eastward zonal flows with isolated topography in a turbulent environment; they found pattern 
correlations as high as 0.9999 between the closure and the statistics of 1800 DNSs for the mean 
Rossby wave trains in 10 day simulations. They also applied the �-plane QDIA closure to the issue of 
predictability and this was further pursued in a detailed examination of ensemble prediction during 
blocking regime transitions by O’Kane and Frederiksen [16]. O’Kane and Frederiksen [17] applied the 
�-plane QDIA closure to data assimilation while O’Kane and Frederiksen [18] and Frederiksen and 
O’Kane [1] examined the numerical evaluation of the QDIA subgrid model of Frederiksen [4] for 
equilibrium and non-equilibrium turbulent flows on f- and �-planes. 

Given the success of the QDIA closure, for inhomogeneous turbulent barotropic flows, it may be 
fruitful to generalize the theory to more complex multi-field equations such as those for 
inhomogeneous QG and 3D turbulent flows. This is a primary aim of this paper. We consider generic 
prognostic equations that take the form: 
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Here )(ta
kζ is a field variable depending on time t , the level or field type a  and the vector k ;

typically k  is a vector of wavenumbers in spectral space. The equations are quadratic in the fields and 
also contain forcing ),(0 tf a k , a linear term with coefficients )(0 kβaD  and a term bilinear in the 
dynamical fields )(ta

kζ  and in constant fields ahk . Here, ahk  typically specifies the topography and 
),,( qpkabcA and ),,( qpkabcK are interaction coefficients. Throughout this paper we assume 

summation over repeated superscripts. We suppose that the interaction coefficients ),,( qpkabcK
satisfy the relationship:  

).,,(),,( pqkqpk acbabc KK = (2)

For particular systems considered in this paper Equation (2) is satisfied because: 

)].,,(),,([
2
1),,( pqkqpkqpk acbabcabc AA K += (3)

A further aim of this paper is to formulate the equations for subgrid-scale parameterizations of 
unresolved interactions needed for large eddy simulations (LES) of inhomogeneous turbulent flows 
when the resolution is reduced. We build on the extensive theoretical framework and insights of many 
researchers. In Kraichnan’s [3] DIA the tendency of the second order cumulant, or two-point function, 
is driven by the three-point function which consists of a nonlinear damping term and a nonlinear noise 
term. Thus from the basic structure of the DIA closure one would expect the subgrid modeling of 
eddy-eddy interactions would consist of an eddy damping term and a stochastic backscatter term. 
Kraichnan [19] also developed the theory of eddy viscosity and noted a cusp in the eddy viscosity near 
the cut-off wavenumber. Rose [20] was one of the first to point out the importance of eddy noise in 
subgrid modeling while Leith [21] examined the effects of an empirical stochastic backscatter 
parameterization in conjunction with the Smagorinsky [22] empirical eddy viscosity model, in studies 
of a turbulent shear mixing layer. Subsequent subgrid modeling studies for three-dimensional 
homogeneous turbulence were carried out by Leslie and Quarini [23], Chollet and Lesieur [24], 
Chasnov [25], Domaradzki et al. [26], McComb et al. [27–29], Schilling and Zhou [30]. 

For the case of two-dimensional turbulent flows on the sphere, Frederiksen and Davies [31] 
developed self consistent representations of eddy viscosity and stochastic backscatter based on eddy 
damped quasi-normal Markovian (EDQNM) and DIA closures. Their subgrid model cured the 
resolution dependence of atmospheric energy spectra with LES; the spectra were in close agreement 
with higher resolution barotropic DNS at each resolution. Frederiksen [4] derived general expressions 
for the eddy-topographic force, eddy viscosity and stochastic backscatter based on the QDIA closure. 
O'Kane and Frederiksen [18] and Frederiksen and O’Kane [1] calculated and analysed inhomogeneous 
subgrid-scale parameterizations for observed atmospheric flows over global topography and compared 
the strengths of the subgrid-scale eddy-topographic, eddy-mean field, quadratic mean and mean 
field-topographic terms.  

The QDIA closure also motivated the direct stochastic modeling approach to subgrid processes, 
based on the statistics of DNS, employed by Frederiksen and Kepert [2]. They found that their method 
gave very similar subgrid-scale parameterizations and barotropic model LES energy spectra to the 
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closure based approach. Zidikheri and Frederiksen [32] also successfully applied this stochastic 
modeling methodology to two-level QG model studies with typical atmospheric flows. Baroclinic 
oceanic flows were considered by Zidikheri and Frederiksen [33,34]; they applied the stochastic 
modeling approach and showed that it can be successfully used to maintain the correct LES spectra for 
both simple flows and more complex flows characteristic of the Antarctic circumpolar current. In very 
recent work, Kitsios, Frederiksen and Zidikheri [35] derived universal scaling laws for subgrid models 
of eddy-eddy interactions applicable to baroclinic atmospheric flows. 

In the last decade there has been increasing interest in exploring how parameterizations of 
stochastic backscatter may improve simulations and predictions of weather and climate [36,37]. 
Shutts [38], O’Kane and Frederiksen [16] and Berner et al. [39] have considered the role of stochastic 
backscatter in weather prediction studies where it increases ensemble spread. Berner et al. [40] also 
found that stochastic backscatter resulted in reductions in systematic errors and improvements in 
seasonal forecasts. Seiffert and von Storch [41] found that model climate sensitivity to increased carbon 
dioxide concentrations depends on whether a stochastic backscatter parameterization is employed. 

More realistic subgrid-scale parameterizations are increasingly being applied and this partly forms 
the motivation for the current study where we develop statistical closures and subgrid models for 
multi-field equations. The general formulism presented covers a wide variety of equations but we give 
concrete examples in Section 2, where the QG equations are outlined, and in Section 3, where the 
equations for 3D turbulence are summarized. Further examples will be discussed in the text and the 
appendices. In Section 4, the QDIA closure equations are derived for general fields satisfying 
Equations (1) to (3). The generalized Langevin equation that underpins the closure, and guarantees 
realizability of the elements of the covariance matrices that are diagonal in spectral space, is presented 
in Section 5.  

The statistical dynamical QDIA closure for large eddy simulations, including a derived subgrid 
model that ensures the same large scale statistical behavior as higher resolution QDIA closures, is 
formulated in Section 6. Here the stochastic and mean subgrid forcing function are derived as well as 
two-time dissipation elements. In Subsection 6.3 the generalized Langevin equation that underpins the 
QDIA closure with subgrid-scale parameterizations is presented. The effective dissipation and 
viscosity parameterizations for subgrid processes entering the mean field equation and the single time 
covariance equation are presented in Section 7. In Section 8 we discuss how the QDIA closure and 
subgrid models would change if a fluctuation dissipation theorem is employed to form quasi-diagonal 
SCFT and quasi-diagonal LET closures and subgrid models. There the issues of regularization and 
non-Gaussian initial conditions are also discussed and concluding remarks are presented.  

Appendix A contains a derivation of expressions relating the general inhomogeneous elements of 
the covariance and response function matrices to those that are diagonal in spectral space. The 
derivation is based on renormalized perturbation theory. In appendix B the equations for a QG model 
with continuous vertical variations are presented and in Appendix C the equations for the two-level 
QG equations expressed in terms of barotropic and baroclinic components are summarized. 
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2. Flow over Topography in a Baroclinic Quasigeostrophic Model 

Taking suitable length and time scales, the nondimensional equation for 2-level baroclinic 
quasigeostrophic flow over topography on an f-plane may be written in the form: 

,),( 00
ababaaa

a

fqDhqJ
t

q +−+−= ψ
∂
∂

(4)

Here, 2or1=a , aψ  is the streamfunction and )()1( 212 ψψψ −−+∇= L
aaa Fq  is the reduced potential 

vorticity, aa ψω 2∇=  is the relative vorticity, 0, 12 == hhh  where h  is the scaled topography, abD0  are 
dissipation operators to be specified below and af0  are forcing functions. Also, LF  is the layer 

coupling parameter [32], which is inversely proportional to the static stability. In planar geometry: 
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The analysis in this paper can be generalized to flows in a channel, in a bounded domain and in an 
infinite domain; it can also be generalized to flow on a �-plane. However, to be specific and to 
simplify the presentation we shall consider flow on the periodic f-plane .20,20 ππ ≤≤≤≤ yx  In 
Appendix C we discuss how the results may be generalized to flow on a periodicβ -plane; they may 
also be applied to flows on the infinite domain as in the internal gravity wave closure theory of 
Carnevale and Frederiksen [42]. 

Spectral equations corresponding to the baroclinic system may be obtained by first expanding each 
of the functions in Equation (4) in a Fourier series:  
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and ).,(),,( yx kkyx == kx  Then, multiplying Equation (4) by )exp( xk ⋅−i  and integrating over the ),( yx

domain, we find that with the identification ),()( ttq aa
kk ζ
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Alternatively, we can write the spectral equations in the standard form: 
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Here, we suppose that the dissipation may be related to the viscosity through: 
2

00 )()( kD aa kk ββ ν= (8)
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where we refer to )(0 kβν a  as the bare viscosity, although more general forms can be considered 
including wave frequencies; we shall also refer to ),(0 tf a k  as the bare forcing.  

In the above spectral equations:  
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Note that here we have represented the triangle sum rule of wave vectors by ),,( qpkδ , for future 
convenience, rather than the )( qpk ++δ  used in Frederiksen [4] and related papers; the current 
notation allows for more general relationships between the wave vectors such as those in spherical 
geometry. We note that the interaction coefficients ),,( qpkabcK  satisfy the relationship:  

).,,(),,( pqkqpk acbabc KK = (10)

Generalization to multi-level QG equations is straightforward. 

3. Navier Stokes Equations for Three-Dimensional Inhomogeneous Turbulence 

The Navies Stokes equations for three-dimensional inhomogeneous turbulence in a periodic box, 
πππ 20,20,20 ≤≤≤≤≤≤ zyx , may be written in the form [7]: 
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Similar equations apply on the infinite domain with the sums replaced by integrals [42]. Here, 
1,2,3),( =atua

k  are the spectral components of the velocity fields in the zyx ,, directions respectively 
that depend on time t  and the vector ).,,(),,( 321

zyx kkkkkk ==k  The linear term involving )(0 kβaD
generally represents dissipation and ),(0 tf a k  is a forcing term. Also, the interaction coefficient: 
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We next change the notation to put Equations (11) and (12) into the standard form (1) and (2). We 
make the identifications: 

),()( ttu aa
kk ζ
 (13a)

,)(),,( cababc kiA kqpk Δ= (13b)

[ ].),,(),,(
2
1),,( pqkqpkqpk acbabcabc AAK += (13c)

Thus Equation (11) is in the form (1) with 0=ahk  and the following analysis applies equally to the 
Navier Stokes equations where k is a three-dimensional vector as it does to the baroclinic 
quasigeostrophic equations where k is a two-dimensional wave vector. 

4. Quasi-Diagonal DIA Closure Equations 

Our purpose here is to generalize the approach of Frederiksen [4] to formulate a tractable closure 
theory for prognostic equations of the form (1) including for baroclinic QG and 3D inhomogeneous 
turbulent flows. Further examples will be discussed in the conclusions.  

We consider an ensemble of flows satisfying Equation (1) where the ensemble mean is denoted by 
>< a

kζ  and angle brackets denote expectation value. We express the field component for a given 
realization by: 

aaa
kkk ζζζ ˆ+><= (14)

where a
kζ̂  denotes the deviation from the ensemble mean. The spectral Equation (1) can then be 

expressed in terms of >< a
kζ  and a

kζ̂  as follows: 
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Here:

),(ˆ)()( 000 kkk aaa fff += (16a)

,)()( 00 ><= kk aa ff (16b)
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are the mean and fluctuating forcing functions and two-time covariance matrix elements. 
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We assume that the initial )(ˆ
o

a tkζ  have a Gaussian distribution for which the initial covariance 

matrix is diagonal in wavenumber ( k ) space but fully inhomogeneous in the index ( a )
(Equation (A.6a)). We also suppose that (prior to renormalization) the general inhomogeneous 
elements of the two-time covariance and response function matrices are small compared with the 
elements that are diagonal in wavenumber space (Equations (A.6b), (A.7), (A.10) and (A.11)). The 
methods of deriving the expressions for the general inhomogeneous elements in terms of the elements 
that are diagonal in wavenumber space for the QDIA closure equations are described in Appendix A.  

In order to close Equation (15a) we need an expression for the two-point cumulant ),(, ttCbc
qp −− . We 

proceed by first expressing ),(, ttCbc
qp −−  in terms of the corresponding elements that are diagonal in 

spectral space, through Equation (A.9), and then derive equations for the elements of the cumulants 
and response functions that are diagonal in spectral space. Thus, using Equation (A.9) in 
Equation (4.2a) yields: 
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where the nonlinear eddy-eddy damping, eddy-topographic force and eddy-topographic interaction are 
given by: 
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In Equations (14) and (18) we have used the shortened notation: 
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As noted above this equation is for initial conditions that are homogeneous in the horizontal. 
Inhomogeneous initial conditions can also be treated following the method of Frederiksen and 
Davies [14] and O’Kane and Frederiksen [12]. 

From Equation (15b), we can obtain an equation for the two-time cumulant, needed in 
Equations (18) to (20), by multiplying by )(ˆ t′−
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Again, Equation (A.9) can be used to express the general inhomogeneous elements of the two-time 
cumulant in terms of the elements that are diagonal in wavenumber space. Also, Equation (A.13) gives 
the expression for the three-point cumulant. Using both of these expressions we find that: 
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This equation is valid for Gaussian initial conditions and can be generalized to non-Gaussian and 
inhomogeneous initial conditions following the approach of O’Kane and Frederiksen [12]. 

In Equation (4.9):  

,),(ˆ),(ˆ),,( 000 >−<= sftfstF aa kkk αα (23a)

�� −−−−−=
p q

qpk qpkqpkqpk ),(),(),,(),,(),,(2),( stCstCKKstS cbabca γβαβγα δ (23b)

,]),,()(),,(2[

]),,()(),,(2[),(),,(),(

γαβγγαβγ

βα

ζ

ζδ

qq

p q
qqpk

qpkqpk

qpkqpkqpk

hAsK

hAtKstCstP cabccabcba

−−−+><−−−⋅

+><=�� −−−

(23c)

]),,()(),,(2[

]),,()(),,(2[),(),,(),(

γβαγγβαγ

βα

ζ

ζδπ

qq

p q
qqpk

qkpqkp

qpkqpkqpk

hAsK

hAtKstRst cabccabcba

−−−+><−−−⋅

+><−= �� −−−

(23d)

and ),( staαηk  is given in Equation (18a). Both ),( stS aα
k  and ),( stPaα

k  are positive semi-definite in the 
sense of Equation (19) of Bowman et al. [43]. The equation for the diagonal response function is 
derived in a similar way using Equation (A.12). We find: 
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with abab ttR δ=),(k  and abδ  is the Kronecker delta function. 
The single-time cumulant equation may be obtained from the expression: 
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This leads to the equation: 
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The inhomogeneous, or off-diagonal, elements of the covariance and response function matrices are 
given by Equations (A.9) and (A.12) of Appendix A respectively. Further the three-point function is 
expressed by Equation (A.13). This completes the generalized QDIA theory under the conditions 
described in Appendix A. 

5. Langevin Equation for QDIA Closure 

The generalized Langevin equation which exactly reproduces the QDIA closure equations is:
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where:

�� −−=
p q

qpqp,k,qpkk ),()()(),,(2),( )2()1( ttKtf cbabca
S ρρδ (27a)

.)()(]),,()(),,(2)[,,(),( )3(�� −−−− +><=
p q

qpqq qpkqpkqpkk tthAtKtf cbcabccabca
P σρζδ (27b)

Here )()( taj
kρ , where j = 1, 2 or 3, and )(ta

kσ  are statistically independent random variables 
such that: 

),,()()( )()( ttCtt abjjbjaj ′>=′< ′′
− kkllk δδρρ (28a)

kllk δσσ >=′< − )()( tt ba (28b)

and:

).,()(~)(~ ttCtt abba ′>=′< − kkk ζζ (29)

In Equation (28), δ  is the Kronecker delta function.  
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The Langevin Equation (26) guarantees realizability for the elements of the covariance matrices that 
are diagonal in spectral space in the quasi-diagonal closure equations. 

6. Subgrid-Scale Parameterizations 

We are now in a position to derive expressions for subgrid scale terms when the resolution is 
reduced from CT to CR < CT, where CR is the resolution of the resolved scales. In the previous sections, 
the summations over p and q are such that TT CqCp ≤≤ ,  or T∈),( qp  where the set: 

{ }.,, TT CqCp ≤≤= qpT (30)

We also define the set R  of resolves scales by: 

{ }.,, RR CqCp ≤≤= qpR (31)

and the set S of subgrid scales by: 

R.-TS = (32a)

Here S  can be written in the form: 

GCS ∪= (32b)

where C  is the set of cross terms defined by: 

{ }),(or),( RTRTRR CqCpCCqCCp ≤≤<≤<≤= qp,C (32c)

and G  is the set for which both p and q are subgrid: 

{ }., TRTR CqCCpC ≤<≤<= qp,G (32d)

Thus, for S∈),( qp , one or both of the inequalities TRTR CqCCpC ≤<≤< ,  holds. Each of the 
functions defined in the previous sections, which involve summations over p and q, can then be split 
into resolved scale terms for which R∈),( qp and subgrid scale terms for which S∈),( qp . For 

S∈),( qp we define ),(),,(),,( sttfst abab
H

ab SSS
kk k χη  by right hand side of Equations (18a), (18b), (18c), 

),(),,(),,( stPststS ababab SSS
kkk π  by (23b), (23c), (23d), and ),(and),( tftf ab

P
ab

S kk SS by Equations (27a) 
and (27b) respectively. Similar expressions with superscript R  may be defined for R∈),( qp .

6.1. Mean Field 

The dynamical equation for the mean resolved scale vorticity, including subgrid scale terms, may 
then be derived as follows. For R),( ∈qp , we use the original Equation (15a) for >< a

kζ  and the 
subgrid scale contributions are taken from the closure based Equation (20). Thus, for RCk ≤  we have: 
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This can also be written in the form: 
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where the two-time renormalized dissipation elements: 

),,()()(),,( 0 stdstDstd a
d

a
r kkk βαββ δ +−= (34a)

and )( st −δ  is the Dirac delta function. Here we have defined the two-time drain dissipation 
elements by: 

).,(),,( ststd aa
d

ββ ηS
kk = (34b)

As well, the renormalized mean force is defined by: 

),,(),(),(),( 0 tjtftftf aa
h

aa
r kkkk ++= (34c)

where the ‘residual Jacobian’ term is given by: 
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Here, we have also denoted the subgrid eddy-topographic force by: 

).,(),( tftf a
H

a
h kk S≡ (34e)

6.2. Fluctuating Field 

Again, for R∈),( qp  the equation for the resolved scale vorticity fluctuations is taken from 
Equation (15b) and for the subgrid scale terms the Langevin Equation (26) is used with aa

kk ζζ ˆ~ →
to give: 
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This can also be written as: 
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where the two-time renormalized dissipation elements: 

).,,(ˆ)()(),,(ˆ
0 stdstDstd a

d
a
r kkk βαββ δ +−= (36a)

Here, the two-time drain dissipation elements are given by: 

).,(),(),,(ˆ stststd aaa
d

βββ πη SS
kkk += (36b)

As well, the renormalized random force is defined by: 
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where:
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These mean field and fluctuation equations are generalizations of the original Equations (15a) and 
(15b) with additional forcing contributions and linear terms modifying the bare viscous dissipation; 
these additional terms are due to the subgrid scale eddies. Note also that the linear terms now have an 
integral representation. That is, our parameterization of the subgrid-scale eddies changes the original 
coupled ordinary differential Equations (15a) and (15b) to coupled integro-differential equations for 
the resolved scales. This is due to the subgrid scales having memory effects. 

6.3. Response Function and Covariance 

The equation for the response function, including subgrid terms, follows from Equation (4.11): 
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or, equivalently: 
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Similarly, from Equation (22), the two-time cumulant equation including subgrid terms is: 
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or, more compactly: 
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Finally, from Equation (25b), the single-time cumulant equations including subgrid terms is: 
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This may also be written as: 
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Here, we have defined renormalized noise covariance matrix elements by: 
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The renormalized random force ),(ˆ tf a
r k  is given by Equation (36c), ),,(0 stF a kβ  is given in 

Equation (23a) and the backscatter covariance matrix elements by: 

.),(ˆ),(ˆ),(),(),,( >−<≡+= sftfstPstSstF b
a

b
aaa

b kkk kk
ββββ SS (40b)

As well, the stochastic backscatter noise ),(ˆ tf a
b k  is given by Equation (36d). 
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6.4. Langevin Equation for QDIA with Subgrid-Scale Parameterizations 

The generalized Langevin equation which exactly reproduces the QDIA closure equations with 
subgrid-scale parameterizations is as follows: 
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where:

��
∈

−−=
),(

)2()1( ),()()(),,(2),(
qp

qpqp,k,qpkk
R

R ttKtf cbabca
S ρρδ (42a)

).()(]),,()(),,(2)[,,(),(
),(

)3( tthAtKtf cbcabccabca
P q

qp
pqq qpkqpkqpkk −

∈
−−−�� +><= σρζδ

R

R

(42b)

Again, )()( taj
kρ , where j = 1, 2 or 3, and )(ta

kσ  are statistically independent random variables that 
satisfy Equation (28) and Equation (29) also holds. The Langevin Equation (41) guarantees 
realizability for the elements of the covariance matrices that are diagonal in spectral space in the quasi-
diagonal closure equations. 

7. Effective Dissipation and Viscosity Parameterizations 

We can also write Equation (33) in the form:  
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where renormalized generalized drain dissipation matrices appearing in Equation (43) are given by: 
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Here the drain dissipation matrix elements for the mean field are given by: 

.)(),()(),,()()( �� ><=><>=<
t

t

a
t

t

a
d

a
d

oo

sstdssstddstD ββββββ ζηζζ kkkk kk S
(45)

In general )(kab
rD  and )(kab

dD  are time-dependent but in our previous studies we have primarily 

been interested in their properties at statistical steady state. 
We also define the drain dissipation matrix elements for fluctuations by: 
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Thus:
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where:  
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We can define the backscatter dissipation matrix elements by: 
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Further, we define the net dissipation matrix elements by: 
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b

ab
d

ab
n DDD += (49b)

and the renormalized net dissipation matrix elements by: 
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Again, generalized viscosity matrix elements may be defined as follows: 

,)()( 2−
•• = kD abab kkν (50a)

and:

,)(ˆ)(ˆ 2−
•• = kDabab kkν (50b)

where .,,,,,0ofanydenotes rnrndb•
In general, and specifically if we include the beta-effect in our analysis, the dissipation matrix 

elements ),(kabD• ),(ˆ kabD•  and the viscosities ),(kab
•ν  )(ˆ kab

•ν  are complex; both the viscosity and 
wave frequency are renormalized by the subgrid scale eddies. If our system is quasi-isotropic, as well 
as quasi-diagonal, then these terms are real viscosities and only depend on k, the magnitude of k. This 
is the case, in particular, near canonical equilibrium.  

We note that Equation (43) is identical to Equation (15a) except that the bare dissipation )(0 kβaD  is 
replaced by the renormalized dissipation )(kβa

rD , the bare force ),(0 tf a k  is replaced by the 
renormalized force ),( tf a

r k  and the summation is now for R∈)( qp,  rather than over the whole space 
T∈)( qp, . Similarly Equation (47) is the same as Equation (25b) but with )()(0 kk ββ a

r
a DD → ,

),,(),,(0 stFstF a
r

a kk ββ →  (or ),(),(0 tftf a
r

a kk → ) and RT → . Our analysis also shows that the 
subgrid-scale eddies affect the mean and fluctuating-parts of the field variables differently. In general, 
the mean and fluctuating parts of the fields relax at different rates as seen from Equations (44) 
and (48). 
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8. Discussion and Conclusions 

We have generalized the computationally tractable QDIA closures of Frederiksen [4] and 
Frederiksen and O’Kane [11] for inhomogeneous barotropic turbulent flows over topography to 
multi-field classical field theories with quadratic nonlinearity. Next, we note that it is also possible to 
obtain from the QDIA closure generalizations of the SCFT [5] and LET [6,7] statistical closures. 

8.1. Quasi-Diagonal LET and SCFT Inhomogeneous Closures 

As discussed in detail by Frederiksen et al. [8] both the SCFT and LET closures for homogeneous 
turbulence may be formally obtained from the DIA by invoking the fluctuation-dissipation theorem 
(FDT). In a similar way we can obtain quasi-diagonal SCFT (QSCFT) and LET (QLET) closures for 
inhomogeneous turbulent flows from the QDIA. For our multi-field equations we use the FDT: 

),(),()(),( ttCttRttttC baab ββ
kkk ′=′−Θ′ (51)

for the diagonal elements in spectral space. Here )(xΘ  is the Heaviside theta function which is unity 
for x  positive and otherwise vanishes. The QSCFT is then obtained from the QDIA by replacing the 
prognostic equation for the two-time cumulant, Equation (22), by Equation (51). Similarly, the QLET 
closure is obtained from the QDIA by replacing the equation for the response function, Equation (24), 
by the expression in Equation (51) in terms of the single- and two-time cumulants. 

8.2. Regularization and Non-Gaussian initial Conditions 

We can also follow the approach of Frederiksen and Davies [14] and O’Kane and Frederiksen [12] 
and introduce a regularization of the QDIA closure. This corresponds to an empirical vertex 
renormalization in which the interactions are localized in wavenumber space in a manner specified by 
an interaction cut-off parameter cα . For the current multi-field QDIA this is achieved by using )(xΘ ,
the Heaviside theta function, and making the replacements: 

),,,()/()/(),,( pqkqpk abc
cc

abc AkqkpA αα −Θ−Θ→ (52a)

),,()/()/(),,( pqkqpk abc
cc

abc KkqkpK αα −Θ−Θ→ (52b)

in the two-time cumulant and response function equations but not in the single-time cumulant 
equations. For suitable cα  we expect that the multi-field QDIA will again have the correct power laws 
as well as accurately capturing the evolution of the energy containing scales.

We can also include the effects of non-Gaussian initial conditions in the multi-field QDIA by 
following the approaches of Frederiksen et al. [8] and O’Kane and Frederiksen [12]. This again allows 
the employment of more computationally efficient cumulant update variants of the closure equations. 
However, for the sake of brevity these straightforward generalizations will be left for the future 
numerical implementation of the closures. 

8.3. Concluding Comments 

We have derived statistical dynamical closures for inhomogeneous turbulent flows described by 
multi-field equations with quadratic nonlinearity. We have generalized the computationally tractable 
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QDIA closure for inhomogeneous barotropic flows over topography and focused our analysis on QG 
and 3D turbulence. The analysis applies equally to other equations such as the primitive equations for 
atmospheric and oceanic circulations [44], to internal gravity wave turbulence [42], to continuous [42] 
rather than discrete representations of the fields, and more generally to classical field theories [50]. 
Statistical dynamical closures have also been formulated for large eddy simulations and subgrid 
models have been presented that ensure that the LESs have the same large scale statistical behavior as 
the higher resolution closures. These subgrid models include general expressions for all the subgrid 
terms required in the equations for the mean and fluctuating fields.  

The multi-field QDIA and its underpinning Langevin equation also provide further support for the 
direct stochastic modeling approach to subgrid-scale parameterizations developed by Frederiksen and 
Kepert [2] and applied also to the baroclinic QG equations for atmospheric and oceanic flows by 
Zidikheri and Frederiksen [32–34] and Kitsios, Frederiksen and Zidikheri [35]. In some of these 
studies, particularly for higher resolution LESs of atmospheric flows [32,33,35], where the 
baroclinic instability is resolved, the renormalized mean forcing is essentially just the bare forcing: 

),(),( 0 tftf aa
r kk ≈ . However, as in the formulations and studies of Frederiksen [4], Frederiksen and 

Kepert [2], Franzke, Majda and Branstator [45], O’Kane and Frederiksen [18], Frederiksen and 
O’Kane [1], Zidikheri and Frederiksen [34], the subgrid contribution to the mean field forcing is in 
general significant and the renormalized forcing is given by ),(),(),(),( 0 tjtftftf aa

h
aa

r kkkk ++=  as 
in Equation (34c).  

The multi-field QDIA, like the barotropic QDIA and the DIA closures, has an underpinning 
generalized Langevin equation with memory effects that guarantees relizability of the covariance 
elements that are diagonal in spectral space and positive definite energy spectra. The direct stochastic 
modeling approach to subgrid-scale parameterizations by Frederiksen and Kepert [2] also accounts for 
memory effects. It differs in this respect from many commonly used stochastic models [46,47] based 
on linear regression that may not always be realizable as discussed by Majda, Gershgorin and 
Yuan [48] (and references therein). Frederiksen and Kepert [2] have found that their approach gave 
very similar subgrid-scale parameterizations, and successful LES, to the closure based method of 
Frederiksen and Davies [31]. Unlike the case for the QDIA, we know of no general proof of the 
realizability of the direct stochastic approach with memory effects and stochastic backscatter [2] but all 
subsequent applications have yielded realizable positive definite energy spectra [2,32–35]. 
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Appendix A: Perturbation Theory 

In this appendix, we derive some expressions relating general inhomogeneous elements of the 
covariance and response function matrices to the corresponding elements that are diagonal in spectral 
space. These are needed in the formulation of the QDIA closure equations presented in Section 4. The 
closure equations are formulated by doing a formal perturbation theory. We suppose that the terms on 
the right hand side of Equation (15b) (apart from ),(0̂ tf a k ) are multiplied by small parameterλ . The 

closure equations are then formally renormalized and λ  restored back to unity.
We begin by expanding a

kζ̂  in Equation (15b) in a perturbation series: 

�++= aaa )1()0( ˆˆˆ
kkk ζλζζ (A.1)

Then, to zero order, we have from Equation (15b) (with the right hand side, apart from ),(0̂ tf a k ,

multiplied by λ ) that: 
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To first order we have: 
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Then the formal solution to (A.3) can be written, using the Greens function ),()0( stR aβ
kk,

corresponding to Equation (A.2), as follows: 
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We can also express the two-time cumulant as: 
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We assume the initial )(ˆ
o

a tkζ  have a Gaussian distribution that is diagonal in spectral space. In 

particular, this implies: 
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Moreover, we suppose diagonal dominance in spectral space so that the zero order fields satisfy: 
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That is, to zero order ),(, ttCab ′− lk  is homogeneous in the horizontal but inhomogeneous in the 

vertical. To first order in λ  we have the general inhomogeneous contribution: 
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Using Equation (A.4) then gives: 
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Next, we implement Equation (A.6) and perform the formal renormalizations 
abababababab CCCCRR lklk,kkkk,kkkk, −−−− →→→→ ,

)1(
,

)0(
,

)0( ,,,1λ . Finally, the general inhomogeneous two-point 

cumulant can be expressed in terms of the cumulants and response functions that are diagonal in 
spectral space as: 
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In a similar way, we can express the general inhomogeneous response function in terms of the 
response functions that are diagonal in spectral space. We define: 
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and performing a perturbation expansion we have: 
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where, again we suppose homogeneity in the horizontal to order zero, so that: 
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Thus, to zero order ),(, ttRab ′lk  is homogeneous in the horizontal but inhomogeneous in the vertical. 

To first order in λ , the general inhomogeneous contribution is:  
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We now implement Equation (A.10c) and perform the formal renormalizations 
abababab RRRR lklk,kkkk, ,
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)0( ,,1 →→→λ . This yields: 
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In the quasi-diagonal approximation (in spectral space), the treatment of the three-point cumulant in 
Equation (21) follows closely the approach of Kraichnan [3] for homogeneous turbulence (see also 
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Frederiksen [49] for a pedagogical approach) and Kraichnan [10] and Martin et al. [50] for general 
inhomogeneous turbulence. In fact, the approach is closest to that of Carnevale and Frederiksen [42] 
who considered the DIA closure for internal gravity wave turbulence. We find that for Gaussian 
initial conditions: 
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where the nonlinear eddy-eddy damping ),( staαηk  is given in Equation (18a) and the nonlinear 
eddy-eddy noise ),( stS aα

k  is given in Equation (23b). 

Appendix B: Quasigeostrophic Model with Continuous Vertical Variations 

Taking suitable length and time scales, the nondimensional equation for flow over topography on an 
f-plane may be written in the form: 

,),( 00 fDhJ
t

+−+−= ζζψ
∂
∂ζ

(B.1a)

Here ψ  is the streamfunction, and ψψζ 2

2
2

z
FL ∂

∂−∇=  is the reduced potential vorticity, )(zh  is the 

scaled topography, 0D  is a dissipation operator to be specified below and 0f  is a forcing function. 
Again, LF  is the vertical coupling parameter and, in planar geometry: 
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Spectral equations corresponding to this system may be obtained by first expanding each of the 
functions in a Fourier series, e.g.,  
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and ),,(),,,( zyx kkkzyx == kx . Then, multiplying Equation (B.1a) by ).exp( xki− and integrating over 
the ),,( zyx domain, we find that: 
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Here:
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00 ),(),( kD kkkk ′=′ ν (B.4)
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where we refer to ),(0 kk ′ν  as the bare viscosity and we shall also refer to ),(0 tf k  as the bare forcing. 

In the above spectral equations:  
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Appendix C: Quasigeostrophic Model in Terms of Barotropic and Baroclinic Components 

The nondimensional equation for 2-level baroclinic quasigeostrophic flow over topography on an  
f-plane may be written in the form: 
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where we have taken suitable length and space scales. Here, 0ψ  and 1ψ  are the barotropic and 
baroclinic streamfunctions, 020 ψζ ∇=  and 1121 ψψζ Γ−∇=  are the barotropic and baroclinic vorticity, 

01 hh −=  and 0h is one half the scaled topography, bD0
0  and bD1

0  are linear operators to be specified 
below and 0

0f  and 1
0f  are forcing functions. Also LF2=Γ  is twice the layer coupling parameter and is 

the inverse of the Rossby radius of deformation squared [32]. Again we obtain the spectral equations in 
the standard form: 
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where now the superscripts are 0 or 1. In the above spectral equations:  

,k=k (C.3a)
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were * denotes complex conjugate.  
As for the case of barotropic flow we can also generalize the equations to turbulent flow on a  

�-plane. The small scales are again coupled to a large scale streamfunction ytU a )(−  at each level, 
where )(tU a  are the large scale zonal velocities. The large scale flow can again be regarded as the 
(0,0) vorticity component and the equations written in the form (1) by generalizing the interaction 
coefficients as in Frederiksen and O’Kane [11]. In this case ),,(),,( 101000 qpkqpk AA =  are as given in 
Equations (18) to (23) of Frederiksen and O’Kane [11]. Also ),,(),,( 101000 qpkqpk AA =  have the 
same expressions but with )( 22 Γ+→ pp  in the denominator. On the β -plane the linear operator 

)(0 kβaD  includes the Rossby wave frequency as well as dissipation (see the corresponding barotropic 

results in Equations (15) and (16) of Frederiksen and O’Kane [11]). 
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