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E-Mail: phrt@correo.azc.uam.mx
3 Unidad Profesional Interdisciplinaria en Ingenierı́a y Tecnologı́as Avanzadas del IPN, Av. IPN 2580,
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Abstract: In this work we present a local stability analysis of the thermo-economic model

of an irreversible heat engine working at maximum power conditions. The thermo-economic

model is based on the maximization of a benefit function which is defined by the ratio of the

power output and the total cost involved in the plant’s performance. Our study shows that,

after a small perturbation, the system decays exponentially to the steady state determined by

two different relaxation times. In particular, we show that the relaxation times are function

of the temperature ratio τ = T2/T1 (T1 > T2), the cost function f and the parameter R (a

parameter related to the degree of internal irreversibilities). We observe that the stability of

the system improves as τ increases whereas for changes in f and R, the stability properties

are characterized by a rapid decay along the fast eigendirection as f increases and R

decreases. Finally, we discuss our results in the context of energetic properties.
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1. Introduction

During the last decades, since the early work by Curzon and Ahlborn was published [1],

most of the studies of Finite-Time Thermodynamics (FTT) have focused on steady-state energetic

properties [2–10]. However, it is important to notice that any thermal engine is exposed to continuous

internal and external perturbations while operating. In order to have a well-designed system, it is

important to analyze the effect of noisy perturbations on the stability of the system steady state. This

analysis may allow us to guarantee proper dynamical behavior of the system like stability and small

relaxation times, or to warn about possible failure in the performance of a thermal engine. In 2001,

Santillán et al. [11] studied the local stability analysis of an endoreversible Curzon-Ahlborn heat engine

operating under maximum power conditions. Later, Guzmán-Vargas et al. [12] investigated the effect

of the heat transfer laws and the thermal conductances on the local stability of an endoreversible heat

engine. Recently, Páez-Hernández et al. [13], analyzed the local stability of a non-endoreversible

Curzon-Ahlborn engine taking into account the engines implicit time delays operating at maximum

power regime. However, the local stability analyses described above have not considered the effect

of economical aspects. Within the context of Finite-Time Thermodynamics [2–5,7], the effect of

economical aspects was early introduced by De Vos [14] for the study of a thermo-economic model

of a power plant [15–17]. Later, and in the same direction, Sahin and Kodal [18] studied the

thermo-economics of an endoreversible heat engine in terms of the maximization of a profit function

defined as the quotient of the power output and the annual investment and the full consumption costs.

This thermo-economic performance analysis [16,17,19] consists in maximizing a benefit function in

terms of the power output and the cost involved in the performance of the power plant [20–24]. The aim

of this paper is to extend the local stability analysis of the Chambadal-Novikov-Curzon-Ahlborn (CNCA)

heat engine model [1,15,25], by considering a Newton heat transfer law as well as to analyze the effect

of internal irreversibilities and economical aspects. The paper is organized as follows: In Section 2, we

present the thermo-economical analysis of a non-endoreversible CNCA heat engine. In Section 3, we

describe the local stability analysis method applied to a two-dimensional system. In Section 4, the local

stability analysis of a CNCA heat engine is presented. Finally, in Section 5, we present our conclusions.

2. Thermo-Economic Analysis of the Steady-State Chambadal-Novikov-Curzon-Ahlborn Heat
Engine

In this section, we review the thermo-economic analysis of a non-endoreversible

Novikov-Curzon-Ahlborn heat engine. A schematic diagram of the CNCA engine is shown in

Figure 1. This engine consists in a Carnot-like thermal engine that works in irreversible cycles and

exchanges heat with external thermal reservoirs at temperatures T1 and T2 (T1 > T2). In the steady state,

the temperatures of the Carnot-like cycle isothermal branches are x̄ and ȳ, here overbars are used to

indicate the corresponding steady-state values. The steady-state heat flows between thermal reservoirs

and working fluid J̄1 and J̄2 are also show in Figure 1.
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Figure 1. Schematic representation of a non-endoreversible Curzon-Ahlborn engine.
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By applying the Clausius theorem and using the fact that the inner Carnot-like engine works in

irreversible cycles, we get the following inequality

J̄1
x̄

− J̄2
ȳ

< 0 (1)

this expression can be transformed into an equality by introducing a parameter R, leading to

J̄1
x̄

= R
J̄2
ȳ

(2)

The parameter R, which in principle is within the interval 0 ≤ R ≤ 1 (R = 1 corresponds to the

endoreversible limit), can be seen as a measure of the departure from the endoreversible regime [26–28].

If we assume that the heat flows from T1 to x̄ and from ȳ to T2 are of the Newton type, then

J1 = α(T1 − x̄) (3)

J2 = α(ȳ − T2) (4)

where α is the thermal conductance. For simplicity of calculations, we have assumed that the heat

exchanges take place in conductors with the same thermal conductance α. The systems steady-state

power output and the efficiency can be defined as

P̄ = J̄1 − J̄2 (5)

and

η̄ =
P̄

J̄1
= 1− J̄2

J̄1
= 1− 1

R

ȳ

x̄
(6)

By combining Equations (2), (4) and (6), we can write x̄ and ȳ as

x̄ =
T1

1 +R

(
1 +

τ

1− η̄

)
(1− η̄) (7)
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ȳ =
R

1 +R
T1

(
1 +

τ

1− η̄

)
(1− η̄) (8)

where τ = T2/T1. De Vos thermo-economical analysis considers a profit function F̄ , which is

maximized [14]. This profit function is given by the quotient of the power output P̄ and the total cost

involved in the performance of the power plant C̄tot,

F̄ =
P̄

C̄tot

(9)

In his study, De Vos assumed that the running costs of the plant consist in two parts: a capital

cost which is proportional to the investment and, therefore, to the size of the plant and, a fuel cost

that is proportional to the fuel consumption and, therefore, to the heat input rate. Assuming that is an

appropriate measure for the size of the plant, the running cost of the plant exploitation is defined as [14]

C̄tot = aJ̄max + bJ̄1 = aαT1

[
(1− τ) + β

(
1− x̄

T1

)]
(10)

where the proportionality constants a and b have units of $/Joule, β = b/a and J̄max = α(T1 − T2) is

the maximum heat that can be extracted from the heat reservoir without supplying work (see Figure 1).

By using Equations (4), (6), (7), (9) and (10), the profit function can be written as,

aF̄ = η̄

1

1 +R

(
R− τ

1− η̄

)

(1− τ) +
β

1 +R

(
R− τ

1− η̄

) (11)

If we calculate the derivative of aF̄ with respect to η̄, we can determine the efficiency that maximizes

F̄ by
(

d(aF̄ )
dη

)
η=η∗

= 0 [29], and then we obtain

η̄∗(β, τ, R) = 1−
√

τ

R

R(1− τ)− τβ

R(1− τ)
√
1 + β(R−τ)

R(1−τ)
−√

Rτβ
(12)

For R = 1 the result for the efficiency previously obtained by De Vos is recovered [14,30,31]. Besides,

when β = 0, we obtain η = 1 − √
τ
R

, which was previously obtained by Wu and Kiang [26], and by

Arias-Hernández et al. [32]. Now, we consider the fractional fuel cost defined by [14]

f =
J̄1β

J̄max + J̄1β
(13)

that is, the ratio of the fuel cost and the total cost of the plant [14]. This parameter is related to several

energy resources, taking into account energy sources where the investment is the preponderant cost

(f = 0) up to energy sources where the fuel is the predominant cost (f = 1). This new parameter allows

the efficiency and the power output to be expressed as

η̄∗(f, τ, R) = 1− f

2R
τ −

√
4(1− f)τR + f 2τ 2

2R
(14)
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and

P̄ = αT1

[
(f − 2)τ −√

4(1− f)τR + f 2τ 2
] [

fτ − 2R +
√

4(1− f)τR + f 2τ 2
]

2(1 +R)
[
−fτ −√

4(1− f)τR + f 2τ 2
] (15)

Equations (14) and (15) represent the steady-state efficiency η̄ and power output P̄ respectively. They

are functions of τ , f and R for a non-endoreversible CNCA engine working under the maximum-profit

regime. It is straightforward to show that both P̄ /αT1 and η̄ are decreasing functions of τ for every fixed

value of R, as we can see in Figure 2.

Figure 2. Plots of normalized power output (P̄ /αT1 ) and efficiency (η̄) versus τ , for

different values of the fractional fuel cost.
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3. Linearization and Stability Analysis

In this section we present a brief description of the local stability analysis for a two-dimensional

system [33]. Consider the following dynamical system,

dx

dt
= f(x, y) (16)

and
dy

dt
= g(x, y) (17)

Let (x, y) be a fixed point such that f(x, y) = 0 and g(x, y) = 0. Consider a small perturbation

around this fixed point and write x = x + δx and y = y + δy, where δx and δy are small perturbations

from the corresponding fixed point values. By substituting into Equations (16) and (17), expanding

f(x+ δx, y+ δy) and g(x+ δx, y+ δy) in a Taylor series, and using the fact that δx and δy are small to

neglect quadratic terms, the following equations are obtained for the perturbations,

(
dδx
dt
dδy
dt

)
=

(
fx fy

gx gy

)(
δx

δy

)
(18)
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where fx = ∂f
∂x
|x,y; fy = ∂f

∂y
|x,y; gx = ∂g

∂x
|x,y and gy = ∂g

∂y
|x,y. Equation (18) is a linear system of

differential equations. Thus, we assume that the general solution of the system is of the form,

δ�r = eλt�u (19)

with δ�r = (δx, δy) and �u = (ux, uy). Substitution of solution δ�r into Equation (18) yields to the

following eigenvalue equation,

Aδ�r = λδ�r (20)

where A is the matrix given by the first term in the right-hand side of Equation (18). The eigenvalues of

this equation are the roots of the characteristic equation,

|A− λI| = (fx − λ)(gy − λ)− gxfy = 0 (21)

If λ1 and λ2 are solutions of Equation (21), the general solution of the system is

δ�r = c1e
λ1t�u1 + c2e

λ2t�u2 (22)

where c1 and c2 are arbitrary constants and �u1 and �u2 are the eigenvectors corresponding to λ1 and λ2,

respectively. To determine �u1 and �u2 we use again Equation (20) for each eigenvalue. Information about

the stability of the system can be obtained from the value of the eigenvalues λ1 and λ2. In general, λ1 and

λ2 are complex numbers. If both λ1 and λ2 have negative real parts, the fixed point is stable. Moreover,

if both eigenvalues are real and negative, the perturbations decay exponentially [33]. In this last case, it

is possible to identify characteristic time scales for each eigendirection as

t1 =
1

|λ1| (23)

and

t2 =
1

|λ2| (24)

4. Local Stability Analysis

Following Santillán et al. [11], and assuming that the working fluid at the isothermal branches x and

y are not real heat reservoirs but macroscopic objects with heat capacity C, the internal temperatures x

and y (see Figure 1) change according to the following differential equations

dx

dt
=

1

C
[α(T1 − x)− J1] (25)

and
dy

dt
=

1

C
[J2 − α(y − T2)] (26)

where J1 and J2 are the heat flows described in Figure 1. According to the non-endoreversibility

hypothesis, J1 and J2 are given by

J1 =
Rx

Rx− y
P (27)

and

J2 =
y

Rx− y
P (28)
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On the other hand, we can use Equations (6) and (14) to construct an expression which relates the

internal variables x̄ and ȳ, to the external temperatures T1 and T2, given by

τ =
ȳ2

x̄2(1− f)R + x̄ȳf
(29)

In a similar way to Equation (29), by using Equations (7) and (14), we can obtain an expression for

T1

T1 =
2(f − 1)(1 +R)x̄

2(f − 1) + fȳ2

x̄(1−f)+Rx̄2+x̄ȳf
+ 2(1−f)Rx̄ȳ+ȳ2f

x̄(1−f)Rx̄+ȳf

(30)

The corresponding steady-state values of x̄ and ȳ as function of T1 and T2 at maximum-profit function

are obtained by substituting Equation (14) into Equations (7) and (8), respectively

x̄ =
T1

1 +R

(
1 +

2Rτ

fτ +
√
4(1− f)τR + f 2τ 2

)
(31)

and

ȳ =
RT1

2(1 +R)

(
(f + 2R)τ + fτ +

√
4(1− f)τR + f 2τ 2

)
(32)

We can observe from Equations (29)–(32) that for the case f = 0 and R = 1, the results previously

obtained by Santillán et al. [11] and Guzmán-Vargas et al. [12] are recovered. Finally, by substituting

Equations (29) and (30) into Equation (15), the steady-state power output can be expressed as

P̄ (x̄, ȳ, f, R) = α

[
x̄Λ + (f−2)x̄ȳ2

(1−f)Rx̄+fx̄ȳ

] [
Λ− 2R + fȳ2

(1−f)Rx̄+fx̄ȳ

]
2
[
Λ + (f+2R)ȳ2

(1−f)Rx̄+fx̄ȳ

] (33)

where

Λ =

√
ȳ2 [2(1− f)Rx̄+ fȳ2]2

x̄2 [2(f − 1)Rx̄+ fȳ2]2
(34)

By using the assumption [11,12] that out of the steady state but not too far away, the power output

of a Curzon-Ahlborn heat engine depends on x and y in the same way that it depends on x̄ and ȳ at the

steady-state (P̄ (x̄, ȳ, f, R) → P (x, y, f, R)), that is, this assumption is applicable only in the vicinity of

the steady state, we can write the dynamical equations for x and y as follows

dx

dt
=

1

C

[
α(T1 − x)− Rx

Rx− y
P (x, y, f, R)

]
(35)

and
dy

dt
=

1

C

[
y

Rx− y
P (x, y, f, R)− α(y − T2)

]
(36)

To analyze the system stability near the steady state, we proceed following the steps described in the

previous sections. After solving the corresponding eigenvalue equation, we find that both eigenvalues

(λ1 and λ2) are function of α, C, τ , f and R. The final expression and the algebraic details are not shown

because they are quite lengthy and can be easily reproduced with the help of a symbolic algebra package.

Specifically, our calculations show that both eigenvalues are real and negative, with λ2 < λ1, and then

t1 > t2, where t1, t2 correspond to the slow and fast eigendirection, respectively. Thus, the steady state
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is stable because any perturbation would be decay exponentially. The expressions of the eigenvalues

when f = 0 are consistent with those previously reported in [11,12]. In Figure 3, the relaxation times

are plotted against τ for different values of fractional fuel cost f , for a fixed value of R (R = 1), that is,

the endoreversible case. We observe that t1 is a decreasing function of τ . This relaxation time decreases

as the fuel cost increases, indicating a faster decay along this eigendirection as f → 1.

Figure 3. Plot of relaxation times t1, t2 versus τ for several values of the fractional fuel cost

f in the endoreversible case (R = 1).
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For t2, we observe that this relaxation time remains constant as τ increases for f = 0. As the fractional

fuel cost f increases, t2 slightly increases too. We notice that in the limit f → 1, both relaxation

times tend to be closer each other, indicating that the stability is preserved for values within the interval

0 < τ < 1. In Figure 4 we also show the relaxation times as a function of τ , for several values of the

parameter R, for a fixed value of the fractional fuel cost f . As in Figure 3, t1 is a decreasing function of

τ . We observe that t2 remains almost constant and slightly increases when the irreversibility parameter

changes. From the findings of Figures 3 and 4, we can conclude that the system is stable for τ > 0. We

remark that as the fractional fuel cost f increases, t1 decreases whereas t2 varies smoothly, for a given

value of R. Likewise, for a given value of f , as the irreversibility parameter R decreases, t1 decreases

whereas t2 increases. Additionally, in Figure 5 we show the relaxation times versus fuel fractional cost

for several values of τ . We can see, in this case, how the fast (slow) relaxation time slightly increases

(decreases) as f changes from 0 to 1. It is important to notice that the optimal efficiency smoothly

increases as f moves from 0 to 1, and we have seen that the stability is preserved for variations of

f in the same range. We also remark that the power output and the efficiency depend on τ for the

cases analyzed here, and both energetic quantities are decreasing functions of this parameter, that is, the

systems stability moves in the opposite direction to that of the steady state P and η as τ varies.
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Figure 4. Plot of relaxation times t1, t2 versus τ for several values of the endoreversibility

parameter R and a value of the fractional fuel cost.
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Figure 5. Relaxation times t1, t2 versus f for several values of τ in the endoreversible case.
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5. Conclusions

A thermo-economical local stability analysis of a Novikov-Curzon-Ahlborn heat engine was

proposed. We show that the relaxation times are function of α, C, τ , f and R. We have explored

the dependence of the relaxation times on the economic parameter f associated to the kind of fuel used.

Our findings are consistent with previous results about stability of heat engines and on the irreversibility

parameter R [11–13]. After a small perturbation the system decays exponentially to the steady state

determined by two different relaxation times. We have seen that the stability properties of the system are
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preserved when the fractional fuel cost f moves from situations where the investment is the preponderant

cost (f = 0) to cases where the fuel is the preponderant cost (f = 1). Finally, we observe that the stability

of the system improves as τ increases whereas the steady-state energetic properties of the engine declines

for all cases of energy resources treated here.
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30. Barranco-Jiménez, M.A.; Angulo-Brown, F. Thermo-economical optimization of an

endoreversible power plant model. Rev. Mex. Fis. 2005, 51, 49–56.
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