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Abstract: Fifty years ago, the optimization of thermoelectric devices was analyzed
by considering the relation between optimal performances and local entropy production.
Entropy is produced by the irreversible processes in thermoelectric devices. If these
processes could be eliminated, entropy production would be reduced to zero, and the
limiting Carnot efficiency or coefficient of performance would be obtained. In the
present review, we start with some fundamental thermodynamic considerations relevant for
thermoelectrics. Based on a historical overview, we reconsider the interrelation between
optimal performances and local entropy production by using the compatibility approach
together with the thermodynamic arguments. Using the relative current density and the
thermoelectric potential, we show that minimum entropy production can be obtained when
the thermoelectric potential is a specific, optimal value.
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1. Introduction

1.1. Historical Notes

Thermoelectric (TE) phenomena were discovered at the beginning of the 19th century first by
Thomas J. Seebeck, who observed the deviation of a compass needle when keeping the two junctions
of different metals at different temperatures [1–3]. This effect [4] illustrates the coupling of two
thermodynamic potentials, the electrochemical potential and the temperature. Shortly thereafter, in 1834,
Jean C. A. Peltier discovered the inverse effect that under isothermal conditions an electrical current can
cause a temperature difference at the junction [5]. Later on, in 1851, William Thomson (known later as
Lord Kelvin), brought the theory of thermoelectrics into harmony with the two laws of thermodynamics.
By using thermodynamic arguments he unified the Seebeck and Peltier effects into one single expression
giving decisive arguments in favor of a complete and compact description of all these phenomena [6].
With this theoretical analysis of the relationship between both effects he was able to show that a third
effect has to exist. This third effect bearing his name is the absorption or generation of heat along a
conductor carrying current under a thermal gradient.

At the beginning of the 20th century both the theory and the application had been observed again [7,8].
Particularly worth mentioning are two theoretical papers by E. Altenkirch (who was certainly inspired
by older investigations, among others Lord Rayleigh [9]) about the efficiency of a thermopile [10],
which has been used to generate electrical energy for various special purposes, and a separate work
about the effectiveness of thermoelectric cooling [11]. Comparing the results with the efficiency
of the Carnot cycle, he characterizes the thermopile as a “rather imperfect thermodynamic engine”.
Altenkirch gave first evidence that a good TE material should have a large Seebeck coefficient α, a high
electrical conductivity σ (low specific electrical resistance) to minimize Joule heating and a low thermal
conductivity [12] κ to retain heat at the junctions and maintain a large temperature gradients.

For metals and metallic alloys, the Seebeck coefficient (and thus the figure of merit) is rather low. It
took until the 1930’s when Maria Telkes made a thorough study of the Pb S-Zn Sb couple to develop a
better material [13–17].

Almost at the same time Lars Onsager proposed a theoretical description of linear non-equilibrium
thermodynamic processes where the coupled thermodynamic forces and fluxes are described in a very
general form. In two major articles, the fundamentals of thermodynamics of dissipative transport were
developed in a consistent way [18,19]. A summary can be found in a later work of Onsager [20]. Note
that Onsager expressed initial thoughts on the dissipation function and the principle of least dissipation
of energy, see [18,19].

The thermodynamic theory of TE phenomena in isotropic media was first worked out by
H. B. Callen [21,22] and is presented in more detail in de Groot’s monograph [23]. Usually denoted as
Onsager–de Groot–Callen theory, it might be called a “first approximation” theory of TE transport giving
a coherent thermodynamic description of TE processes on a phenomenological level. Domenicali’s
fundamental article [24] summarizes the principles of steady-state thermodynamics applied to a TE
system out of thermostatic equilibrium. He pointed out that a complete description of the state includes
the determination of the “electrochemical potential” from the overall electronic and crystalline structure
of all phases constituting the TE system.
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The usage of semiconductors as thermoelectric materials was responsible for a revival of
thermoelectrics in the late 1950’s [25]. This is directly connected with the investigations of
Goldsmid [26] and Ioffe [27] who considered both thermodynamics and solid state approaches. They
extended the previous developments to the microscopic area opening the door for material engineering
and practical applications. Ioffe introduced the figure of merit as a primary parameter which gathers
the different transport coefficients, leading to an efficient classification of the various TE materials. His
publications can be seen as outstanding works of literature in the field of thermoelectrics even today, see,
e.g., [25,27–29].

The introduction of the irreversible entropy production in the form of an equality is a very
old problem mentioned by Lord Kelvin himself. Tolman and Fine [30] were probably the first
to point out that the entropy production of a TE process can be considered as a measure of the
total irreversibilities. Before that, Bridgman discussed the relation between thermodynamics and
thermoelectrics in several articles [31–34]. At the beginning of the 1930’s Sommerfeld and Frank
gave an review about the statistical theory of thermoelectric phenomena in metals, but without
considering entropy production [35]. Their calculation is based on Darrow’s report [36]. In 1952 Haase
[37] presented a review about the thermodynamic-phenomenological theory of irreversible processes
containing thoughts about thermoelectrics, too. During the 1950’s and 1960’s, a very active period of
thermoelectrics, there were a lot of works dedicated to the topic of this review. For a small selection we
draw the reader’s attention to [24,38–55]. Another work should be particularly emphasized: Sherman,
Heikes and Ure stated in [47] that the conditions which maximize the TEG’s efficiency are precisely the
conditions which minimize the irreversibility process, allowing a closer approach to the Carnot cycle
where entropy production is zero. This concept had been deepened by Clingman [49,50] for TEG and
TEC.

After a very active period of investigations the interest in thermoelectricity collapsed under the weight
of inflated hopes, because there had been no significant advances in efficiency after the mid-1960’s. As
breakthroughs in the field decelerated, basic research in thermoelectrics lay stagnant for 30 years after
that, meanwhile some materials and commercial uses were still developed. In between this period some
few works on the topic had been made [56–64].

New ideas and materials in the mid-1990’s brought thermoelectrics back into the scope of
research. The search for green technologies, e.g., converting waste heat generated by car engines
into usable power, pushes scientists to pick up “old” effects with new classes of materials with higher
thermoelectric efficiency to have practical applications using the advantages of thermoelectric power
generation [65–67]. An overview of different applications is given by Riffat et al. in [68]. For the
thermodynamic theory of thermoelectric materials and devices in the period from the 1990s to today, the
reader may consult, e.g., [69–94] and references therein.

The content of this review paper includes seven sections. In the next subsection, we derive the
thermodynamics of thermoelectricity from the classical thermodynamics of cyclical systems. The second
section is devoted to the Onsager description of non-equilibrium thermodynamics of coupled transport
processes. In the third section the consequences of the Onsager theory are derived, leading to the
expressions of heat and entropy production. The fourth section summarizes TE applications, and the
fifth section is devoted to the presentation of the general conductance matrix. Using these last two
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sections, the concepts of relative current and thermoelectric potential are exposed in the sixth section.
In the last section, we close this article with comments on optimum device design and functionally
graded materials.

1.2. The Thermoelectric Engine

We propose to consider the analogies between a classical steam engine and a thermoelectric
material [95]. The analogy is that in both systems, the entropy is transported by a fluid, which is here
a gas of electrons, also called the “Fermi gas”. At first this Fermi gas can be considered to be a perfect
gas, with no interactions between particles [96]. Then the equivalent “partial pressure” p of the fluid in
the system is the electrochemical potential µe

µe = µc + eV

where µc is the chemical potential [97], e the particle’s charge [98] and V the electrical potential. Then
the “gas” equivalences for the steam and thermoelectric engines are:

In a first approach, as usually done for traditional steam engines, only the fluid is considered and
the walls of the enclosure containing this fluid are not taken into account. These walls contribution to
the global efficiency are not considered, neither the boiling walls of the steam engine, nor the lattice
vibrations (phonons) of the thermoelectric material. Then we have a similar picture of the two systems
(see Figure 1), not only for the fluid (steam or electronic gas), but also for the thermal leak (boiling walls
or lattice vibrations) as symbolically shown in Figure 2.

Figure 1. Comparison between steam and thermoelectric engine.

As we observe, the efficiency of the engine is reduced by the presence of a heat leak. As a
consequence, materials with very low lattice thermal conductivity are highly required for thermoelectric
applications. Let us consider now a sample of thermoelectric material where one end is maintained at
the temperature Th and the other at temperature Tc with Th > Tc. If we consider the Fermi gas inside
the sample then we get from elementary statistical arguments a large velocity and small gas density at
the hot end and a small velocity and large gas density at the cold end. It should be noticed that since
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heat flows from the hot to the cold end, the system cannot be considered under equilibrium conditions
although the averaged carrier flux is zero: particles are going from cold to hot and hot to cold side,
but the two opposing fluxes are equal since the cell is closed. We also see that the gradient of carrier
density is directly driven by the temperature gradient. Since the carriers are charged particles, we get an
electrochemical difference, commonly called voltage difference, which is induced by the application of
a temperature difference. This illustrates the coupling of the electrochemical potential gradient and the
temperature. Next, since the averaged carrier flux is zero, but heat is transported at the same time, we
get the same values of particle fluxes from hot to cold and from cold to hot. From this observation we
can conclude that heat and carrier fluxes are coupled. While very simple, this description contains the
main contributions to thermoelectric processes. In the ideal, reversible case without entropy production
this would be a Carnot cycle containing two “isothermal” processes, respectively at hot and cold side,
and two “adiabatic” processes from hot to cold side and from cold to hot side.

Figure 2. Dithermal thermodynamic engine: The cycling working fluid is marked as F and
the thermal leak is marked as L. (a) ideal model neglecting the engine walls; (b): realistic
model including the thermal leaks.

Actually, since the thermoelectric process is not ideal, we can then estimate the principle sources of
entropy of the working system that are the non-isothermal heat transfers and the non-adiabatic travel of
the carriers from cold to hot sources and hot to cold. This entropy production in the non-adiabatic
branches are due to the collisions between carriers and the interactions with the crystal lattice of
the material.

In Section 2.5 we will focus on the entropy transported by the carriers of the Fermi gas, which
will be defined as the “entropy per carrier” which is a fundamental parameter of the thermoelectric
process. As previously mentioned, it should be stressed again that the present description does not
explicitly mention the atoms of the crystal lattice that provide parasitic thermal conduction due to
phonons or other thermal conduction mechanisms. This is due to the Onsager description which follows
the so called linear response theory where the linear response Fourier’s law is used. Fourier’s law
is valid for thermal conduction due to phonons as well as electrons and is therefore included in the
phenomenological description. If these two processes are independent then it is common to describe
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the thermal conductivity in absence of carrier transport as κJ = κe + κLat where κe is the electronic
contribution and κLat is the lattice contribution.

2. Forces & Fluxes

2.1. Irreversible Thermodynamics and the Onsager–de Groot–Callen Model

Since a thermodynamic system is a statistical assembly of subsystems, the equilibrium of a
thermodynamic system is not a static picture of the system but a configuration where the fluctuations of
the intensive parameters (T, p, . . . ) are very small compared to their average values. This may be called
a fluctuation-average condition (FAC). It is obvious that this definition only applies for systems being not
too small since the ratio of fluctuations to the average value diverges for very small numbers of particles.
The link with the microscopic scale is then direct since every intensive parameter refers to a specific
distribution spectrum. For example, the equilibrium temperature refers to a time invariant spectrum
of the distribution of the particle velocities. As a consequence this implies very short microscopic
relaxation times in comparison with the macroscopic system relaxation time. In other words, the system
is considered to be ergodic. It should be mentioned that this definition is also correct in the case of
out-of-equilibrium systems, since it can be defined as a sum of subsystems that may fulfill the FAC
at local state, leading to the conclusion that a local equilibrium can be defined. As a consequence,
the definition of intensive parameters can be extended, at local state, to macroscopic non-equilibrium
systems. Then the system exhibits a mapping of spatial variation of these intensive parameters, which
may vary over the time until their variation is very slow compared to the microscopic relaxation times.
In this article we will further simplify the problem and assume that all non-equilibrium processes are
steady-state processes which means that the previous mapping is constant over the time, or may vary
very slowly compared to the microscopic relaxation time. From a system evolution point of view, this is
nothing more than a definition of a quasi-static transformation. Readers interested in a more detailed
presentation of steady-state irreversible processes like electric current flow and heat conduction in
semiconductor, metals and other solid state systems may find interesting developments in some specific
literature: we refer for a brief review of the basics of irreversible thermodynamics, e.g., to [23,99], and
further to the book by N. Tschoegl [100] providing a good introduction for steady-state thermodynamics.

For small perturbations (near equilibrium problems) one can assume linear coupling between TD
forces and fluxes. The driving forces which may bring the system as close as possible back to equilibrium
are derived from the intensive parameters of the system. According to a linear response approach they
are conjugated to fluxes, like Ohm’s law and Fourier’s law.

In a thermoelectric system, the thermal and electrical processes are coupled. Since the thermoelectric
process described above is not under equilibrium conditions, the thermodynamic intensive parameters,
such as µe and T , need to be properly defined using non-equilibrium thermodynamics. It should be
noticed here that the underlying mechanisms for these forces to bring the system back to equilibrium
are not straightforward, nor general, since there is no general minimal principle for such a process.
Nevertheless, under non-equilibrium conditions the system’s evolution is assumed to be driven by a
minimal production of entropy due to the coupling of the potentials. In other words, any given fluctuating
potential undergoes a restoring force due to the presence of the others [101]. As a consequence we get
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a stationary picture, where all the thermodynamic potentials are clearly defined, though the system itself
produces dissipation. As previously said, this is nothing more than a definition of a quasi-static process
since the system is considered to head back to local equilibrium at each time. This leads to the very
important result that the classical quasi-static relation dS = dQqs/T between the heat and the entropy
variation can be extended to finite time response thermodynamics in the following flux form

JS =
JQ

T
(1)

where JS and JQ are the entropy flux and heat flux density. Then we get a continuous thermodynamic
description, where the thermodynamic equilibrium, where all average fluxes equal zero, just becomes
one possible thermodynamic state for the system.

The domain of validity of the Onsager description is then limited to non-equilibrium stationary
states near equilibrium which has been described by Prigogine’s theorem of minimum entropy
production [102,103]. It states that, in a time-dependent system, the rate of entropy production will
monotonically decrease until the system gets as close to equilibrium as possible, also taking into account
the externally applied constraints (temperature and electrochemical potential differences). These latter,
called working conditions, can be fulfilled or not, leading to an overall minimal entropy production
that can be very far from its optimal value. This point will be reconsidered in Section 6 by using
the thermoelectric potential, which is a part of the free energy of the system under non-equilibrium
conditions. Finally, one can notice that the Onsager description is nothing more than a generalization
of the Fluctuation-Dissipation theorem of coupled processes, where it is assumed that at a stable steady
state the dissipation function is minimum, or more precisely that the linear (and stationary) response of a
system and the noisy response of this system are linked by the same fundamental mechanisms [104–107].

2.2. Forces and Fluxes

The Onsager force-flux derivation is obtained from the laws of conservation of energy and matter. If
we consider the complete energy flux, then the first law of thermodynamics gives the expression of the
total energy flux JE , heat flux JQ and particles flux JN ,

JE = JQ + µeJN (2)

Each of these fluxes are conjugated to their thermodynamic potential gradients, which, as general
forces, derive from the thermodynamic potentials. The question of the correct expression of these
potentials is out of the scope of the present article, but it can be shown the correct potentials for energy
and particles are respectively 1

T
and µe

T
[104]. Using the Nabla or Del operator ∇, the corresponding

forces can be expressed as their gradients

FN = ∇
(
−µe

T

)
, FE = ∇

(
1

T

)
(3)

and the linear coupling between forces and fluxes can simply be derived by a linear set of coupled
equations with kinetic coefficient matrix [L],[

JN

JE

]
=

[
LNN LNE

LEN LEE

][
∇(−µe

T
)

∇( 1
T
)

]
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where LNE = LEN . The symmetry of the off-diagonal term is fundamental in the Onsager
description since it is equivalent to a minimal entropy production of the system under non-equilibrium
conditions [101]. A first experimental verification of the Onsager reciprocal relations had been given by
Miller for different materials [46]. As we already pointed out, the minimal entropy production is not
a general property of non-equilibrium processes. However, under steady-state conditions, a fluctuating
thermodynamic potential will undergo a restoring force due to the presence of another potential. This
mechanism has to be symmetric, and so do the off-diagonal terms of the kinetic matrix [L] [108]. From
a microscopic point of view this equality also implies the time reversal symmetry of the processes [109].
By extension processes at micro scale should be “micro reversible”. Since the irreversibility is a
statistical consequence of the number of particles inside the considered system, then, at a microscopic
scale, “irreversible thermodynamics” simply becomes a “reversible dynamics”.

2.3. Energy Flux and Heat Flux

In order to treat properly heat and carrier fluxes it is more convenient to rewrite the second equation
of the above matrix formulation for JQ = JE − µeJN . Doing this it is advantageous to change slightly
the first force in order to let appear explicitly µe and not only ∇(−µe

T
). Using the expansion

∇
(
−µe

T

)
= − 1

T
∇µe − µe∇

(
1

T

)
a straightforward calculation gives[

JN

JQ

]
=

[
L11 L12

L21 L22

][
− 1

T
∇µe

∇( 1
T
)

]
(4)

with L12 = L21 and the kinetic coefficients become

L11 = LNN , L12 = LNE − µeLNN , L22 = LEE − µe(LEN + LNE) + µ2
eLNN (5)

Since the electric field derives from the electrochemical potential, see Section 1.2, we also get

E = −∇µe

e
= −∇µc

e
−∇V (6)

2.4. Thermoelectric Coefficients

Depending on the thermodynamic working conditions, the thermoelectric coefficients can be derived
from the two expressions of particle and heat flux density.

2.4.1. Decoupled Processes

Using Expression (4) under isothermal conditions, we get the electrical current density in the form

J =
−eL11

T
∇µe (7)

where J = eJN . This is an expression of Ohm’s law. The isothermal electrical conductivity is

σT =
e2

T
L11 (8)
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Alternatively, if we consider the heat flux density in the absence of any particle transport, or under
zero electrical current then we get

J = 0 = −L11

(
∇µe

T

)
+ L12∇

(
1

T

)
(9)

and the heat flux density becomes

JQJ
=

1

T 2

(
L21L12 − L11L22

L11

)
∇T (10)

which is Fourier’s law, where the thermal conductivity under zero electrical current (open circuit) is

κJ =
1

T 2

(
L11L22 − L21L12

L11

)
(11)

Finally, we can also consider the thermal conductivity under zero electrochemical gradient (closed
circuit), then we get

JQE
=

L22

T 2
∇T with κE =

L22

T 2
(12)

2.4.2. Coupled Processes

Let us now consider the TE coupling in more detail. In the absence of any particle transport, the basic
expression is already known since it is given by Equation (9). If we now define the Seebeck coefficient as
the ratio between the electrochemical gradient and the temperature gradient, then the Seebeck coefficient
expression is given by

−1

e
∇µe ≡ α∇T = E|J=0 (13)

For the electric field relation see also Section 2.6. Using Equation (9) we finally find for Seebeck

α =
1

e T

L12

L11

(14)

If we consider now an isothermal configuration, we can derive the expression of the coupling term
between current density and heat flux which is nothing more than the Peltier coefficient

J = eL11

(
− 1

T
∇µe

)
, JQ = L21

(
− 1

T
∇µe

)
(15)

we get

JQ =
1

e

L12

L11

J (16)

and the Peltier coefficient Π is given by

JQ = ΠJ , Π =
1

e

L12

L11

(17)

As one can see, we have the equality
Π = αT

The close connection between Peltier and Seebeck effects is illustrated by this compact expression.
In a later paragraph we will show that a similar connection can be derived for the Thomson effect. From
a fundamental point of view this shows that all of these effects are in fact different expressions of the
same quantity, called the “entropy per carrier”, defined by Callen [110,111]. It will be considered first,
followed by the definitions of the transport parameters.
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2.5. The Entropy per Carrier

Using the classical approach of the thermodynamic cycle we can consider a carrier traveling through
the different steps of the Carnot cycle. Focusing on the two adiabatic branches of the thermodynamic
cycle, it appears that a certain amount of entropy is driven from the hot side to the cold side, but also
from the cold side to the hot side. In this convective process, the carrier acts as if it was carrying some
entropy. Let us derive this by considering the entropy flux density. From the heat flux density expression
we can write

JS =
1

T

[
L21

(
− 1

T
∇µe

)
+ L22∇

(
1

T

)]
(18)

According to Ohm’s law, see Equation (7), it can be simplified into

JS =
L21

T eL11

J+
1

T
L22∇

(
1

T

)
(19)

We see here that the entropy flux contains two terms, one from electrochemical origin and the other from
thermal origin. The first term shows that a fraction of the entropy is transported by the flux of carriers.
Then the entropy transported per carrier (or per particle) is given by

SN =
L21

TL11

(20)

As one can see, the Seebeck coefficient is directly proportional to SN since we have

SN = e α (21)

It is important to note that the entropy per particle is a fundamental parameter from which all the
thermoelectric effects derive. Nevertheless, the reader should take care not to attribute a specific entropy
to each carrier. Since thermodynamics never considers an isolated particle but only a large number of
particles, the definition of the entropy per particle refers to an averaged property of the Fermion gas, as
a statistical definition. This is also valid for the SN = e α expression where the Seebeck effect cannot be
reduced to the direct summation of the individual contribution of the carriers. As an illustration one can
see that SN is a function of the electrical conductivity through the term L11. The conductive models, like
the Drude model, cannot be derived at the scale of a carrier with the attribution of a specific electrical
conductivity to each carrier.

2.6. Kinetic Coefficients and Transport Parameters

Using the entropy per carrier SN defined in the previous Section 2.5 we can get now a complete
correspondence between the kinetic coefficients and the transport parameters. We have

L11 L12 = L21 L22

T
e2
σT

T 2

e2
σTSN

T 3

e2
σTS

2
N + T 2κJ

and the Onsager expressions become

J = −σT

(
∇µe

e

)
+

σTSNT
2

e2
∇

(
1

T

)
(22)

JQ = −TσTSN

(
∇µe

e

)
+

(
T 3

e2
σTS

2
N + T 2κJ

)
∇
(
1

T

)
(23)



Entropy 2011, 13 1491

Finally, we distinguish between the thermal conductivity under zero electrochemical gradient and
under zero particle transport,

κE =
L22

T 2
, κJ =

1

T 2

(
L11L22 − L21L12

L11

)
(24)

leading to the equality
κE = Tα2σT + κJ (25)

Setting Equation (22) into Equation (23) and using the local expansions ∇( 1
T
) = − 1

T 2∇T and
E = −∇µ

e
, the “classical” expressions

J = σTE− σT α∇T and JQ = αT J− κJ ∇T

are reproduced, see also [95]. Then, it follows that E = α∇T + ρJ with electrical resistivity ρ = 1/σT .

2.7. The Dimensionless Figure of Merit z T

We have seen from the kinetic matrix [L] that the off-diagonal terms represent the coupling between
the heat flux and the electrical flux. The question now is how to optimize a given material to get an
efficient heat pump driven by an input electric current or an efficient thermoelectric generator driven by
a supplied heat flow. The procedure can be derived for both applications, but we propose here to consider
a thermogenerator application.

Let us first look at the optimization of the fluxes. Since a thermoelectric material is an energy
conversion device, the more heat flows into the material, the more electrical power may be produced.
In order to achieve this we expect a large thermal conductivity for the material. Unfortunately this will
also lead to a very small temperature difference and consequently a small electrical output voltage and
power. This configuration can be called the short-circuit configuration since the fluxes are maximized
and the potential differences minimized.

Now we consider the coupled processes from the potential point of view. In order to get a larger
voltage the material should exhibit a large temperature difference. Then the thermal conductivity of the
material should be as small as possible, leading to a very small heat flux and consequently, again, a
small electrical power output. This configuration can be called the open-circuit configuration since the
potential differences are maximized and the fluxes are minimized.

It is worth noting that both short-circuit and open-circuit configurations lead to a non-satisfactory
solution. Moreover they are in contradiction since the thermal conductivity is expected to be maximal in
the short-circuit configuration and minimal in the open-circuit one! This contradiction can be resolved
if we consider the expression of the thermal conductivities previously given by

κE = Tα2σT + κJ (26)

Since it is established under zero current, the κJ corresponds to the open-circuit configuration while
κE corresponds to the short-circuit configuration. From the previous derivations, see Equation (25), we
expect κE

κJ
to be maximal in order to get the maximal output electrical power. Then we can write

κE

κJ

=

[
α2σT

κJ

T + 1

]
(27)
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with the figure of merit z T defined by

z T =
α2σT

κJ

T (28)

In 1961 C. Zener defined a similar ratio of the thermal conductivities as a “thermoelectric coupling
factor”, see [112]:

f =
κE − κJ

κJ

(29)

which coincides with the figure of merit, see Equation (28). Another definition of the coupling factor is
the following ratio

f =
σT − σS

σS

(30)

where σS and σT are the electrical conductivities under conditions of zero entropy flux and zero
temperature gradient. As one can notice from Equation (27), the z T term should be maximal in order
to get an optimal material. The thermoelectric properties of the material are summarized in the z T

expression, firstly proposed by A. F. Ioffe [27]. z T gives a direct measurement of the quality of
the material for practical applications, and the figure of merit is clearly the central term for material
engineering research. At a first glance the presence of the temperature in the expression of the figure of
merit may be strange since T is not a material property, but an intensive parameter which partly defines
the working conditions. Nevertheless, one should notice that, in terms of thermodynamic optimization,
the material properties are nothing without considering the available exergy of the working system. This
is achieved by introducing the temperature in the expression of the figure of merit which gives a reference
to the exergy evaluation.

3. Heat & Entropy

Let us consider the coupled Onsager expressions:

J = −σT

(
∇µe

e

)
+

σTSNT
2

e2
∇
(
1

T

)
(31)

JQ = −TσTSN

(
∇µe

e

)
+

[
T 3

e2
σTS

2
N + T 2κJ

]
∇

(
1

T

)
(32)

We can combine both equations to get

JQ = TSNJ+ T 2κJ ∇
(
1

T

)
(33)

where we identify a conductive term, proportional to ∇
(
1
T

)
, and a “Peltier” term, proportional to J :

JQcond = T 2κJ ∇
(
1

T

)
(34)

JQpelt = TSN J (35)

This Peltier heat transported because of the thermoelectric effects results in the effect commonly
attributed to Peltier: the heat observed at an inhomogeneous junction due to the thermoelectric effects.
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3.1. Volumetric Heat Production

The volumetric heat production can be estimated from the total energy flux

JE = JQ +
µe

e
J

According to energy and particle conservation we have

∇·JE = 0 and ∇·J = 0 (36)

Then
∇·JQ = −∇µe

e
·J

Since the electrical field is E = −∇µe

e
, we find

∇·JQ = E ·J . (37)

This summarizes the possible transformation of the energy since it shows that heat can be produced
by the degradation of the electrochemical potential µe, and that electrical power can also be extracted
from heat.

3.2. Entropy Production Density

If we consider the entropy flux density, we can calculate the entropy production νS from

νS = ∇·JS = ∇
(
JQ

T

)
= ∇

(
1

T

)
·JQ +

1

T
∇·JQ

to get

νS = ∇
(
1

T

)
·JQ − ∇µe

eT
·J (38)

As shown above, the entropy production is due to non-isothermal heat transfer and electrical Joule
production. The previous expression can be rewritten in the form

νS = ∇
(
1

T

)
·JE +∇

(
−µe

T

)
·JN (39)

In this form, we get the illustration of one major result of the Onsager description: The total entropy
production is given by the summation of the force-flux products,

νS = ∇·JS = Σ
−−→
force · −−→flux (40)

This is a very general result of the Onsager theory. When deriving the entropy production according
to Onsager kinetic expressions, the constraint of minimal entropy production leads to a final expression
where the overall entropy production is directly given by the sum of the products of forces and the fluxes.
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4. Thermoelectric Generator, Cooler, and Heater

¿From the practical point of view, the thermoelectric materials can be used for three applications:

• Thermoelectric heater: TEH.

• Thermoelectric cooler: TEC.

• Thermoelectric generator: TEG.

In all these configurations, the p- and n-bars of thermoelectric materials are polarized by thermal
potential (temperature) or by the electrical potential. For TEH and TEC configuration, a voltage
difference is applied through the structure, leading to a control of the temperature difference. For a TEG
configuration a temperature difference is applied leading to the control of an external voltage difference.
All three configurations are summarized in Figure 3, where the thermal processes are written in grey and
the electrical processes in black.

Figure 3. TE applications (colour online).

We recognize the different potential differences:

• αn,p (Th − Tc) : Seebeck voltage,

• Th − Tc : temperature difference,

and also the different power terms:

• αn,p ToutI : Peltier heat flow.

• Kn,p∆T : conductive heat flow [113].

In order to simplify the derivation of the equations we restrict now the study to one “leg” of length L

and p-type material with positive Seebeck coefficient [114]. Then, the previous picture changes into the
Figure 4.
One can see that the TEG and TEC configurations appear to be very similar except that the imposed
potentials differ since temperature difference is imposed for TEG and voltage difference for TEC.
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Figure 4. Single-element devices.

At this point we would like to draw attention to the fact that there are different ways to model
the three TE applications within the framework of a one-dimensional model, see e.g., [65], p. 489,
and [115,116]. We recall here the results for the Constant Properties Model (CPM), see
e.g., [27,115–117]. The temperature profile is a parabolic one and results from the thermal energy
balance, see Section 5.4.; we have

T ′′(x) = −co ⇒ T (x) = −co
2
x2 + c1 x+ Ta (41)

with co =
J2

σTκJ

, c1 =
Ts − Ta

L
+

co
2
L

with boundary conditions of the first kind for a leg of length L (0 ≤ x ≤ L) and constant cross-sectional
area Ac: T (0) = Ta (temperature of the heat-absorbing side of the element, index a, which is the hot side
for TEG but the cold side for TEC), T (L) = Ts (temperature of the heat-sink side, index s, which is the
cold side for TEG but the hot side for TEC). The analytical solution is discussed in detail, e.g., in [115].

¿From Equation (41), we find the temperature gradients at both element sides(
dT

dx

)
x=0

=
Ts − Ta

L
+

co
2
L ,

(
dT

dx

)
x=L

=
Ts − Ta

L
− co

2
L (42)

Note that κJcoL represents the density of Joule heating because we have within the framework of
CPM: I2Rin/Ac = J2RinAc = J2L/σT = κJ co L with the isothermal (and internal) Ohmic resistance
Rin = L/(σTAc). Consequently, the appropriate conductive heat fluxes are

JQ(0)− αTa J = −κ
Ts − Ta

L
− J2 L

2σT

JQ(L)− αTsJ = −κ
Ts − Ta

L
+ J2 L

2σT

(43)

Obviously, the mean temperature gradient △T/L is overlaid by Joule heating which is symmetrically
distributed [118] over the length of the TE element.

Written with global values (I = J Ac, K = κJAc/L etc.), we find from Equation (43) for the thermal
power input Qa = AcJQ(0) at the absorbing side x = 0 (index a)

Qa = αTaI −
1

2
I2Rin −K(Ts − Ta) (44)
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For inhomogeneous TE devices Z = α2/(Rin K) is used to approximate the “device-Z”. The device-Z
is equal to the material’s figure of merit z for an ideal single-element device without parasitic losses
within the framework of the CPM, as well as within the symmetric CPM model where the n-leg and
p-leg have equal properties with opposite Seebeck.

Now we can derive the expressions for the three configurations within the framework of a global
description. It was introduced by Altenkirch [11] and often used in technological applications as
primarily considered by Ioffe [27] and Goldsmid [119]. For sake of simplification we use the load
ratio M = Rload/Rin for TEG. Then, as we will see, the expressions for the maximal power and maximal
efficiencies lead to different values of the M parameter in the following summary of formulae.

4.1. Thermoelectric Generator

We are using here Th = Ta, Tc = Ts and Qin = Qa, Qout = Qs, respectively.

• Incoming thermal power:

Qin = αTh I −
1

2
Rin I

2 +K (Th − Tc)

• Outgoing thermal power:

Qout = αTcI +
1

2
Rin I

2 +K (Th − Tc)

• Electrical power produced:

Ppro = Qin −Qout = α I (Th − Tc)−Rin I
2

• Open voltage:
V0 = α (Th − Tc)

Considering a resistor of resistance Rload connected to the TEG, we now define the load ratio
M = Rload/Rin. Then we get the expressions of the output voltage and current

Vout = V0
Rload

Rin +Rload
= V0

M

1 +M
(45)

Iout =
V0

Rin +Rload
=

V0

Rin(1 +M)
(46)

and

Ppro =
V 2
0

Rin

M

(M + 1)2
(47)

Then the efficiency can be expressed in a compact form,

• Efficiency:

η =
Ppro

Qin

=
∆T

Th

M

M + 1 + (M+1)2

ZTh
− 1

2
∆T
Th

with
1

Z
=

KRin

α2
(48)

As we can notice the efficiency is the product of the reversible Carnot efficiency ηC = ∆T
Th

= Th−Tc
Th

with the irreversible factor M/
(
M+1+

(M+1)2

ZTh
− 1

2
∆T
Th

)
.
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• Maximal efficiency:
¿From the derivation ∂η

∂M
= 0, we get after a few algebra steps

ηmax = ηc
Mη − 1

Mη +
Tc
Th

(49)

with Mη =
√
1 + Z Tm where Tm = (Th + Tc)/2.

• Maximal electrical power output:

∂Ppro

∂I
= 0 = α (Th − Tc)− 2RinI

Imax
P =

α (Th − Tc)

2Rin
=

V0

2Rin

The last equation tells us that the maximal power output is obtained when the electrical load
resistance Rload is equal to the internal resistance of the TEG. Then the maximal output power is
obtained for MP = M = 1. The maximal power expression reduces to

Pmax
pro =

α2∆T 2

4Rin
(50)

One can notice that the condition for maximal efficiency (Mη =
√
1 + Z Tm) and maximal output

power (MP = 1) are different. This means that given a fabricated TE device where the geometric
lengths and areas are fixed, more power will be produced if additional heat is supplied and higher
current drawn than in the maximum efficiency configuration. However, when designing an optimal
device for a particular application, the optimum design will have the geometry and current for
maximum efficiency because this will provide more power with the same designed heat input.

4.2. Thermoelectric Cooler

We are using here Tc = Ta, Th = Ts and Qin = Qa, Qout = Qs, respectively.

• Incoming thermal power:

Qc = αTc I −
1

2
Rin I

2 −K (Th − Tc) (51)

• Outgoing thermal power:

Qrej = αTh I +
1

2
Rin I

2 −K (Th − Tc) (52)

• Consumed electrical power:

Prec = Qrej −Qc = α (Th − Tc) I +Rin I
2

• Maximal cooling power:

IQmax
c

=
αTc

Rin
(53)
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Qmax
c =

1

2

α2T 2
c

Rin
−K (Th − Tc) = K

(
1

2
T 2

c Z − (Th − Tc)

)
(54)

One can notice that the maximal cooling power is directly driven by the figure of merit of the
material and of the device, respectively.

• Coefficient of performance φc [120]:

φc =
Qc

Prec
=

αTc I − 1
2
Rin I

2 −K (Th − Tc)

α (Th − Tc) I +Rin I2
(55)

• Maximal φc :

∂φc

∂V0

= 0 with V0 = α(Th − Tc) gives:

φmax
c =

Tc

(Th − Tc)

√
1 + ZTm − Th

Tc√
1 + ZTm + 1

(56)

V0 is open voltage, a specific value of V . The Carnot factor φCar =
Tc

(Th−Tc)
is the reversible term of

φmax
c . The second term contains the irreversible contributions,

(√
1+ZTm−

Th
Tc

)
/(

√
1+Z Tm+1)

It should be noticed that Equation (56) is similar to the expression obtained for the
TEG configuration, see Equation (49). Both formulae are well-known and often written
as [27,119,121,122]

ηmax =
Th − Tc

Th

√
1 + ZTm − 1√

1 + ZTm + Tc/Th
(57)

and

1

φmax
c

=
Th − Tc

Tc

√
1 + ZTm + 1√

1 + ZTm − Th/Tc
(58)

making a convenient definition of the device figure of merit Z T (the exact value of which will
depend on which equation is used and the temperature range). Moreover, maximum efficiency or
φ are only obtained under specific working conditions, and practical applications usually do not
exactly fulfill these conditions!

• Maximum cooling
The maximum temperature difference is achieved for Qmax

c = 0 and hence for φc = 0. In this case
we get from Equation (54)

∆Tmax = (Th − Tc)max =
1

2
Z T 2

c (59)

4.3. Thermoelectric Heater

• Incoming thermal power:

Qw = αTh I +
1

2
Rin I

2 −K (Th − Tc) (60)
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• Outgoing thermal power:

Qrej = αTc I −
1

2
Rin I

2 −K (Th − Tc) (61)

• Consumed electrical power:

Prec = Qw −Qrej = α (Th − Tc) I +Rin I
2 (62)

• Coefficient of performance:

φw =
Qw

Prec
=

αTh I +
1
2
Rin I

2 −K (Th − Tc)

α(Th − Tc) I +Rin I2
(63)

• Maximal φw :

φmax
w =

Th

(Th − Tc)

(
1− 2

√
1 + ZTm − 1

ZTh

)
(64)

The Carnot factor for φ is here φCar =
Th

(Th−Tc)
, whereas the irreversible contribution is given by the

second term.

5. The General Conductivity Matrix

As we have seen from Ohm’s law and Fourier’s law, the kinetic coefficients can be written in the form
of conductances and it is tempting to express the force-flux previous expressions in the form of a general
conductance matrix. Such a description has been derived in a very general way by Callen and Greene in
1952 [110,123]. The complete derivation is out of the scope of this presentation and we only consider
here the basic derivation of a general conductivity matrix.

5.1. Derivation of the Conductivity Matrix

Starting from Equation (4) and using the kinetic coefficients listed in Section 2.6 we have[
JN

JQ

]
=

[
T
e2
σT

T 2

e2
σTSN

T 2

e2
σTSN T 2κE

][
− 1

T
∇(µe)

∇( 1
T
)

]

We know that the electrical field and the electrical current flux are given by

E = −∇µe

e
and J = eJN

If we consider the local expansion ∇
(
1
T

)
= − 1

T 2∇T , we finally get[
J

JQ

]
=

[
σT ασT

TασT κE

][
E

−∇T

]
The electrical and heat fluxes can be described now through the general conductivity matrix

[σ] =

[
σT ασT

TασT κE

]
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Notice that the Seebeck coefficient α appears as the coupling term between the electrical and thermal

processes. In a material with α = 0 the conductivity matrix reduces to a diagonal form

[
σT 0

0 κE

]
where Ohm’s law and Fourier’s law are then decoupled. In other words the Seebeck coefficient, or
more precisely the entropy per carrier, is the “tuning parameter” of the coupling between charge and
heat transport. Notice that these elementary considerations may open the door for a description of
non-homogeneous TE material as a serial-parallel network of local homogeneous elements, and for the
optimization of Functionally Graded Material (FGM) using the transport matrix. First results have been
published in [124].

5.2. The Peltier-Thomson Coefficient

In the previous paragraphs we have considered the volumetric heat transformation from the
calculation of the divergence of the heat flux ∇·JQ. We propose now to analyze its different terms.
First, by elimination of the electric field E from the previous set of equations we get

JQ = αTJ− κJ∇T (65)

and the divergence of the heat flux becomes

∇·JQ = ∇· (αTJ− κJ∇T )

= TJ ·∇α+ α∇T ·J+ αT ∇·J+∇· (−κJ∇T ) (66)

where we find four terms which can be identified:

• αT∇·J : equals zero due to particle conservation,

• TJ ·∇α : “Peltier-Thomson” term,

• J ·α∇T = J ·
(
E− 1

σT
J
)
= J ·E− J2

σT
: electrical work production and dissipation,

• ∇ · (−κJ∇T ): change in thermal conduction due to heat produced or absorbed.

To sum up, the sources of the heat flux are

∇·JQ = T J ·∇α+ J ·E− J2

σT

−∇ · (κJ∇T ) (67)

Most of these terms are common, but less intuitive is the Peltier–Thomson term which is
now considered.

5.3. The Peltier–Thomson Term

We will show now that the TJ ·∇α term contains both the Thomson contribution (local temperature
gradient effect), and the Peltier contribution (isothermal spatial gradient effect). Using the equivalence
Π = αT we have

TJ ·∇α = TJ ·∇
(
Π

T

)
= TJ ·

(
1

T
∇Π− 1

T 2
Π∇T

)
= J · (∇Π− α∇T ) (68)
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Then, the traditional separation of the Peltier and Thomson contribution is artificial since they both
refer to the same physics of the gradient of the entropy per particle, the temperature driven gradient or
the spatially driven gradient. The isothermal configuration leads to the Peltier expression meanwhile a
spatial gradient gives the Thomson result:

• Pure Peltier, isothermal junction between two materials:

J · (∇Π− α∇T ) = J · (∇Π)

• Thomson, homogeneous material under temperature gradient:

J · (∇Π− α∇T ) = J ·
(
dΠ

dT
− α

)
∇T = τ J ·∇T (69)

with
∇Π =

dΠ

dT
∇T and τ =

dΠ

dT
− α (70)

and the heat flux divergence takes the form

∇·JQ = τ J ·∇T + J ·E− J2

σT

−∇ · (κJ∇T ) (71)

If we consider a configuration κ=const, then Equation (71) reduces to

∇·JQ = τ J ·∇T + J ·E− J2

σT

− κJ∇2T (72)

As one can notice, the Peltier and Thomson both refers to the gradient ∇α. It is worth noticing that
the isothermal configuration for the Peltier expression, and the temperature gradient configuration for
the Thomson effect, correspond to specific chosen conditions. With another set of conditions, one can
obtain other definitions. For example, due to the position-dependent Seebeck coefficient, Peltier heat can
be considered to be absorbed or released inside the active material. It is then referred to as the distributed
Peltier effect or the extrinsic Thomson effect [125–127].

5.4. Local Energy Balance

Using the expression ∇·JQ = E ·J, see Equation (37), the local energy balance can be expressed
from Equation (72) [128]:

∇·JQ − E ·J = κT∇2T +
J2

σT

− τ J ·∇T = 0 (73)

It should be noticed that this derivation does not need any assumption concerning the behavior of
the system, in equilibrium or not. In the transient configuration the energy balance equation should be
corrected using ρm Cp where Cp is the heat capacity and ρm the volumetric mass:

ρm Cp
∂T

∂t
+∇·JQ = E ·J −→ κJ∇2T +

J2

σT

− τ J ·∇T = ρm Cp
∂T

∂t
(74)

In this form, the local energy balance has the general form of a continuity Equation [117].
One-dimensional models are often used, see, e.g., [65,115,116]. Even in one dimension, the addition
of time dependence can induce additional effects. For example, the spatial separation of Peltier cooling
from Joule heating enables additional transient cooling when a cooler is pulsed [129]. The reader may
find some more information and insights about transient effects in thermoelectrics in [87,88,130–142].
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6. Relative Current and Thermoelectric Potential

Until now we have not really taken into account the working conditions of the TE system. Like any
working engine, a thermoelectric device should be correctly driven in order to provide work in the best
conditions. Then a precise control of the applied thermodynamic potentials (or fluxes) is needed in order
to get a correct use of the potentialities of the thermoelectric material. Since the thermoelectric process
implies the coupling of the heat and electrical fluxes, these two fluxes should both be driven optimally.
This important question has been addressed by J. Snyder and co-workers in 2002 and 2003. They derived
two main parameters: the relative current and the thermoelectric potential [143,144].

6.1. Relative Current and Thermoelectric Potential

The relative current density is defined by the ratio of electrical current density J to the purely
conductive fraction of the heat flux with respect to the flow direction of J = J n

u = − J ·n
κJ ∇T ·n

or 1/u = −κJ ∇T ·J
J ·J

(75)

¿From Equation (65) the heat flow becomes

JQ = αT J+
J

u
= ΦJ , Φ =

(
αT +

1

u

)
(76)

where Φ is the “thermoelectric potential”.
The heat and carrier fluxes are now directly connected by the thermoelectric potential, whereby

we generally assume here parallelity of electrical current and heat flow [145]. This expression is
fundamental since it allows us to derive the principle results of the thermodynamics of thermoelectricity
directly from it. According to the previous definitions, the volumetric heat production νq becomes (with
∇·J = 0)

νq = ∇·JQ = ∇· (ΦJ) = ∇Φ ·J = J ·∇
(
Tα +

1

u

)
(77)

Note that ∇·JQ = J ·E, see Equation (37), and E = −∇µe

e
, see Equation (6). Then, we find

E = ∇Φ = −∇µe/e =⇒ µe = −e(Φ− Φ0) (78)

which means that the electric field E can be calculated on a phenomenological level from the gradient
of the TE potential Φ, or alternatively, by the negative gradient −∇µe/e when referring to a TE system by
taking into account its solid-state physics nature. For details we recommend the reading of Domenicali’s
review [24].

Since the heat production term J ·∇
(
1
u

)
directly reduces the efficiency, it becomes evident that the

maximum efficiency coincides with the minimization of ∇
(
1
u

)
. This is obtained for a specific value of

uopt = s, where s is called the “compatibility factor” (see next section).
Considering the entropy flux we get JS = 1

T

(
αT + 1

u

)
J = Φ

T
J, and the expression of the volumetric

entropy production becomes

νS = ∇·JS = J ·∇
(
Φ

T

)
=

νq
T

+ JQ ·∇
(
1

T

)
(79)
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This expression is in agreement with the Onsager formulation of the entropy production as the
summation of the flux-force products, see Equation (39), which here reduces to a single product since
Φ is a compact expression of the thermodynamic potentials. For a given material the thermoelectric
potential gives a direct measurement of the total volumetric heat and entropy production by the respective
degradation of Φ and Φ

T
.

6.2. Thermoelectric Potential and Local Reduced Efficiency for a Thermogenerator

As an example, let us calculate the local efficiency of a thermogenerator (TEG) [146] which is defined
as the ratio of the products of conjugated forces and fluxes [144]. In this context it should be noticed
that the power output in a volume dV is given by the dot product πel = j ·E, also denoted as differential
electrical power, and that the net differential power output [147] is given by −πel, see also [148]. Using
Equations (37) and (1) we get E ·J = ∇·JQ = T νS + JS ·∇T which leads to the expression of the
reduced efficiency

ηr =
E ·J

JS ·∇T
=

πel

πel − TνS
=

1

1− TνS
πel

=
1

1 + Tνs
|πel|

(80)

Thus, the efficiency is expressed in terms of the ratio of entropy production to the net power output
density. This is consistent with Clingman’s results using thermodynamic arguments, see [49,50]. In an
irreversible configuration the TνS term tends to reduce the efficiency. In the ideal case of a reversible
process the entropy production is zero, then the work production E ·J = ∇·JQ = T ∇·JS + JS ·∇T

reduces to E ·J = JS ·∇T and the reduced efficiency is ηr = 1, which means that the Carnot efficiency
is reached. It should be noticed, however, that even today’s best available TE materials do not reach
20 % of the Carnot efficiency.

Let us now consider the introduction of the thermoelectric potential Φ into the calculation of the
reduced efficiency, which can be written as

ηr =
E ·J

JS ·∇T
=

∇·JQ

JQ

T
·∇T

=
T

Φ

∇Φ ·J
∇T ·J

(81)

and which corresponds to the relative variation of the thermodynamic potential ∇Φ
Φ

when changing
the “thermic” potential ∇T

T
. This is coherent with a general definition of the efficiency of an

out-of-equilibrium thermodynamic process as a coupled fluctuating system [101].
Further, we can rewrite the relative current with J = σTE− σTα∇T and E = ∇Φ [146]

u = − J ·J
κJ ∇T ·J

= −σT (E− α∇T ) ·J
κJ ∇T ·J

= − z

α2

∇Φ ·J
∇T ·J

+
z

α
(82)

Introducing the expression of the reduced efficiency, see Equation (81), we finally get with Φ given
by Equation (76)

u =
z

α

[
−
(
1 +

1

αT u

)
ηr + 1

]
(83)

Solving for ηr, the reduced efficiency of a TEG leg becomes [144]

ηr =
uα
z

(
1− uα

z

)(
uα
z
+ 1

z T

) =
1− α

z(Φ−Tα)

1 + z(Φ−Tα)
z Tα

(84)
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This classical expression of the reduced efficiency presents a maximum for the compatibility factor
uopt = s =

√
1+zT−1
αT

. In that case the optimal reduced efficiency becomes

ηr,opt =

√
1 + zT − 1√
1 + zT + 1

=

(
2
Φopt

αT
− 1

)−1

(85)

where the equivalent optimal potential is

Φopt =

[
Tα +

1

s

]
= Tα

[ √
1 + zT√

1 + zT − 1

]
(86)

Since the maximum reduced efficiency coincides with minimal entropy production, we conclude that
the optimal value of thermoelectric potential, Φopt, defines the best working conditions for the system.
Therefore it is obvious that an optimal value Φopt is correlated to an optimal ratio between heat flux and
electrical flux given by uopt = s. To show this we plot the expression ηr = f(Φ

T
) for various z T values,

see Figure 5. One can notice that this Φ dependence becomes sharper as z T values increase. This is in
agreement with the assumption that the proximity to reversibility implies a drastic control of the working
contributions. This is obtained by a direct control of Φ = Φopt. As a consequence, it becomes possible to
control the maximum reduced efficiency by keeping Φ near its optimal value Φ = Φopt. This approach
extends the compatibility approach by adding a thermodynamic feedback by a direct measurement of
the local entropy production ∇·JS . The expression of the irreversibility factor gives an insight into the
sensitivity of the thermoelectric system to varying working conditions. It shows that for large z T this
sensitivity becomes very high and strong reduction of the efficiency can rapidly occur.

Let us reconsider Φ as a tuning parameter of the working conditions of the thermodynamic system.
We have two remarks. First, one can see that Φ contains, in a compact form, the values of the two
intensive parameters of the system, temperature and electrochemical potential, which constitute the
working conditions of the system. From the tuning of these two parameters the working conditions
of the system can be optimized or not. Second, we consider processes where energy is exchanged in
finite time [149]. As we know from finite time thermodynamics, the exchange of power cannot be
achieved without an increase in entropy, without violation of potential continuity. As an illustration, the
presence of thermal exchangers is needed to ensure the temperature continuity from the heat reservoir to
the system. In other words, producing or exchanging power implies rejecting a certain amount of heat.
In that way this optimal tuning of the potentials gives the minimal necessary heat rejection in order to
get the best working conditions for the system.

6.3. Compatibility Approach

The importance of the compatibility approach has been demonstrated first for a segmented
thermoelectric generator [67,143,144]. Snyder pointed out that, if the compatibility factors in segmented
devices with given material differ by a factor of two or more, the maximum efficiency of a TEG is
reduced (the device-Z T can in fact decrease rather than increase by segmentation even if the average
z T is increased). Compatibility is thus of essential importance for a rational material selection in
segmented devices.
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Figure 5. Reduced efficiency ηr = f( Φ
αT

) for TEG (irreversible factor).

Doubtless, the compatibility approach is an alternative to Ioffe’s global description which is very often
used for technological applications, but is certainly not suitable for locally characterizing TE processes
or even for local optimization purposes.

The advantage of using the relative current density is that the multidimensional TE problem can be
reduced to a one-dimensional heat flow problem formulated in u(T ) where the governing equation can
be evaluated from the thermal energy balance [144]

d

dT

(
1

u

)
= −T

dα

dT
− uρκ or, alternatively u′(T ) = τ u2 + ρκ u3 (87)

with the Thomson coefficient τ(T ) = T dα/dT . An analytical solution exists for constant material
properties [116,144]. Basically, Equation (87) describes a homogeneous TE element with temperature
dependent material properties, whereby (87) holds for both cases “pump up” (T ′(x) > 0) and “pump
down” (T ′(x) < 0) [150]. Further note that TEG and TEC cases are only distinguished by the sign
of u(T ) if the same (temperature dependent) material properties, the same current density, but reversed
boundary temperatures Ta and Ts are applied (Ta > Ts for TEG, but Ta < Ts as usual for TEC).

The compatibility approach has been further developed in the successive works [116,151–153] and
applied also to the Peltier cooler on the basis of a one-dimensional, steady-state and unifying model for
TEG and TEC. It has been shown that a reduced coefficient of performance φr can also be derived for
TEC [154]. Following [67], Section 9.2.2. and [116] we can conclude that the local performance of an
infinitesimal segment of length dx with dT = T ′(x)dx is given by

ηloc =
dT

T
ηr and φloc =

T

dT
φr (88)

where dT/T is the infinitesimal Carnot cycle factor for TEG and T/dT for TEC.
For directly comparing TEG and TEC, we find formally φr = 1/ηr as a consequence of the underlying

TE effects which are inverse to each other [116]. Because the Carnot cycle is a reversible process, the
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reduced “efficiencies” ηr, φr play the role of an irreversibility factor which at least measures the distance
to reversibility for both TEG and TEC due to a non perfect TE engine. Thus z T is a measure of how close
to reversibility the system can come locally; while the compatibility factor defines the working conditions
required to achieve the degree of reversibility allowable by the z T . The total efficiency η and the total
coefficient of performance φ is obtained by summing up all local contributions all over the thermoelectric
element in an integral sense. The integrals for η and φ are with respect to temperature [153]:

ln(1− η) =

∫ Ts

Ta

K [u(T ), T ] dT for TEG : Ts ≤ T ≤ Ta (89)

ln

(
1 +

1

φ

)
=

∫ Ts

Ta

K [u(T ), T ] dT for TEC : Ta ≤ T ≤ Ts (90)

where we have one kernel K [u(T ), T ] for integrals of both generator and cooler elements

K(u, T ) =
1

T
ηr(u, T ) =

1

T

1

φr(u, T )
=

1

T

uα
z
(1− uα

z
)

uα
z
+ 1

zT

=
α

z

(z − uα)

(u−1 + αT )
(91)

Note that u(T ) is different for TEG and TEC. Alternatively, the integral kernel K can be formulated
with the TE potential Φ, see Equation (84). For this case, Snyder [67,144] has shown that η is simply
given by the relative change of the thermoelectric potential; an analogous relation can be found for the
coefficient of performance (see [116])

η = 1− Φ(Ts)

Φ(Ta)
, φ =

(
Φ(Ts)

Φ(Ta)
− 1

)−1

(92)

This result points to the importance of the TE potential as a function of state: an optimized
thermoelectric potential Φopt is correlated with a minimal entropy production which in turn leads to
an optimal ratio between heat flux and electrical flux and thus a maximum performance value given by
uopt = s. Such TE elements are called self-compatible elements. Depending on the working conditions,
the relation Φ(Ts)/Φ(Ta) > Ts/Ta can be considered as a measure of how far TE elements operate from
reversibility, for more information see [155].

The necessary condition for an extreme value leads to different compatibility factors for maximum
efficiency of a TEG and maximum φ of a TEC; the reduced “efficiencies” ηr and φr present local extrema
(maxima) for uopt =

√
1+zT−1
αT

for a TEG, but uopt =
−
√
1+zT−1
αT

for a TEC [143,144]. Due to the definition
of u, the compatibility factor for maximum φ of a TEC must be negative [156]. The optimal reduced
efficiency for TEG and optimal reduced φ for TEC is ηr,opt = φr,opt =

√
1+zT−1√
1+zT+1

for both TEG and TEC,
and the integrals for “fully” self-compatible performance ηsc and φsc are given by

ln(1− ηsc) =

∫ Ts

Ta

ηr,opt

T
dT =

∫ Ts

Ta

1

T

√
1 + zT − 1√
1 + zT + 1

dT (93)

ln

(
1 +

1

φsc

)
=

∫ Ts

Ta

1

Tφr,opt
dT =

∫ Ts

Ta

1

T

√
1 + zT + 1√
1 + zT − 1

dT (94)

which is equivalent to Sherman’s notation [47,157]

ηsc = 1− exp

(
−
∫ Ta

Ts

1

T

√
1 + zT − 1√
1 + zT + 1

dT

)
, (95)

φsc =

[
exp

(∫ Ts

Ta

1

T

√
1 + zT + 1√
1 + zT − 1

dT

)
− 1

]−1

(96)
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We expressly emphasize that the integrals (95) and (96) do not have extremal properties concerning
the z T value. Analytical expressions of these integrals can be found for z =const. as well as for
z T = const. For integral approximations, more theoretical background and historical notes we refer to
[153,155].

7. Optimum Device Design and FGM

The ultimate objectives in TE research are to increase the performance and to reduce the cost of TE
devices. Along with continuing to improve the material’s figure of merit, the optimum design of TE
systems is of particular importance. Whenever efficiency η or coefficient of performance φ is in focus,
an irreversible thermodynamic analysis of the system is useful; already Clingman [49,50] set out to use
entropy production to derive the optimum device design. This paper has presented a similar but improved
approach. The novelty is to use the compatibility approach together with thermodynamic arguments,
whereby the introduction of the TE potential opens up new opportunities for optimizing the performance
of TE devices. Since this operation is equivalent to the adaptation of the thermal and electric impedance
of the device, such a strategy also includes classical design parameters like the ratio of the length of an
active TE element to its cross-sectional area [158–164]. Naturally, the concept of Functionally Graded
Materials (FGM) [165–170] is an efficient way to achieve this impedance adaptation, and to further
contribute to a gradual improvement of device performance. A central target of theoretical FGM studies
is to elaborate recipes for optimum design of TE elements concerning the material [152,170,171], i.e., to
identify optimal profiles of the material coefficients α, σT , and κJ . Ideally, it would be best to have a
local criterion for optimizing global performance; currently local criteria are known for the efficiency
of a thermogenerator and the coefficient of performance of a Peltier cooler [144,153]. However, global
optimization requires constraints for the range of temperature dependent materials properties in available
materials. In order to prevent global performance divergences in the optimization process, limits of the
material properties have to be included in the process, be these upper limits for Seebeck α(T ) and
electric conductivity σT (T ) and a lower limit for the thermal conductivity κJ(T ), or averages of the
TE properties, of the power factor, or of the efficiency. Further results on material optimization will be
presented in the chapter 4 of the first volume of the new CRC Handbook [169].

8. Conclusions

Using the Onsager–de Groot–Callen model we derive the complete expressions for the heat flux
and electrical current density in a thermoelectric material. In particular, it is shown that the traditional
Peltier and Thomson contributions can be expressed in a unique and compact form, only differing in the
boundary conditions. Practical design expressions of thermogenerators and thermoelectric coolers and
heaters can then be simply derived. Using the relative current density and the thermoelectric potential
we reconsider the question of the optimal efficiency of a thermogenerator. It is shown that the best
thermodynamic working conditions are obtained when the relative current density is equal to a specific
value which directly depends on the material properties. This strongly influences the design of the
thermoelectric devices since the thermoelectric materials should work under specific thermodynamic
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conditions in terms of temperature and electrochemical potential differences. In particular, these working
conditions can be considered and optimized using FGM.
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