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Abstract: The present paper is concerned with the analysis of inherent irreversibility in 
hydromagnetic boundary layer flow of variable viscosity fluid over a semi-infinite flat 
plate under the influence of thermal radiation and Newtonian heating. Using local 
similarity solution technique and shooting quadrature, the velocity and temperature profiles 
are obtained numerically and utilized to compute the entropy generation number. The 
effects of magnetic field parameter, Brinkmann number, the Prandtl number, variable 
viscosity parameter, radiation parameter and local Biot number on the fluid velocity 
profiles, temperature profiles, local skin friction and local Nusselt number are presented. 
The influences of the same parameters and the dimensionless group parameter on the 
entropy generation rate in the flow regime and Bejan number are calculated, depicted 
graphically and discussed quantitatively. It is observed that the peak of entropy generation 
rate is attained within the boundary layer region and plate surface act as a strong source of 
entropy generation and heat transfer irreversibility. 

Keywords: flat plate; variable viscosity; Newtonian heating; Thermal radiation; magnetic 
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1. Introduction  

Theoretical study of thermodynamic irreversibility in hydromagnetic boundary layer flow in the 
presence of thermal radiation appears to be increasingly important due to its various applications in 
engineering and industries [1,2] such as in the design of cooling systems for electronic devices, in the 
field of solar energy collection, geothermal reservoirs, heat exchangers, thermal insulation, enhanced 
oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors, etc. Moreover, many 
engineering processes occur at high temperature and acknowledge radiation heat transfer become very 
important for the design of pertinent equipment [3–5]. Nuclear power plants, gas turbines and the 
various propulsion devices for air craft, missiles, satellites and space vehicles are other example of 
such applications. Several excellent studies on hydromagnetic boundary layer flows with thermal 
radiation have been communicated [6–8]. These forgoing research works have covered a wide range of 
problems involving the hydromagnetic boundary layer flow and heat transfer phenomenon; they have 
been restricted, from thermodynamic point of view, to only the first law analysis. The contemporary 
trend in the field of fluid flow, heat transfer and thermal design is the second law of thermodynamics 
analysis and its related concept of entropy generation minimization [9]. Entropy generation is closely 
associated with thermodynamic irreversibility, which is encountered in all heat transfer processes [10]. 
Different sources are responsible for entropy generation like heat transfer along a temperature 
gradient, fluid friction, magnetic field effect, thermal radiation effect, etc. The analysis of 
thermodynamic irreversibility enables us to identify the irreversibility associated with various 
components and to avoid loss of available energy. Such information can be employed to design 
thermal systems, guide efforts to reduce sources of irreversibility, estimate the cost of engineering 
systems and optimize complex systems. In a pioneering work, Bejan [11,12] introduced the theoretical 
concept of entropy generation minimization based on the second-law analysis into heat transfer and 
thermal design problems. Thereafter, several works on entropy generation minimisation have appeared 
in the literature [13–15]. Makinde and Aziz [16] gave an analytical and numerical analysis of the 
second law for a variable viscosity plane Poiseuille flow with asymmetric convective heat transfer. 
The study of entropy generation in a falling variable viscosity liquid film along an inclined heated 
plate with convective cooling was carried out by Makinde [17]. Mahmud et al. [18] studied the effect of a 
magnetic field on the entropy generation in a mixed convection channel flow. Makinde and Beg [19] 
applied the second law analysis to the problem of inherent irreversibility in a reactive hydromagnetic 
channel flow. The double-diffusive (natural) convection in vertical annuluses with opposing 
temperature and concentration gradients was report by Chen et al. [20]. They proposed that lattice 
Boltzmann-based numerical method is an effective alternative to traditional CFD for evaluating the 
irreversibility due to viscosity with a more straightforward way. Chen and his co-workers [21–24] 
made use of this important numerical approach to investigate the entropy generation rate in several 
flow related problems, such as impinging flow confined by planar opposing jets, natural convection in 
a rectangle cavity, premixed hydrogen-air combustion, etc.  

In this paper, our main focus is on the entropy generation characteristics for hydromagnetic 
boundary layer flow under the influence of thermal radiation and Newtonian heating at the plate 
surface. This study extends the work of Aziz [25] to include the combined effects of magnetic field, 
viscous dissipation, radiative heat transfer and entropy generation analysis. Pertinent results on the 
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effects of various embedded parameters controlling the system are presented in tabular and graphical 
forms and discussed quantitatively.  

2. Mathematical Model  

The steady two-dimensional hydromagnetic boundary layer flow with heat transfer over a flat plate 
in a stream of variable viscosity electrically conducting fluid at temperature T� in the presence of 
magnetic field and thermal radiation is considered. It is assumed that the lower surface of the plate is 
heated by convection from a hot fluid at temperature Tf which provides a heat transfer coefficient hf. 
The fluid on the upper side of the plate is then subjected to Newtonian heating and its property 
variations due to temperature are limited to viscosity. A uniform transverse magnetic field B0 is 
imposed along the y-axis as shown in Figure 1. Both the induced magnetic field due to the motion of 
the electrically-conducting fluid and the electric field due to the polarization of charges are assumed to  
be negligible.  

Figure 1. Flow configuration and coordinate system. 

                                                   y                         U∞     T∞ (free stream) 

                                                                                 v   B0  (Magnetic field)  

                                                                                            u  (Cold Fluid) 

                                                             u = 0, v = 0, T = Tf    (Hot Fluid)             x 

Under the usual boundary layer approximations, the flow is governed by the following  
Equations [6–8,19]: 
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where U� is the free stream velocity, cp is the specific heat at constant pressure, � is the thermal 
diffusivity, � is the fluid density, � is the fluid electrical conductivity. The fluid dynamical viscosity μ 
is assumed to be an inverse linear function of temperature, Lai and Kulacki [26], as given by: 
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where ∞μ is cold fluid viscosity and � is a constant. Using the Rosseland approximation [3] for 
radiation, the radiative heat flux is simplified as: 

y
T

k
qr ∂

∂−=
4

*

*

3
4σ       (5) 

where *σ  is the Stephan-Boltzmann constant and k* is the mass absorption coefficient. The 
temperature differences within the flow are assumed to be sufficiently small so that T4 may be 
expressed as a linear function of temperature T using a truncated Taylor series about the free stream 
temperature ∞T  i.e., 

.34 434
∞∞ −≈ TTTT       (6) 

The boundary conditions at the plate surface and far into the free stream may be written as: 

0)0,( =xu , v(x,0)=0, )]0,([)0,( xTThx
y
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u(x, �) = U�, T(x, �) = T�      (7) 

where k is the thermal conductivity coefficient. The stream function �, satisfies the continuity  
Equation (1) automatically with: 
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u
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∂
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A similarity solution of Equations (1)–(8) is obtained by defining an independent variable � and a 
dependent variable f in terms of the stream function ψ as: 

,),(  ,
ρ

μυηυψ
υ

η ∞
∞

∞ === fxU
x

Uy  
∞

∞

−
−

=
TT
TT

f

)(ηθ     (9) 

After introducing Equation (9) into Equations (1)–(8), we obtain:  
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where )43/(3 += RaRaβ  and � = 1 corresponds to the absence of thermal radiation influence. The 
prime symbol represents the derivative with respect to � and: 
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μ  (the Brinkmann number), 
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υ=Pr  (the Prandtl number), 

)( ∞−= TTa fγ  (viscosity variation parameter), 
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(thermal radiation parameter). 

It is noteworthy that the local parameters Ha and Bi in Equations (10)–(13) are functions of x. In 
order to have a similarity solution, all the parameters must be constant and we therefore  
assume [6,7,18]: 

1
2 1,   fh cx lxσ− −= =       (14) 

where c, and l are constants.  

2.1. Numerical Procedure 

The set of Equations (10) and (11) under the boundary conditions (12) have been solved 
numerically by applying the Nachtsheim and Swigert [27] shooting iteration technique together  
with Runge-Kutta sixth-order integration scheme. Let 1xf = , 2' xf = , 3'' xf = , 4x=θ , 5x=′θ , 
Equations (10) and (11) are transformed into a system of first order differential equations as follows: 
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subject to the following initial conditions: 

0)0(1 =x , 0)0(2 =x , 13 )0( sx = , 24 )0( sx = , )1()0( 25 −= sBix    (16) 

The unspecified initial conditions 1s and 2s are assumed and Equation (15) is then integrated 
numerically as an initial valued problem to a given terminal point. Improvement is made on the values 
of assumed missing initial conditions by iteratively comparing the calculated value of the dependent 
variable at the terminal point with its given value there. The computations were done by a written 
program which uses a symbolic and computational computer language MAPLE. A step size of  

ηΔ  = 0.001 was selected to be satisfactory for a convergence criterion of 10�7 in nearly all cases. 
From the process of numerical computation, the plate surface temperature, the local skin-friction 
coefficient and the local Nusselt number which are respectively proportional to �(0), )0(f ′′  
and )0(θ ′− , are also worked out and their numerical values are presented in a tabular form. 
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3. Entropy Generation Analysis 

The hydromagnetic boundary layer flow past a flat surface under the influence of thermal radiation 
and Newtonian heating is inherently irreversible. This is due to the exchange of energy and 
momentum, within the fluid and solid boundaries leading to continuous entropy generation [9–12]. 
Two major of entropy production can be identified. One part is due to the combined effects of heat 
transfer and thermal radiation in the direction of finite temperature gradients while the other arises due 
to the combined effects of fluid friction and Joule heating. Following Woods [1], the local volumetric 
rate of entropy generation in the presence of a magnetic field is given by: 
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The first term in Equation (17) is the irreversibility due to heat transfer, the second term is the 
entropy generation due to viscous dissipation and the third term is the local entropy generation due to 
the effect of the magnetic field. Using Equation (9), we express the entropy generation number in 
dimensionless form as: 
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where ff TTT /)( ∞−=Ω  is the temperature difference parameter and Re = U�x/	 is the local Reynolds 
number. We assigned N1 to the first term in Equation (18) due to heat transfer and the second term due 
to the combined effects of viscous dissipation and magnetic field as N2, i.e., 
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The irreversibility distribution ratio is then given as � = N2/N1. Therefore, whenever 0 ≤ � < 1, the 
heat transfer irreversibility dominates. The fluid friction together with magnetic field dominates when 
� > 1. The contribution of both heat transfer and fluid friction with magnetic field to entropy 
generation are equal when � = 1. However, in many engineering designs and energy optimisation 
problems, the contribution of heat transfer entropy (N1) and fluid friction with magnetic field effect 
(N2) to overall local entropy generation rate Nsx is needed. In order to achieve this, we define the 
following Bejan numbers (Be) mathematically as: 

1 1
1

NBe
Ns

= =
+ Φ

      (20) 

From Equation (20), it is very obvious that the Bejan number ranges from 0 to 1. The zero value of 
the Bejan number corresponds to the limit where the irreversibility is dominated by the combined 
effects of fluid friction and magnetic field while Be = 1 is the limit where the irreversibility due to heat 
transfer by virtue of finite temperature differences dominates the flow system. The contributions of 
both the factors to entropy generation are equal when Bejan number is equal to half. 
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4. Results and Discussion 

The boundary layer flow and heat transfer in a variable viscosity fluid under the influence of a 
transverse uniform magnetic field and thermal radiation has been solved numerically using shooting 
iteration technique together with Runge-Kutta integration scheme and numerical expressions of the 
velocity and temperature have been used to compute the entropy generation. This type of problem 
arises in many industrial applications such as geothermal reservoirs, cooling of nuclear reactors, 
thermal insulation, petroleum reservoirs, electronic packages and microelectronic devices during their 
operation. In order to study the influence of all parameters involved on the flow and thermal fields 
along with their entropy generation characteristics, a selected set of graphical results is presented in 
Figures 2–21. I emphasize here that an increase in the parameter a > 0 indicates a decrease in the fluid 
viscosity. Extensive calculations have been performed to obtain the local skin friction and local 
Nusselt number for a wide range of parameters. Also, the results have been compared with the one 
reported by Aziz [18] as shown in Table 1 for constant viscosity fluid without the magnetic field, 
thermal radiation and viscous dissipation effects and it is found that they are in good agreement. This 
serves as a benchmark for the accuracy of our numerical procedure. Table 2 shows the effect of 
various thermophysical parameters on the local skin friction ( )0(f ′′ ), Nusselt number ( )0(θ ′− ) and 
plate surface temperature variation ( )0(θ ). I notice that both the local skin friction and local Nusselt 
number increase with an increase in the parameter values of Bi, Br, a. This can be attributed to the fact 
that as the convective heat transfer from the hot fluid on the lower side of the plate to the upper side 
increases due to Newtonian heating, the fluid viscosity on the upper side of the plate decreases leading 
to an increase in velocity gradient and viscous dissipation. It is interesting to note that the local skin 
friction decreases while the surface heat transfer rate increases with an increase in thermal radiation 
(Ra) and Prandtl number (Pr). The physical reason for this trend is that at higher Prandtl number and 
radiation, the fluid thermal boundary layer becomes thinner leading to an increase in the temperature 
gradient. Moreover, an increase in magnetic field intensity (Ha) causes a decrease in the local Nusselt 
number and an increase in local skin friction.  

Table 1. Computations showing comparison with Aziz [18] results for Hax = Br = a = 0, 
� = 1, Pr = 0.72. 

 

Bi
)0(θ  

Aziz [18] 
� )0(θ ′  

Aziz [18] 
)0(θ  

Present 
� )0(θ ′  
Present 

0.05 0.1447 0.0428 0.14466 0.04276 
0.60 0.6699 0.1981 0.66991 0.19805 
1.00 0.7718 0.2282 0.77182 0.22817 
5.00 0.9441 0.2791 0.94417 0.27913 

20.00 0.9854 0.2913 0.98543 0.29132 
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Table 2. Computation showing )0(f ′′ , )0(θ , and )0(θ ′ for various values of key parameters. 

Bi a Br Ra Pr Ha )0(f ′′  � )0(θ ′  )0(θ  
0.1 0.1 0.1 0.7 0.72 0.1 0.46167359 0.06417756 0.35822438 
1.0 0.1 0.1 0.7 0.72 0.1 0.47460353 0.16490527 0.83509472 
10 0.1 0.1 0.7 0.72 0.1 0.47847240 0.19577586 0.98042241 
0.1 0.5 0.1 0.7 0.72 0.1 0.49847466 0.06463133 0.35368667 
0.1 1.0 0.1 0.7 0.72 0.1 0.53980796 0.06510562 0.34894370 
0.1 �0.1 0.1 0.7 0.72 0.1 0.44170340 0.06391808 0.36081912 
0.1 �0.5 0.1 0.7 0.72 0.1 0.39774382 0.06331171 0.36688289 
0.1 0.1 1.0 0.7 0.72 0.1 0.46903194 0.03335240 0.66647595 
0.1 0.1 10 0.7 0.72 0.1 0.52982570 0.24134507 3.41345073 
0.1 0.1 0.1 5.0 0.72 0.1 0.46104375 0.06820145 0.31798541 
0.1 0.1 0.1 10.0 0.72 0.1 0.46100454 0.06856032 0.31439674 
0.1 0.1 0.1 0.7 3.00 0.1 0.45924014 0.07604897 0.23951024 
0.1 0.1 0.1 0.7 7.10 0.1 0.45801360 0.08146073 0.18539265 
0.1 0.1 0.1 0.7 0.72 0.5 0.78699049 0.06242200 0.37577998 
0.1 0.1 0.1 0.7 0.72 1.0 1.06625574 0.06065042 0.39349571 
0.1 0.1 0.1 0.7 0.72 2.0 1.47684794 0.05773749 0.42262501 

4.1. Effect of Parameter Variation on Velocity Profiles 

Figure 2 shows the variation of longitudinal velocity as a function of � at different values of 
magnetic field parameter. The fluid velocity is lowest at the plate surface and increases to the free 
stream value satisfying the far field boundary condition. Application of the magnetic field 
creates a resistive force similar to the drag force that acts in the opposite direction of the fluid motion, 
thus causing the velocity of the fluid to overshoot towards the plate surface. Similar trend is observed 
in Figure 3 with a decrease in the fluid viscosity (i.e., as parameter a increases). Since as fluid 
viscosity decreases, the momentum boundary layer becomes thinner, leading to an increase in the fluid  
velocity gradient. 

Figure 2. Velocity profile for Pr = 0.72, Br = 0.1, Ra = 0.7, a = 0.1, Bi = 0.1. 
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Figure 3. Velocity profile for Pr = 0.72, Br = 0.1, Ra = 0.7, Ha = 0.1, Bi = 0.1. 

 

4.2. Effects of Parameter Variation on Temperature Profiles 

Dimensionless temperatures � are plotted as a function of transverse distance � in Figures 4–9. 
Generally, the fluid temperature is highest at the plate surface and decreases exponentially to the free 
stream zero value away from the plate satisfying the boundary condition. As it can be seen in Figure 4, 
the fluid temperature increases with an increase in Ha accordingly leading to an increase in thermal 
boundary layer. As explained above, the transverse magnetic field gives rise to a resistive force known 
as the Lorentz force of an electrically conducting fluid. This force makes the fluid experience a 
resistance by increasing the friction between its layers and thus increases its temperature. Similar trend 
is observed in Figures 5 and 6 with increasing values of Br and Bi. The thermal boundary layer 
generates energy due to combined effects of viscous heating and Newtonian heating. This causes the 
temperature of the fluid to increase. In Figure 7, it is noteworthy that the fluid temperature decreases 
with an increase in radiation parameter (Ra) leading to a decrease in the thermal boundary layer 
thickness. Figure 8 represents graphs of temperature profiles taking different values of the variable 
viscosity parameter (a). It can be seen that thermal boundary layer decreases due to a decrease in the 
fluid viscosity and this causes the temperature of the fluid to decrease. Figure 9 depicts the temperature 
profiles for different values of the Prandtl number. The fluid temperature decreases with an increase in 
Prandtl number, consequently the thermal boundary layer decreases. 

Figure 4. Temperature profiles for Pr = 0.72, Br = 0.1, Ra = 0.7, a = 0.1, Bi = 0.1. 
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Figure 5. Temperature profiles for Pr = 0.72, Ha = 0.1, Bi = 0.1, Ra = 0.1, a = 0.1. 

 

Figure 6. Temperature profiles for Pr = 0.72, Ha = 0.1, a = 0.1, Ra = 0.7, Br = 0.1. 

 

Figure 7. Temperature profiles for Pr = 0.72, Ha = 0.1, a = 0.1, Ra = 0.7, Br = 0.1. 
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Figure 8. Temperature profiles for Pr = 0.72, Br = 0.1, Ra = 0.7, Ha = 0.1, Bi = 0.1. 

 

Figure 9. Temperature profiles for Bi = 0.1, Ha = 0.1, Br = 0.1, Ra = 0.7, a = 0.1. 

 

4.3. Effects of Parameter Variation on Entropy Generation Rate 

The influence of various parameters on entropy generation rate is displayed in Figures 10–15. In 
Figure 10, we notice that the entropy generation number is higher for higher magnetic parameter (Ha). 
The presence of the magnetic field creates entropy in the fluid. The effects of the local Biot number Bi 
and the group parameter Br
�1 on the entropy generation number is represented in Figures 11 and 12. 
It seems that these parameters have similar effect on the entropy generation number by creating more 
entropy in the fluid. However, it is interesting to note that the entropy generated in the fluid attained it 
maximum value at a distance near the plate surface within the boundary layer region. The influence of 
the Prandtl number on the entropy generation number is shown in Figure 13. As the Prandtl number 
increases, the entropy generation number increases gradually from the plate surface, then to its highest 
value within the boundary layer and decreases to its lowest zero value at the free stream. It is 
noteworthy that the entropy generation rate peak value for Pr = 0.72 (Air) is higher than that of  
Pr = 7.1 (Water). Similar trend is observed in Figures 14 and 15 with increasing value of parameters a 
and Ra. As the fluid viscosity decreases and thermal radiation increases, the entropy generation rate 
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increases from the plate surface, reaching its peak values and then decreases to zero value at free 
stream. The peak value for Ra = 0.7 is higher to that of Ra = 3. 

Figure 10. Entropy generation rate for Pr = 0.72, Br
�1 = 0.1, Re= 0.1, Bi = 0.1, a = 0.1, Ra = 0.7. 

 

Figure 11. Entropy generation rate for Pr = 0.72, Br
�1 = 0.1, Re = 0.1, Ha = 0.1, Ra = 0.7, a = 0.1. 
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Figure 12. Entropy generation rate for Pr = 0.72, Bi = 0.1, Re = 0.1, Ha = 0.1, a = 0.1, Ra = 0.7. 

 

Figure 13. Entropy generation rate for Bi = 0.1, Br
�1 = 0.1, Ra = 0.7, Re = 0.1, Ha = 0.1, a = 0.1. 
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Figure 14. Entropy generation rate for Bi = 0.1, Br
�1 = 0.1, Ra = 0.7, Re = 0.1, Ha = 0.1. 

 

Figure 15. Entropy generation rate for Bi = 0.1, Br
�1 = 0.1, a = 0.1, Re = 0.1, Ha = 0.1. 

 

4.4. Effects of Parameter Variation on Bejan Number 

In Figures 16–21, the Bejan number is displayed as a function of the transverse distance �. It is 
interesting to note that the heat transfer irreversibility dominates within the boundary layer while the 
viscous dissipation and magnetic field irreversibility dominate at the plate surface and in the free 
stream region. Meanwhile, the dominant effect of heat transfer irreversibility within the boundary layer 
region decreases with an increase in magnetic field intensity (Ha), group parameter Br
�1, variable 
viscosity parameter (a) and Prandtl number (Pr) as illustrated in Figures 16–20. In Figure 21, we 
notice that the effect of heat transfer irreversibility increases as the local Biot number (Bi) parameter 
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increase due to Newtonian heating of the plate surface. Hence, the plate surface acts as a strong source 
of heat transfer irreversibility. 

Figure 16. Bejan number for Bi = 0.1, Br
�1 = 0.1, a = 0.1, Ra = 0.7, Re = 0.1. 

 

Figure 17. Bejan number for Pr = 0.72, Bi = 0.1, Re = 0.1, Ha = 0.1, a = 0.1, Ra = 0.7. 
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Figure 18. Bejan number for Bi = 0.1, Br
�1 = 0.1, Ra = 0.7, Re = 0.1, Ha = 0.1. 

 

Figure 19. Bejan number for Bi = 0.1, Br
�1 = 0.1, a = 0.1, Re = 0.1, Ha = 0.1. 

 

Figure 20. Bejan number for Bi = 0.1, Br
�1 = 0.1, Ra = 0.7, Re = 0.1, Ha = 0.1, a = 0.1. 
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Figure 21. Bejan number for Pr = 0.72, Br
�1 = 0.1, Re = 0.1, Ha = 0.1, Ra = 0.7, a = 0.1. 

 

5. Conclusions 

Analysis of entropy generation rate in hydromagnetic boundary layer flow of a variable viscosity 
fluid in the presence of thermal radiation, viscous dissipation and Newtonian heating is carried out. 
The velocity and temperature profiles are obtained numerically and used to compute the entropy 
generation number. The effects of the magnetic parameter, the Prandtl number, local Biot number, 
variable viscosity parameter and radiation parameter on velocity and temperature profiles are 
presented. The influences of the same parameters and the dimensionless group parameter on the 
entropy generation rate and Bejan number are also discussed. From the results the following 
conclusions could be drawn: 

I. The skin friction and the Nusselt number increase with increasing values of Bi, Br, a. An increase 
Ha causes a decrease in the Nusselt number and an increase in the skin friction. As Ra and Pr 
increase, the skin friction decreases while the Nusselt number increases. 

II. The velocity boundary layer thickness decreases with Ha, a. 
III. The thermal boundary layer thickness increases with Ha, Br, Bi and decreases with Ra, Pr, a. 
IV. The plate surface act as a strong source of entropy generation and heat transfer irreversibility. 

However, the peak of entropy generation rate is attained within the boundary layer region. 
V. The entropy generation number increases as Ha, Bi and Br
�1 increase while it decreases as the 

Pr, Ra and a increase. 
VI. The optimum design and efficient performance of the flow system can be enhanced by the ability 

to clearly identify the source and location of entropy generation. The present results show that 
minimum entropy generation in the flow system can be achieved with appropriate choice and 
combination of the various thermophysical parameters. 
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