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Abstract: Nonextensive statistics has been becoming a very useful tool to describe the 
complexity of dynamic systems. Recently, analysis of the magnitude distribution of 
earthquakes has been increasingly used in the context of nonextensivity. In the present 
paper, the nonextensive analysis of the southern California earthquake catalog was 
performed. The results show that the nonextensivity parameter q lies in the same range as 
obtained for other different seismic areas, thus suggesting a sort of universal character in 
the nonextensive interpretation of seismicity. 
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1. Introduction 

The cumulative number of earthquakes with magnitude m > Mth is log-linearly related with the 
threshold magnitude Mth by the well known Gutenberg-Richter (GR) law [1]. In terms of energy, this 
empirical relationship represented one of the features characterizing the self-organizing criticality due 
to the power-law dependence of the cumulative number of earthquakes with energy [2]. Although this 
relationship is very important, because it explains from a statistical viewpoint the seismicity occurring 
in seismic regions, it was not related with general physical principles apart from a recent attempt [3] in 
which the GR law seems to result from the Maximum Entropy Principle when considering the natural 
time concept [4], which, among others, allows the determination of an impending mainshock [3] when 
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analyzing in natural time the seismicity that occurs after the recording of a Seismic Electric Signals 
activity [5,6]. 

Sotolongo-Costa and Posadas [7] developed an intriguing model for earthquake generation 
mechanism, which starting from first principles led to an energy distribution function, including the 
GR law as a particular case. In this model the fragments between the irregularities of the fault planes, 
originated by the local breakage of the tectonic plates, from which the faults are generated interact. 
The result of this interaction are earthquakes. The use of the nonextensive Tsallis formalism [8] was, 
then, implied by the physical picture of such a model and a fragment size distribution was derived, 
which, combined with the roughness of the fault planes, leads to a mechanism of earthquake 
triggering. The Sotolongo-Costa and Posadas’ model was revisited by Silva et al. [9], who adopted a 
more realistic relationship between earthquake energy and fragment size, in full agreement with the 
standard theory of seismic moment scaling with rupture length [10]; as a consequence, a slightly 
different magnitude distribution was deduced, providing an excellent fit to seismicity generated in 
various seismic regions. This model was recently applied to regional seismicity, covering diverse 
geological faults, down to specific seismic zones [11–14]. 

2. Nonextensivity in Modeling Earthquakes 

Nonextensivity represents one of the most intriguing characteristics of systems that experience  
long-range spatial correlations or long-range memory effects. In nonextensive systems the  
Boltzmann-Gibbs (BG) statistics, in which the entropy is additive and includes just short-length 
interactions so that the total entropy depends on the size of the object, is violated. Tsallis [8] 
generalized the BG statistics, introducing an entropic expression parameterized by q, which measures 
the degree of nonextensivity; as a particular case, the extensive BG statistics is recovered by q = 1. 
Contrarily to the BG statistics, the Tsallis’ nonextensive formulation of entropy allows all-length scale 
interactions. The process of shock fragmentation, especially when high energies are involved, leads to 
the existence of long-range interactions between all parts of the object being fragmented, and this type 
of entropy is nonadditive and depends on the object as a whole. Thus, the use of the nonextensive 
approach seems adequate to analyze the complex mechanism of relative displacement of fault plates 
interacting with the fragments between them. 

The model, as developed by Silva et al. [9], assumes that the eventual relative position of fragments 
filling the space between two irregular faults can hinder their relative motion. Stress increases until a 
displacement of one of the asperities, due to the displacement of the hindering fragment, or even its 
breakage in the point of contact with the fragment leads to a relative displacement of the fault planes of 
the order of the size � of the hindering fragment, with the subsequent energy release � [7]. Since large 
fragments are more difficult to release than small ones, this energy �~�3, in agreement with the scaling 
relationship between seismic moment and rupture length [10]. The maximum entropy principle for the 
Tsallis’ entropy [8] is given by: 
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where p� (�) is the probability of finding a fragment of surface � and q is a real number; k is the 
Boltzaman constant. It is easy to see that this entropy is the Boltzmann entropy when q�1. Let’s set  
k  = 1 for sake of simplicity. 

The probability p� (�) is obtained maximizing the Tsallis’ entropy under the two constraints:  
(1) the normalization of p� (�): 

�
∞

=
0
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(2) the condition about the q-expectation value [15]: 
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For q�1, the last condition becomes the definition of mean value. Using the technique of Lagrange 
multipliers, the following functional is maximized: 
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where �0 and �1 are the Lagrange multipliers. Imposing that: 
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After some algebra, the area distribution for fragments of the fault planes is obtained [9]: 
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Assuming the energy scale �~�3, the proportionality between the released energy � and �3 becomes:  
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where � scales with �2 and a (the proportionality constant between � and �3) is proportional to 
volumetric energy density. Thus, the energy distribution function (EDF) of the earthquakes is obtained 
in the following manner: using the transformation given by Equation 5, the variable � is derived as: 
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On the base of the relationship between density functions of correlated stochastic variables [16], the 
EDF is given by: 
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By differentiating Equation 6: 
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from which: 

3
2

3
1

3
2

a
d
d

−

= ε
ε
σ  (11) 

The EDF is now given by: 
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The probability of energy p�(�) = n(�)/N, where n(�) is the number of earthquakes of energy ε and 
N the total number of earthquakes. The normalized cumulative number of earthquakes can be obtained 
by integrating Equation (10): 
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where N(� > �th) is the number of earthquakes with energy larger than the threshold �th, and thus: 
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Substituting in Equation (12) the relationship: 

)log(
3
2 ε=m  (15) 

where m is the magnitude, the distribution of the number N of earthquakes with magnitude m larger 
than the threshold Mth normalized to the total number of events is given by: 
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These results incorporate the characteristics of nonextensivity into the distribution of earthquakes 
by magnitude. Equation 14 is slightly different from that obtained by Silva et al. [9], who used the 
relation m = log(�)/3. 

3. Application to the Southern California Earthquake Catalog

In the present study the earthquakes occurred during year 2010 in Southern California were 
investigated. The earthquakes were extracted from the SCEDC (Southern California Earthquake Data 
Center) seismic catalogue [17]. Only shallow earthquakes (depth 0–60 km) were investigated.  

Figure 1 shows the distribution of the relative number of earthquakes with magnitude m > Mth for 
minimum threshold magnitude m0 = 0 and maximum depth hmax = 60 km. The curve fitting the data 
and representing Equation (16) has nonextensive parameters q = 1.542 and a = 153.127 estimated by 
the maximum likelihood estimation (MLE) method [18]. The misfit was evaluated by means of the 
average of the absolute values of the residuals |y-yfit|, where y indicates the real value and yfit the 
predicted value by the fitting. For m0 = 0 the misfit is about 0.1745. The deviation of the fitting curve 
from the normalized cumulative distribution function at large magnitudes is due to the almost constant 
value of the distribution within the range of magnitudes from 5.8 to 7.2. 

Figure 1. Magnitude distribution and fitting with Equation 16 for the whole catalog (depth 
less than 60 km and minimum magnitude m0 = 0). The black continuous line indicates the 
nonextensive fitting curve.  

 

Figure 2 shows the variation with the minimum magnitude m0 of the nonextensive parameters q and 
a and the misfit. The dependence of the parameters with the minimum magnitude, revealing that q 
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approximately decreases with m0, while a increases, is visible. However, the best model is for the 
minimum magnitude m0 to which corresponds the values of q = 1.506 and a = 438.65 (misfit = 0.146).  

Figure 2. Variation with the minimum magnitude m0 of q (a), a (b), and misfit (c), for 
maximum depth hmax = 60 km. The best nonextensive model for the catalogue is for  
m0 = 2.0 (q = 1.506, a = 438.65). 

  

(a) 

 

(b) 
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Figure 2. Cont. 

 

(c) 

Figure 3 shows the variation with m0 and hmax of q, a and the misfit. It is clearly visible that all the 
curves are almost identical, except for that corresponding to hmax = 10 km. 

Figure 3. Variation with the minimum magnitude m0 and hmax of q (a), a (b), and misfit (c).  

 

(a) 
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Figure 3. Cont.

 

(b) 

 

(c) 

In order to assess the accuracy of the estimated nonextensive parameters, the following procedure 
was performed. The minimum magnitude m0 = 2.0 was fixed (which corresponded to the best 
nonextensive model) and one thousand magnitude sequences were simulated by means of the bootstrap 
method [19] for any value of the maximum depth hmax from 10 km to 60 km. For any of these simulated 
sequence the nonextensive parameters qS and aS were estimated applying the MLE. Then the mean and 
standard deviation of qS and aS were calculated. Figures 4 and 5 show the variation of mean and 
standard deviation of the nonextensive parameters of qS and aS varying the maximum depth hmax. It is 
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clearly shown that the nonextensive parameters estimated for the original series are quasi identical 
with the average qS and aS and the small standard deviation indicates a very good accuracy of the 
estimates. 

Figure 4. Results of the application of the bootstrap method with varying the maximum 
depth hmax (m0 = 2.0). The black squares represent the variation of the q value of the original 
magnitude sequence; the red circles (bars) are the mean (standard deviation) of the qS. 

 

Figure 5. Results of the application of the bootstrap method with varying the minimum 
depth hmax (m0 = 2.0). The black squares represent the variation of the a value of the original 
magnitude sequence; the red circles (bars) are the mean (standard deviation) of the aS.  
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The time variation of the nonextensive parameters was analyzed. The yearly values of q and a were 
calculated for the seismicity of the southern California from 1990 to 2010 (Figure 6). It is visibly clear 
that the q-value is almost constant up to 2004, then it increases up to 2010. The a-value is 
characterized by two significant spikes in 1992 and 1999, while it ranges between 100 and 250 up to 
2003, and around a lower value (~50) from 2004 to 2009. Figure 6 shows also the yearly variation of 
the number of events and the maximum magnitude. 

Figure 6. Yearly variation of the q (a), a (b), number of events (c) and maximal magnitude 
(d) for the seismicity of Southern California.  

  

(a) 

 

(b) 
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Figure 6. Cont. 

 

(c) 

 

(d) 

4. Discussion 

The decrease (increase) of q (a) with the minimum magnitude m0 is not an easy task. In the context 
of the fragment-asperity model, the nonextensivity parameter q quantifies the scale of spatial 
interactions: for q~1, the spatial correlations are short-ranged and physical state is in quasi-
equilibrium. For increasing q, the physical state goes away from equilibrium; and in case of seismicity, 
this means that the fault planes and fragment filling the gap between them are not in equilibrium, 
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leading to an increased seismic activity to be expected [12]. In [20] the decrease of the nonextensivity 
parameter q was observed during relatively quiet periods, characterized mainly by the occurrence of 
small magnitude events; this could reveal that the order within the system of fault is decreased and the 
amount of accumulated stress is not yet enough to initiate a correlated behavior of the whole system 
[21]. When a strong earthquake occurs, more correlated behavior of the system constituents is assumed 
to take place, with the emergence of short and long range correlations, which induce an increase of the 
nonextensivity parameter q. 

In the case examined in the present paper, we observe a decrease of the parameter q with the 
increase of the minimum magnitude. Probably the main reason of such decreasing trend could be the 
decreased number of small events, which are removed by choosing a higher magnitude threshold. 
Removing all the smaller events, also the possible interactions and correlations, which can take place 
with a higher probability when many small events are considered, are reduced, leading the whole 
system to a quasi-equilibrium-like status. Therefore, the smaller events seem to be necessary for an 
earthquake system to redistribute the stress in order to initiate a status where correlations and 
interactions can take place also among higher events. It seems that the smaller events behave as links 
among the higher events, where the correlations are transferred, thus producing an enhancement of the 
q-value.  

The increase of the a-value can just be due the larger energy released by higher events. 
The time variation of the nonextensivity parameters shows the following effects: 

(i) a takes the highest values during years in which the events with highest magnitude occurred;  
a is the volumetric energy density, and its value is large if the energy released is large. 

(ii) from 2004 to 2009, the increase of q is reflected by a slight decrease of a; during this period of 
reduced seismic activity (indicated by a reduced number of events) and without very large 
earthquakes (indicated by a maximal magnitude ranging between 4.5 and 5.5), the volumetric 
energy density is reduced, the accumulated stress energy seems to be released mostly through 
the relative movement of smaller fragments, but the increased degree of the system interactions 
are mainly governed by the smaller events. 

5. Conclusions 

The SCEDC catalog was analyzed by means of a nonextensive approach, which takes into account 
not only the overlapping of irregular profiles of fault planes but also the hindering fragments generated 
by the breakage of the faults. The analysis of the variation of the nonextensive parameters a and q was 
performed varying the minimum threshold moment magnitude (from 0 to 4.0) and the maximum 
hypocentral depth (from 10 km to 60 km). The smallest value of the misfit between the real and the 
fitted distribution was for minimum threshold magnitude 2.0. The time variation of q appears quite 
stable from 1990 to 2004, but shows an increasing trend from 2005 to 2010. The time variation of a 
reveals two anomalous values in 1992 and 1999. The present study confirms that the non-additive 
parameter q can be considered for a unique description of seismicity. 
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