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Abstract: We give two arguments why the thermodynamic entropy of non-extensive

systems involves Rényi’s entropy function rather than that of Tsallis. The first argument

is that the temperature of the configurational subsystem of a mono-atomic gas is equal to

that of the kinetic subsystem. The second argument is that the instability of the pendulum,

which occurs for energies close to the rotation threshold, is correctly reproduced.
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1. Introduction

The recent interest in the micro-canonical ensemble [1–13] is driven by the awareness that this

ensemble is the cornerstone of statistical mechanics. Phase transitions described in the canonical

ensemble could be linked to topological singularities of the micro-canonical energy landscape [14–20].

On the other hand, the occurrence of thermodynamic instabilities in closed systems is not yet fully

understood. In the canonical ensemble the situation is much clearer. Phase transitions are identified with

the occurrence of analytical singularities in thermodynamic functions such as the free energy. These

singularities can only occur in the thermodynamic limit. It is known [6,11,18] that such singularities

appear frequently in the thermodynamic functions of isolated systems, even without considering the

thermodynamic limit. This leads to the conclusion that micro-canonical phase transitions cannot be

characterised in this way.
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The present paper focuses on the configurational probability distribution of a mono-atomic gas with

N interacting particles within a non-quantum-mechanical micro-canonical description. Recently [21], it

was proved that this distribution belongs to the q-exponential family [22–24], with q = 1−2/(3N−2). In

the thermodynamic limit N → ∞ it converges to the Boltzmann-Gibbs distribution, which corresponds

with the q = 1 case. This observation of q-exponentiality is relevant for the discussion of phase

transitions because it implies thermodynamic stability. Indeed, within a large class of entropy functions

the Tsallis entropy function is unique (up to a multiplicative and an additive constant) in being maximized

by the members of the q-exponential family. The corresponding free energy is then minimized. The

minimality of the free energy is a sign of thermodynamic stability and of absence of phase transitions.

It was argued in [21] that for the calculation of thermodynamic quantities Rényi’s entropy function

is more appropriate than that of Tsallis. The Rényi entropy function is a monotone function of that

of Tsallis. Both entropy functions are maximized by the same probability distributions. Hence,

Rényi’s entropy function is also maximized by the members of the q-exponential family. However,

the corresponding free energy is not necessarily minimized, while this is necessarily so [22] in the

Tsallis case. As a consequence, a description in terms of Rényi’s entropy function leaves room for

thermodynamic instabilities, while these are not possible when starting from the Tsallis function.

Note that here and throughout the paper we mean by thermodynamic instability a negative heat

capacity or, equivalently, a convex region of entropy S as a function of energy U . Strictly spoken,

the perfectly isolated microcanonical system is not unstable. However, if two identical systems with

negative heat capacity and slightly different energy are in contact through a small leak in the thermal

insulation, then energy will flow from the system low in energy to that with more energy. In this way the

energy difference will increase until the separation into a low energy phase and a high energy phase is

completed. Phase separations of this type do occur in closed systems and can rightfully be called a sign

of thermodynamic instability.

Most concepts of thermodynamics can get a very precise definition within the canonical ensemble

of statistical mechanics. But clearly, large parts of thermodynamics are also valid for isolated systems.

However, up to now the concepts of thermodynamics have not been validated within the context of

the micro-canonical ensemble. We contribute to this goal by studying a simple example in which it

is intuitively clear that two distinct thermodynamic phases [25] are present. The pendulum serves this

goal because it has two distinct types of orbits: librational motion at low energy and rotational motion

at high energy. The density of states ω(U) can be calculated analytically (see for instance [26]). It

has a logarithmic singularity at the energy Uc, which is the minimum value needed to allow rotational

motion—see the Figure 1.

The thermodynamic quantity central to the micro-canonical ensemble is the entropy S(U) as a

function of the total energy U . Therefore, we start with it in the next Section, which discusses the

configurational probability distribution and its properties. Section 3 compares the use of Rényi’s entropy

functional with the use of that of Tsallis. Section 4 deals with the example of the pendulum. The final

Section draws some conclusions. The short Appendix clarifies certain calculations.
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Figure 1. Density of states of the pendulum in reduced units. Shown is the function ω0(u)

as defined by (36).
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2. The Configurational Subsystem

The entropy S(U), which is most often used for a gas of point particles in the classical

micro-canonical ensemble, is

S(U) = kB lnω(U) (1)

where ω(U) is the N -particle density of states. It is given by

ω(U) = cN

∫
R3N

dp1 · · · dpN

∫
R3N

dq1 · · · dqN δ(U −H(q,p)) (2)

Here, qj is the position of the j-th particle and pj is the conjugated momentum, H(q,p) is the

Hamiltonian. The constant cN equals 1/N !h3N . The constant h has the same dimension as Planck’s

constant. It is inserted for dimensional reasons. This definition goes back to Boltzmann’s idea of equal

probability of the micro-canonical states and the corresponding well-known formula S = kB lnW ,

where W is the number of micro-canonical states.

The shortcomings of Boltzmann’s entropy have been noticed long ago. A slightly different definition

of entropy is [27–32] (see also in [33] the reference to the work of A. Schlüter)

S(U) = kB ln Ω(U) (3)

where Ω(U) is the integral of ω(U) and is given by

Ω(U) = cN

∫
R3N

dp1 · · · dpN

∫
R3N

dq1 · · · dqN Θ(U −H(q,p)) (4)

Here, Θ(x) is Heaviside’s function. An immediate advantage of (3) is that the resulting expression for

the temperature T , defined by the thermodynamic formula

1

T
=

dS

dU
(5)
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coincides with the experimentally used notion of temperature. Indeed, there follows immediately

kBT =
Ω(U)

ω(U)
(6)

It is well-known that for classical mono-atomic gases the r.h.s. of (6) coincides with twice the average

kinetic energy per degree of freedom. Hence, the choice of (3) as the thermodynamic entropy has the

advantage that the equipartition theorem, assigning kBT/2 to each degree of freedom, does hold for the

kinetic energy also in the micro-canonical ensemble.

The micro-canonical ensemble is described by the singular probability density function

fU(q,p) =
1

ω(U)
δ(U −H(q,p)) (7)

where δ(x) is Dirac’s delta function. The normalization is so that

1 = cN

∫
R3N

dp1 · · · dpN

∫
R3N

dq1 · · · dqNfU(q,p) (8)

For simplicity, we take only one conserved quantity into account, namely the total energy. Its value is

fixed to U .

In the simplest case the Hamiltonian is of the form

H(q,p) =
1

2m

N∑
j=1

|pj|2 + V(q) (9)

where V(q) is the potential energy due to interaction among the particles and between the particles and

the walls of the system. It is then possible to integrate out the momenta. This leads to the configurational

probability distribution, which is given by

f conf
U (q) =

(a
h

)3N
∫
R3N

dp1 · · · dpN fU(q,p) (10)

The normalization is so that

1 =
1

N !a3N

∫
R3N

dq1 · · · dqNf
conf
U (q) (11)

The constant a has been introduced for dimensional reasons [34]. In the limit of an infinitely large

system, this configurational system is described by a Boltzmann-Gibbs distribution. However, here

we are interested in small systems where an exact evaluation of (10) is necessary. A straightforward

calculation yields

f conf
U (q) =

[U − V(q)]3N/2−1
+

ε3N/2ω(U)Γ(3N/2)
(12)

with ε = h2/2πma2. This result has been known since long.

It was shown in [21] that the configurational probability distribution f conf
U (q) belongs to the

q-exponential family, with q = 1− 2
3N−2

. This implies [22–24] that it maximizes the expression

I(f)− θU conf(f) (13)
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for some value of θ, where

I(f) = − 1

1− q

1

N !a3N

∫
R3N

dq1 · · · dqN f(q)
[
(f(q))1−q − 1

]
(14)

with

U conf(f) =
1

N !a3N

∫
R3N

dq1 · · · dqN f(q)V(q) (15)

Maximizing (13) has been called the variational principle by the mathematical physics community of the

1980s. This property is stronger than the maximum entropy principle and corresponds with the principle

of minimal free energy.

Note that I(f) is the Tsallis entropy function [35,36] up to one modification (replacement of the

parameter q by 2− q) [37]. The parameter θ turns out to be given by

θ =
2− q

1− q

1

ε2−q[Γ(3N/2)ω(U)]1−q
(16)

The maximisation of (13) is equivalent to the minimisation of the free energy (using

I(f) as the entropy function appearing in the definition of the free energy). Replacing the

Boltzmann-Gibbs-Shannon (BGS) entropy function by I(f) is necessary—the configurational

probability distribution f conf
U (q) does not maximize the BGS entropy function as a consequence of finite

size effects.

3. Rényi’s Entropy Function

It is tempting to identify the parameter θ of the previous Section with the inverse temperature

β = 1/kBT and to interpret (13) as the maximisation of the entropy function I(f) under the constraint

that the average energy U conf(f) equals the given value U conf . However, in [21] an example was given

showing that this identification of θ with β cannot be correct in general. It was noted that replacing the

Tsallis entropy function by that of Rényi gives a more satisfactory result. This argument is now repeated

in a more general setting.

In the present context, Rényi’s entropy function of order α is defined by

Iα(f) =
1

1− α
ln

[
1

N !a3N

∫
R3N

dq1 · · · dqN f(q)α
]

(17)

Let α = 2− q. Then (17) is linked to (14) by

Iα(f) = ξ(I(f)) (18)

with

ξ(u) =
1

q − 1
ln[1 + (q − 1)u] (19)

Note that

dξ

du
=

1

1 + (q − 1)u
(20)
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This derivative is strictly positive on the domain of definition of ξ(u). Hence, ξ(u) is a monotonically

increasing function. Therefore, the density f(q) is a maximizer of I(f) if and only if it maximizes Iα(f).

This means that from the point of view of the maximum entropy principle it does not make any difference

whether one uses the Rényi entropy function or that of Tsallis. However, for the variational principle

discussed in the previous Section, and for the definition of the temperature T via the thermodynamic

formula (5) the function ξ(u) makes a difference. In the example of the pendulum, discussed further on,

the variational principle is not satisfied when using Rényi’s entropy function, while it is satisfied when

using I(f). Also, the derivation which follows below shows that, when Rényi’s entropy function is used,

the temperature of the configurational subsystem equals the temperature T of the kinetic subsystem.

Let us now calculate the value of Rényi’s entropy function for the configurational probability

distribution (10). One has

Iα(f conf
U ) =

1

q − 1
ln

[
1

N !a3N

∫
R3N

dq1 · · · dqN

(
f conf
U (q)

)2−q
]

(21)

Use now that (see (12))

(
f conf
U (q)

)1−q
=

U − V(q)
ε[Γ(3N/2)εω(U)]1−q

(22)

Then (21) simplifies to

Iα(f conf
U ) = ln Γ

(
3N

2

)
εω(U)−

(
3N

2
− 1

)
ln

Ukin

ε
(23)

The claim is now that (23), when multiplied with kB, is the thermodynamic entropy Sconf(U) of the

configurational subsystem. Note that ε = h2/2πma2 is an arbitrary unit of energy. Note also that, using

Stirling’s approximation and Ukin = 3NΩ(U)/2ω(U), (23) simplifies to

1

kB
Sconf(U) � ln εω(U)−

(
3N

2
− 1

)
ln

Ω(U)

εω(U)

+

(
3N

2
− 1

)
ln

(
3N

2
− 1

)
− 3N

2
+

1

2
ln 3πN (24)

To support our claim, let us calculate its prediction for the temperature of the configurational

subsystem. One finds

1

T conf
≡ dSconf

dU conf
= kB

[
ω′

ω
−
(
3N

2
− 1

)
1

Ukin

]
dU

dU conf
+ kB

(
3N

2
− 1

)
1

Ukin
(25)

Using (see (26) of [21])

dU conf

dU
= 1− 3N

2
+

ω′

ω
Ukin (26)

this becomes

1

T conf
= kB

3N

2Ukin
= kB

ω

Ω
=

1

T
(27)

This shows that the configurational temperature, calculated starting from Rényi’s entropy function,

coincides with the temperature T defined by means of the modified Boltzmann entropy (3) and with

the temperature of the kinetic subsystem.
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Finally, let us define a configurational heat capacity by

Cconf =
dU conf

dT
= T

dSconf

dT
(28)

Then one has in a trivial way

C =
dU

dT
=

d

dT

[
3

2
NkBT + U conf

]
=

3

2
NkB + Cconf (29)

Let us summarize the results obtained so far. The system under consideration is an interacting gas

studied in the classical micro-canonical ensemble. The system is decomposed into two subsystems, the

kinetic one and the configurational one. Each of them serves as the heat bath of the other. Both of

them are in thermal equilibrium at the same temperature T , which is the temperature obtained in the

standard way by taking the derivative of the micro-canonical entropy (3)—see (5). The temperature

of the kinetic subsystem follows from the equipartition law. The temperature of the configurational

subsystem is obtained by taking the derivative of Rényi’s entropy w.r.t. the configurational energy. The

alpha parameter is given by α = 2− q = 3N/(3N − 2).

Let us verify that the expression (23) makes sense even for an ideal gas. In this case the density of

states is

ω(U) =
cN

Γ(3N/2)
V N (2πm)3N/2 U3N/2−1 (30)

Evaluation of (23) with Ukin = U then gives

Sconf = kBN ln
V

Na3
+ kB ln

NN

N !
� kBN ln

eV

Na3
(31)

The configurational entropy of an ideal gas does not depend on the total energy or on the mass of the

particles, as expected. The total entropy is

S = kB lnΩ(U)

= kBN lnV +
3

2
NkB ln 2πmU + kB ln cN − kB ln Γ(3N/2 + 1) (32)

Using Stirling’s approximation, (32) simplifies to

S � kBN

(
ln

eV

Na3
+

3

2
ln 2π

U

Nε
+ constant

)
(33)

This expression coincides with the Sackur-Tetrode equation [38] for an appropriate choice of the constant

term. The first term of (33) is the configurational entropy contribution (31), the second term is the kinetic

energy contribution.

4. The pendulum

Let us now consider the example of the pendulum. The Hamiltonian reads

H =
1

2I
p2 − κ2I cos(φ) (34)
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For low energy −κ2I < U < κ2I the motion is oscillatory. At large energy U > κ2I it rotates in one of

the two possible directions. The density of states ω(U) can be written as

ω(U) =
d

dU

2
√
2I

h

∫
dφ

√
U + Iκ2 cosφ

=
4π

√
2

hκ
ω0(U/κ

2I) (35)

with ω0(u) given by

ω0(u) =
1

2π

∫ 1

0

dx
1√
x

1√
1− x

1√
1− u+ (1 + u)x

if − 1 < u < 1,

ω0(u) =
1

2π

∫ 1

−1

dx
1√

1− x2

1√
x+ u

if 1 < u. (36)

See the Figure 1. Note that the integrals appearing in (36) are complete elliptic integrals of the first kind.

For simplicity we choose now units in which κ2I = 1 holds. We also fix h = 4/κ.

Using the analytic expressions (36), and the expression (6), it is straightforward to make a plot of the

kinetic energy Ukin as a function of the energy U . See the Figure 2. Note that it is not a strictly increasing

function. Due to the divergence of ω0(u) at u = 1 the temperature T has to vanish at both u = −1 and

u = +1. Hence it has a maximum in between. This has consequences for the free energy F , which is

the Legendre transform of U(S). The well-known formula

F (T ) = U − TS (37)

is only valid if the entropy is a concave function of the energy. The result F (T ) is then a concave

function. But if we substitute U(T ) in the r.h.s. of (37) then we obtain a multi-valued function. See the

Figure 3.

Figure 2. Kinetic energy Ukin as a function of energy U .
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Figure 3. Free energy of the pendulum.

When a fast rotating pendulum slows down due to friction then its energy decreases slowly. The

average kinetic energy, which is the temperature 1
2
kBT , tends to zero when the threshold Uc is

approached. In Figure 3, the continuous curve is followed. The pendulum goes from a stable into a

metastable rotational state. then it switches to an unstable librating state, characterised by a negative

heat capacity. Finally it goes through the metastable and stable librational states. The first order phase

transition [25] cannot take place because in a nearly closed system the pendulum cannot get rid of the

latent heat. Neither can it stay at the phase transition point because a coexistence of the two phases

cannot be realised.

For the example of the pendulum the number of degrees of freedom 3N in the expression for the

non-extensivity parameter q has to be replaced by 1, so that q = 3 results. This is an anomalous value

because 0 < q < 1 has been assumed in the main part of the paper. See the Appendix for a discussion of

the modifications needed to treat this situation.

It remains true that the configurational probability distribution f conf
U (φ) maximizes the Rényi entropy

with α = 2 − q = −1 within the set of all probability distributions having the same average potential

energy U conf . Next, using

1

T conf
≡ dSconf

dU conf
(38)

as the definition of the temperature T of the configurational subsystem, one can plot the configurational

free energy as a function of T . See the Figure 4.

One observes the same behaviour as in the Figure 3. The main difference is that in the rotational phase

the configurational free energy is a convex rather than a concave function of the temperature T . This

implies that the configurational entropy Sconf is a decreasing function of T and that the heat capacity

Cconf = T (dSconf/dT ) is negative. This is not in contradiction with the physical intuition that the

fluctuations in potential energy decrease with increasing energy U . The instability of the configurational

subsystem in the rotational phase is more than compensated by the stability of the kinetic subsystem, so

that the free energy F (T ) of the total system is concave.
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Figure 4. Configurational free energy of the pendulum.

5. Conclusions

In a previous paper [21] we have shown that the configurational probability distribution f conf
U (q)

of an interacting mono-atomic gas with N particles always belongs to the q-exponential family, with

q = 1 − 2
3N−2

. In the same paper it was argued, based on one example, that for the definition of the

configurational temperature T the entropy function of Rényi is better suited than that of Tsallis. Here we

show that the same result holds for any interacting gas with a Hamiltonian of the usual form (9).

It is well-known that Rényi’s entropy function and that of Tsallis are related because each of them is

a monotone function of the other. Hence, from the point of view of the maximum entropy principle the

two entropy functions are equivalent. However, from the point of view of the variational principle (this

is, the statement that the free energy is minimal in equilibrium) the two are not equivalent. This raises

the need to distinguish between them. Our result then suggests that from a thermodynamic point of view

Rényi’s entropy function is the preferred choice.

A further indication in the same direction comes from stability considerations. In the literature

of non-extensive thermostatistics one studies the notion of Lesche stability [39–41]. Tsallis’ entropy

function is Lesche-stable while Rényi’s is not. The present paper focusses on thermodynamic stability,

which we interpret as positivity of the heat capacity.

A well-known property of the Boltzmann-Gibbs distribution is that it automatically leads to a positive

heat capacity and that instabilities such as phase transitions are only possible in the thermodynamic

limit. The entropy function which is maximised by the Boltzmann-Gibbs distribution is that of

Boltzmann-Gibbs-Shannon (BGS). The Boltzmann-Gibbs distribution is known in statistics as the

exponential family. Its generalisation, needed here, is the q-exponential family. Both Tsallis’ entropy

function and that of Rényi are maximised by members of the q-exponential family. However, only

Tsallis’ entropy function shares with the BGS entropy function the property that the heat capacity is

always positive—this has been proved in a very general context in [22]. For this reason, one can say that

the Tsallis’ entropy function is a stable entropy function. We have shown in the present paper with the

explicit example of the pendulum that Rényi’s entropy function is not stable in the above sense.
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The example of the pendulum was chosen because it exhibits two thermodynamic phases [25]. At

low energy the pendulum librates around its position of minimal energy. At high energy it rotates in

one of the two possible directions. In an intermediate energy range the time-averaged kinetic energy

drops when the total energy increases. If the kinetic energy is taken as a measure for the temperature

then the pendulum is a simple example of a system with negative heat capacity. Hence, it is not such a

surprise that we find instability in this system. But this also means that Rényi’s entropy function is able

to describe the instability of the pendulum, while Tsallis’ entropy function is not suited for this task.

The correct choice of entropy function for the configurational subsystem is relevant for numerical

simulation work. The probability distribution (12) can be sampled by the Monte Carlo technique. In this

way one can estimate not only the average potential energy U conf , but also the entropy Sconf(U) of the

configurational subsystem, which is given by (17). The temperature T then follows in two ways: as the

derivative of Sconf(U) w.r.t. U conf , and using the equipartition result Ukin = U − U conf = 3N
2
kBT .
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Appendix

The configurational probability distribution of the pendulum is given by

f conf
U (φ) =

a
√
I/2

hω(U)
√

U + Iκ2 cosφ
(39)

It maximizes Rényi’s entropy function with α = −1. The maximal value equals

Sconf(U) =
1

2
kB ln

1

a

∫
dφ

1

f conf
U (φ)

=
1

2
kB ln

hω(U)

a2
√

I/2

∫
dφ

√
U + Iκ2 cosφ

=
1

2
kB ln

h2

Ia2
ω(U)Ω(U) (40)

Therefore the inverse of the configurational temperature is given by

1

T conf
=

dSconf

dU conf

= kB
ω(U)2 + ω′(U)Ω(U)

2ω(U)Ω(U)

dU

dU conf
(41)

But note that

dU conf

dU
=

d

dU

(
U − Ω(U)

2ω(U)

)

=
ω′(U)Ω(U) + ω2(U)

2ω2(U)
(42)

Hence (41) becomes

1

T conf
= kB

ω(U)

Ω(U)
(43)

This shows that the temperature of the configurational subsystem coincides with that of the kinetic

subsystem—see (6).
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It is now straightforward to make the parametric plot of Figure 4 by plotting T as a function of U on

the horizontal axis, and F = U − TS on the vertical axis.
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