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Abstract: Natural convection in an inclined rectangular cavity filled with air is 
numerically investigated. The cavity is heated and cooled along the active walls whereas 
the two other walls of the cavity are adiabatic. Entropy generation due to heat transfer and 
fluid friction has been determined in transient state for laminar natural convection by 
solving numerically: the continuity, momentum and energy equations, using a Control 
Volume Finite Element Method. The structure of the studied flows depends on four 
dimensionless parameters which are: the thermal Grashof number, the inclination angle, 
the irreversibility distribution ratio and the aspect ratio of the cavity. The obtained results 
show that entropy generation tends towards asymptotic values for lower thermal Grashof 
number values, whereas it takes an oscillative behavior for higher values of thermal 
Grashof number. Transient entropy generation increases towards a maximum value, then 
decreases asymptotically to a constant value that depends on aspect ratio of the enclosure. 
Entropy generation increases with the increase of thermal Grashof number, irreversibility 
distribution ratio and aspect ratio of the cavity. Bejan number is used to measure the 
predominance of either thermal or viscous irreversibility. At local level, irreversibility 
charts show that entropy generation is mainly localized on bottom corner of the left heated 
wall and upper corner of the right cooled wall. 
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PACS Codes: 05.70-a 
 

Nomenclature

A aspect ratio of the cavity 
Ax; Ay aspect ratios along x and y, respectively 
g gravitational acceleration (m·s�2) 
Gr thermal Grashof number 
H’ (L’) length (width) of the cavity (m) 
Jz dimensionless flux vector (z = u, v, T) 
L* characteristic length (m) 
P dimensionless pressure 
P’ pressure (kg·m�1·s�2) 
Pr Prandtl number 
Ra Rayleigh number 

LS�  dimensionless local entropy generation  
S  dimensionless total entropy generation 
T dimensionless temperature 
T’ temperature (K) 
T’c cold temperature (K) 
Th’ hot temperature (K) 
T’o reference temperature (K) 
t dimensionless time 
t’ time (s)  
U* characteristic velocity (m·s�1) 
V dimensionless velocity vector 
V’ velocity vector (m·s�1) 
u, v dimensionless velocity components 
u’, v’ velocity components (m·s�1) 
x, y dimensionless Cartesian coordinate system 
x’, y’ cartesian coordinates (m) 

Greek Letters 

� thermal diffusivity (m2·s�1) 
�T thermal bulk expansion coefficient (K�1)  
�T’ temperature difference (K) 
� kinematic viscosity (m2·s�1) 
� dynamic viscosity (kg·m�1·s�1) 
φ  inclination angle of the cavity (°) 
�D irreversibility distribution ratio 
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� fluid density (kg·m�3) 
λ  thermal conductivity (J·m�1·s�1·K�1) 

Lσ�  volumetric local entropy generation (J·m�3·s�1·K�1)  

1. Introduction 

Today, thermodynamic studies are not limited to the knowledge of exchanges between work and 
heat. The field of investigation is being extended, namely in applications of exchanges between 
mechanical, chemical and electromagnetic forms of energy. Thermodynamics is not restricted to 
equilibrium state studies but domains near and far from equilibrium which describe thermodynamics 
of irreversible processes have also become of great practical importance. Thermodynamic systems 
submitted to thermal gradients and friction effects are subjected to energy loss, which induces entropy 
generation in the system. Many studies have been published concerning entropy generation. Bejan [1] 
investigated entropy generation phenomena by considering a small 2D element of the fluid as an open 
thermodynamic system submitted to mass and energy fluxes. Poulikakos and Bejan [2] were interested 
in rectangular flasks in laminar flow; they showed that entropy generation is proportional to work loss 
in the system. To reduce irreversibility origins of entropy generation, three geometrical parameters 
should be selected: flask length (L), its width (b) and its thickness (�) which seems only in thermal 
contribution term to entropy generation. Optimal values of these parameters are calculated from 
correlations established by thermal flux, flow structures and flask thickness, therefore optimum length 
(Lopt) increases with (�) but the optimum width (bopt) decreases, that means the increase of 
Minceur ratio:  

(�opt = 
opt

opt

b
L

) 

Similar results are obtained for turbulent flow by changing heat transfer coefficient (h) by friction 
coefficient (Cf) using correlations appropriate to heat transfer and friction in turbulent regime. An 
analytical study of entropy generation’s problem was established by Sahin [3] who consider a viscous 
fluid’s turbulent flow in a duct. Results show that entropy generation initially decreases then increases 
along the duct, it is proportional to the dimensionless temperature difference:  

(
w

w

T
TT 0−=τ ) 

where Tw and To represent wall temperature and fluid temperature input, respectively. Baytas [4,5] 
determined entropy generation in an inclined square cavity with two isotherm walls and two adiabatic 
walls. He firstly [4] determined optimum angles for which energy losses are reduced. It was shown 
that entropy generation decreases with the inclination angle of the cavity for low external Rayleigh 
number (RaE), maximum values are obtained for angles between 35° and 55°. Secondly, entropy 
generation in a porous cavity was studied [5]. It was found that entropy generation is the result of a 
continuous exchange of energy between fluid and enclosure’s walls. Demirel and Kahraman [6] 
showed that irreversibility distributions are not continuous through the horizontal walls of a 
rectangular enclosure that it was differentially heated from its upper side. Magherbi et al. [7] 
numerically studied entropy generation at the onset of natural convection in a square cavity. They 
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showed that entropy generation depends on thermal Rayleigh number. The effect of irreversibility 
distribution ratio on entropy generation was also analyzed. 

This paper presents a numerical study about entropy generation in transient state for natural 
convection concerning an incompressible fluid enclosed in an inclined heated rectangular cavity as 
shown in Figure 1. This study concerns steady-unsteady states where the effects of the aspect ratio of 
the cavity, the Grashof number, the inclination angle and the irreversibility distribution ratio on 
entropy generation are investigated. The behaviours of the Bejan number and local irreversibility are 
also studied.  

Figure 1. Schematic view of 2D inclined rectangular cavity. 

 

2. Governing Equations 

The conservative equations of continuity, momentum and energy in dimensionless form are given 
as follows: 
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with:  
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)(·Pr· ugradVuJ u −=
                                                           

(5) 

)(·Pr· vgradVvJ v −=
                                                           

(6) 

          
)(· TgradVTJ T −=

                                                              
(7) 

The dimensionless used variables are defined by:  
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and: 

∗L  = H’ if A < 1 (A =
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L
H ); Pr =

α
ν ; Gr = 2

 LT'  g
3

α
β ∗Δt ; �T’= T’h � T’c                    (8) 

The appropriate boundary and initial conditions of the considered problem are given as follows:  

* For all walls: 

                                                              u = v = 0                                                                         (9) 

* Adiabatic walls:  

y = ± 0;
2

=
∂
∂

y
TAy                                                             (10) 

* Active walls:  

x =  5.0;
2

−=TAx

 

x = � 5.0;
2

=TAx

 

(11)

where: 

Ax = 1 and Ay = A if A � 1 and Ax = 
A
1  and Ay = 1 if A < 1 

at t = 0 (for all the cavity); u = v = 0; P = 0 and T = 0.5 � x 
(12)

3. Entropy Generation

The existence of thermal gradients between the active walls of the inclined rectangular cavity sets 
the fluid in a non-equilibrium state which causes entropy generation in the system. According to local 
thermodynamics of equilibrium with linear transport theory, the local volumetric entropy generation is 
given by [7]: 

l

•
σ  = ( )2

'2
0 0

:'  
'

vgrad T
T T

λ τ ∇+
�

������
                                            (13) 

In the case of two dimensional Cartesian systems, Equation (13) can be written as:  
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The dimensionless local entropy generation is obtained by using the dimensionless variables listed 
in Equation (8), it is given by:  

                                  , , , ,l l a h l a fS S S
• • •

= +                                                              (15) 

where: 
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The first term on the right-hand side of Equation (15) is the local entropy generation due to heat 
transfer ( halS ,,

• ) while the second term is the local entropy generation due to fluid friction ( falS ,,

• ), Dϕ is the 
irreversibility distribution coefficient related to fluid friction irreversibility. The dimensionless total 
entropy generation is the integral over the volume (Ω) of the dimensionless local entropy generation: 

 

                                                     
l
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= �                                                                  (19) 

An alternative irreversibility distribution parameter called Bejan number (Be) is given in 
dimensionless form as follows [8]:   

                                               Be = , ,l a h

l

S

S

�

�
                                                              (20) 

When Be >> 1/2, the irreversibility due to heat transfer dominates. For Be << 1/2, the irreversibility 
due to viscous effects dominates. For Be = 1/2, heat transfer and fluid friction irreversibilities are 
equal. Heat transfer irreversibility is the only origin of entropy generation when Be = 1. When Be = 0, 
the fluid friction irreversibility is the only origin of entropy generation. Entropy generation is 
calculated by using Equation (15) after solving the system of the dimensionless Equations (1)–(4). 

4. Numerical Procedure

Energy and Navier-Stokes’s equations are solved by determination of the temperature and the velocity 
scalar fields which depend on the choice of numerical support of resolution. In this study a modified 
version based on Control Volume Finite Element Method (CVFEM) of Saabas and Baliga [9] is used. A 
standard grid in which diagonals are added to form triangular elements around each node where velocity 
components are calculated is considered. A staggered grid is used to calculate pressure around each 
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nodal point. Pressure and velocity components are calculated at different points to avoid numerical 
oscillations. To resolve pressure-velocity components, the SIMPLE algorithm (Semi Implicit Method for 
Pressure Linked Equations) of Patankar [10] is firstly applied, then the SIMPLER algorithm (SIMPLE 
Revised) and the SIMPLEC approximation of Van Doormal and Raithby in which addition terms of 
pressure and their relative to velocity are considered, respectively in conjunction with an Alternating 
Direction Implicit (ADI) scheme for performing the time evolution. The used numerical code written in 
FORTRAN language was described and validated in details in Abbassi et al. [11,12]. 

Nusselt number (Nu) that describes heat transfer can be considered as a good criterion for validation 
of our code by comparison of the obtained results with those given in literature. Table 1 gives 
comparison of these results for the case of a square cavity (A = 1). 

Table 1. Code validation test. 

 Ra = Gr × Pr 103 104 105

Nu 
Present Study 1.0987 2.279 4.618 

De Vahl Davis [13] 1.118 2.243 4.519 
Baliga and Patankar [14] 1.114 2.218 4.371 

From Table 1, our results are in good agreements with those obtained in [13] and [14]. 

5. Results and Discussions  

The aim of the present study is to investigate the influence of the operating parameters such as the 
thermal Grashof number, the irreversibility distribution and the aspect ratios and the inclination angle 
of a rectangular enclosure on entropy generation behavior for the case of an incompressible viscous 
fluid. The Prandtl number is fixed at 0.71, the Thermal Grashof number, the irreversibility distribution 
ratio, the aspect ratio and the inclination angle are in the following ranges: 103 � Gr � 105;  
10�4 � �D � 10�2; 1� A � 5 and 0° � φ  � 180°, respectively. 

For fixed values of the inclination angle of the enclosure (φ  = 90°) and the irreversibility coefficient 
(�D = 10�2), transient entropy generation for Gr = 104 and 105 at different aspect ratio values is illustrated 
in Figures 2 and 3. As can be seen, entropy generation increases at the beginning of the transient state 
where the conduction is the dominant mode of heat transfer, reaches a maximum value which is more 
important as the aspect ratio of the cavity is more important. As time proceeds, entropy generation 
decreases and tends towards a constant value at the steady state which depends also on the aspect ratio. 
For low thermal Grashof number, the decrease of entropy generation is asymptotically showing that the 
system’s evolution follows the linear branch of thermodynamics for irreversible process according to 
Prigogine’s theorem. Oscillations of entropy generation are observed for the high values of thermal 
Grashof number as seen in Figure 4. That is the oscillation behavior obtained before the steady state, 
corresponds to non linear branch of irreversible processes. In steady state, entropy generation tends 
towards an asymptotic value which increases with the increase of aspect ratio of the enclosure.
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Figure 2. Dimensionless total entropy generation versus time for: Gr = 104; 210−=Dϕ ;  
φ  = 90° (a) A = 1; (b) A = 2; (c) A = 3; (d) A = 4; (e) A = 5. 

 
 

Figure 3. Dimensionless total entropy generation versus time for Gr = 105; 210−=Dϕ ; 
φ  = 90°; (a) A = 1; (b) A = 2; (c) A = 4; (d) A = 5. 

 

Figure 4. Dimensionless total entropy generation versus time for Gr = 105; 210−=Dϕ ; 
φ  = 90°; A = 1 (oscillations). 
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Figures 5, 6 and 7 show the effect of the inclination angle on entropy generation for fixed values of 
irreversibility distribution ratio (10�4) and thermal Grashof number (103, 104 and 105) and for different 
aspect ratio values of the cavity. As it can be seen, for any fixed aspect ratio and thermal Grashof 
number values, entropy generation increases with the inclination angle, reaches a maximum value then 
decreases. Maximum value depends on aspect ratio. This value is obtained at ≈φ 50° for A = 2 and at 

≈φ 80° for A = 5. The increase of both aspect ratio and thermal Grashof number induces an increase 
of entropy generation value. It could be noticed that for the two studied limiting inclination angle 
values (i.e., φ  = 0°, 180°), entropy generation value is the same for any fixed aspect ratio. 

Figure 5. Dimensionless total entropy generation versus inclination angle for Gr = 103; 
�D = 10�4; (a) A = 1; (b) A = 2; (c) A = 3; (d) A = 4; (e) A = 5. 

 

Figure 6. Dimensionless total entropy generation versus inclination angle for Gr = 104; 
�D = 10�4; (a) A = 1; (b) A = 2; (c) A = 3; (d) A = 4; (e) A = 5. 
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Figure 7. Dimensionless total entropy generation versus inclination angle for Gr = 105; 
�D = 10�4; (a) A = 1; (b) A = 2; (c) A = 3; (d) A = 5. 

 
 

The influence of the irreversibility distribution ratio on entropy generation is depicted on Figure 8. 
As it can be seen, for lower aspect ratio values (i.e., A = 1: square cavity), no important variation of 
entropy generation is observed, that is the square enclosure gives the lowest value of irreversibility. On 
increasing the aspect ratio, entropy generation value increases especially when �D � 10�3. This is due 
to the predominance of convective irreversibility inside the enclosure, which results from the increase 
of both thermal and velocity gradients of the fluid. The aspect ratio of the cavity has a considerable 
effect on entropy generation as illustrated in Figure 9. Obtained results show that entropy generation 
increases with aspect ratio and Grashof number. As it can be seen, a linear behavior of entropy 
generation versus aspect ratio is obtained for A � 3. 

Figure 8. Dimensionless total entropy generation versus irreversibility distribution ratio 
for: Gr = 103; φ  = 90°; (a) A = 1; (b) A = 2; (c) A = 3; (d) A = 4; (e) A = 5. 

 



Entropy 2011, 13                            
 

 

1030

Figure 9. Dimensionless total entropy generation versus aspect ratio for φ  = 90°;  
(a) Gr = 103 and �D = 10�2; (b) Gr = 104 and �D = 10�3; (c) Gr = 105 and �D = 10�4. 

 

Contribution of either thermal or viscous irreversibility on total entropy generation is characterized 
by the dimensionless number called Bejan number (Be) which is defined as the ratio of entropy 
generation due to heat transfer by total entropy generation. For Be = 1, irreversibility is due to heat 
transfer. When Be = 0, irreversibility is due to viscous effect. For Be = ½, contributions of the two 
terms are equal. For Be > ½ thermal irreversibility dominates and for Be < ½ friction one dominates. 
As it can be seen in Figure 10, variation of the inclination angle of the cavity from 0° to 40° induces a 
decrease of Bejan number value from unit value observed at φ  = 0° corresponding to pure conduction 
regime which is relative to dominance of thermal irreversibility to a first minimum at 40°. 

Figure 10. Variation of Bejan number versus inclination angle for Gr = 104; �D =10�4;  
(a) A = 1; (b) A = 2; (c) A = 3; (d) A = 4; (e) A = 5. 
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It could be remarked that the aspect ratio has no significant influence on Bejan number for  
0° � ϕ  � 30°. A second minimum of Bejan number is obtained at φ  = 125°. It is important to notice 
that for 40° � ϕ  � 125°, viscous irreversibility dominates since convective mode is the dominant 
mode. In this case, viscous irreversibility increases with the aspect ratio value as velocity gradients 
increase. For ϕ  > 125°, Bejan number again increases showing that the thermal irreversibility 
dominates and the aspect ratio has no practical effect on Bejan number value.  

At the local level, Figure 11 shows that entropy generation is mainly located on the lower corner 
of the heated wall and on the upper corner of the cooled wall for 103 � Gr  � 104. This is due to 
thermal and velocity gradients in the above mentioned regions as indicated by isothermal lines and 
stream lines. For relatively higher Grashof number value (i.e., Gr  � 105), entropy generation chart 
shows that lines of irreversibility are practically located through the active sides (heated and cooled 
walls). This is due to considerable thermal and velocity gradients as described by isothermal and 
stream lines forGr  = 105.  

Figure 11. Isotherm, stream and isentropic lines for A = 2; �D = 10�2; φ  = 90°  
(a) Gr = 103; (b) Gr = 104; (c) Gr = 105. 

 

 



Entropy 2011, 13                            
 

 

1032

Figure 11. Cont. 

 

6. Conclusions 

Entropy generation in natural convection through an inclined rectangular cavity is numerically 
calculated using the Control Volume Finite Element Method (CVFEM). Results show that total 
entropy generation increases with the aspect ratio of the cavity for high thermal Grashof number, for 
any fixed irreversibility distribution ratio and with the last parameter at constant Grashof number. 

The transient state study shows that entropy generation increases at the beginning of this regime, 
reaches a maximum value, then decreases asymptotically for low Grashof number and with oscillations 
at high Grashof number towards a constant value at the steady state. At φ  = 0° and φ  = 180°, entropy 
generation takes a constant value depending on aspect ratio of the cavity and corresponding to pure 
conduction regime by heat transfer. Contributions of thermal and viscous irreversibility on entropy 
generation are investigated using dimensionless number called Bejan number which takes unity value 
for the two limit angles: 0° and 180° and it decreases between them according to dominance of fluid 
velocity or heat transfer. Bejan number increases as the aspect ratio increases at fixed values of 
thermal Grashof number and irreversibility distribution ratio. At local level, entropy generation is 
located on low corner of the heated side and upper corner of the cooled side of the enclosure. 
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