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Abstract: In many life-testing and reliability studies, the experimenter might not always

obtain complete information on failure times for all experimental units. Among the different

censoring schemes, the progressive censoring scheme has received a considerable attention

in the last few years. The aim of this paper is simplifying the entropy of progressively Type II

censored samples. We propose an indirect approach using a decomposition of the entropy

in progressively Type II censored samples to simplify the calculation. Some recurrence

relations for the entropy in progressively Type II censored samples are derived to facilitate

this calculation. An efficient computational method is derived that simplifies computation of

the entropy in progressively Type II censored samples to a sum; entropy in collections order

statistics. We compute the entropy in a collection of progressively Type II censored samples

for some known distributions.

Keywords: entropy; progressive censoring; order statistics; recurrence relations;

Markov chain

1. Introduction

Information theory provides an intuitive tool to measure the uncertainty of random variables and the

information shared by them, in which the entropy and the mutual information are two critical concepts.

Let X be a random variable with a cumulative distribution function (cdf) F (x) and probability density

function (pdf) f(x). The differential entropy H(X) of the random variable is defined by Cover and

Thomas [1] to be

H(X) = −
∫ ∞

−∞
f(x) log f(x)dx (1)
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Let us consider a life-testing experiment where n units is kept under observation until failure. These

units could be some system, components, or computer chips in reliability study experiments, or they

could be patients put under certain drug or clinical conditions. Suppose the life lengths of these n units

are independent identical random variables with a common cdf F (x) and pdf f(x). Data collected from

such experiments called the order statistics sample

X1:n < X2:n < · · · < Xn:n

where Xr:n is called the rth-order statistics (OS).

For some reason, suppose that we have to terminate the experiment before all items have failed. For

example, individuals in a clinical trial may drop out of the study, or the study may have to be terminated

for lack of funds. In an industrial experiment, units may break accidentally. There are, however, many

situations in which the removal of units prior to failure is pre-planned. One of the main reasons for

this is to save time and cost associated with testing. Data obtained from such experiments are called

censored data.

The most common censoring schemes are Type I and Type II censoring. In conventional Type I

censoring, the experiment continues up to a prespecified time T . Any failures that occur after T are

not observed. The termination point T of the experiment is assumed to be independent of the failure

times. In conventional Type II censoring, the experimenter decides to terminate the experiment after a

prespecified number of items r ≤ n fail. In this scenario, only the smallest lifetimes are observed. In

Type I censoring, the number of failures observed is random and the endpoint of the experiment is fixed,

whereas in Type II censoring the endpoint is random, while the number of failures is fixed.

Park [2] studied the entropy of Type II censored sample. Park [3] considered testing exponentiality

based on the Kullback-Leibler information with the Type II censored data. The entropy of a single Xr:n,

and a complete order statistic sample has been studied in Wong and Chen [4] and Ebrahimi et al. [5].

Here we considers progressive Type II censored schemes. Among the different censoring schemes,

the progressive censoring scheme has received a considerable attention in the last few years, particularly

in reliability analysis. It is a more general censoring mechanism than the traditional Type I and Type II

censoring [6]. The recent review article by Balakrishnan [7] provide details on progressive censoring

schemes and on its different applications. This paper is concerned with simplifying calculation of the

entropy in progressively Type II censored data from the i.i.d. random sample of size n. However,

the extension to progressively Type II censored data is not so straightforward, because the joint

entropy of progressively Type II censored data is an n-dimensional integral. Besides, removals cause

additional complications.

Following Balakrishnan and Aggarwala [8], progressively Type II censored samples can be described

as follows. Let n units be placed in test at time zero.

1. The m, and the Ri and i = 1 · · · ,m− 1 are fixed prior to the test.

2. At the first failure, R1 units are randomly removed from the remaining n− 1 surviving units.

3. At the second failure, R2 units are randomly removed from the remaining n−R1 − 2 units.

4. The test continues until the mth failure, when all remaining Rm = n−R1−R2−· · ·−Rm−1−m

are removed from experiment, so the life testing stops at the mth failure..
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5. The observed failure times X = (X1:m:n, X2:m:n · · ·Xm:m:n) constitute Type II progressive

censored OS.

6. If R1 = R2 = · · · = Rm−1 = 0, then Rm = n−m which corresponds to the Type II censoring.

7. If R1 = R2 = · · · = Rm = 0,then m = n which corresponds to the usual order statistics.

Thus, usual OS and the Type II censoring become a special cases of progressively Type II censored

samples. So any result established for progressively Type II censoring becomes a generalization of the

corresponding result for OS and the Type II censoring.

The likelihood function may be written as [8]

f1:m:n,....,m:m:n(1:m:n, x2:m:n · · · xm:m:n) = c
m∏
i=1

f(xi:m:n; θ)[1− F (xi:m:n; θ)]
Ri (2)

where c = n(n−R1−1)(n−R1−R2−2) · · · (n−R1−R2−R3 · · ·−Rm−1−m+1). The joint entropy

contained in (X1:m:n, X2:m:n · · ·Xi:m:n), i.e., a collection of first i of progressively Type II censored OS,

is defined to be

H1....i:m:n = E{log f1:m:n,....,i:m:n(X1:m:n, X2:m:n · · ·Xi:m:n)} (3)

where f1:m:n,...., i:m:n(x1:m:n, x2:m:n · · · , xi:m:n), is the density function of (X1:m:n, X2:m:n · · ·Xi:m:n).

To our knowledge, Balakrishnan et al. [9] generalized the result of Park [3] testing exponentiality based

on the Kullback-Leibler information with the type II censored data to a progressively Type II censored

data and obtained an approximate to the joint entropy in progressively Type II censored samples based

on nonparametric estimation. Hence, the exact values of the joint entropy in progressively Type II

censored samples has not been obtained. Several applications for entropy such as characterization, tests

for goodness-of-fit based on censored data, parameter estimation and quantization theory are known, for

example see [3,9].

In the case of H1....i:m:n, difficulty arise from the removal as well as the expression of H1....i:m:n,

which involves integration over i random variables, so simplifying the calculation of H1....i:m:n is more

attractive. In this article we focus on the study of the properties of the joint entropy in progressively

Type II censored OS. In Section 2 we developed the idea of Park [2] about the decomposition of

entropy in OS to introduce an indirect approach for decomposition of entropy in progressive Type II

censored OS. In Section 3 we derive a recurrence relations for the entropy in progressively Type II

censored samples, which will prove helpful in calculating the entropy. In Section 4 we derive an

efficient computational method to reduce r-dimensional integrals in the calculation of H1···r:m:n to no

integral where the computation of the entropy in progressively Type II censored samples simplifies

to a sum; entropy of the smallest OS of varying sample size. In Section 5 we apply our results for

computing the entropy in collections of a progressively Type II censored samples from normal and

exponential distributions.

2. Decomposition of the Joint Entropy

Park [2] and Wong and Chen [4] have shown that the total entropy of i.i.d. random sample of size n

is decreased if the sample is ordered. Park [2] showed how much the entropy of i.i.d. random sample
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of size n is decreased if the sample is ordered through, the following identity about the entropy of the

ordered data h1....:n:n

h1....:n:n = nh1:1 − log n! (4)

In view of Equation (4) and noting that progressive Type II censored sample can be seen as an

ordered sample

(X1:m:n, X2:m:n · · ·Xm:m:n)

with the removals (R1, R2, · · ·Rm), we have the following result for the entropy of the progressive Type

II censored OS sample.

Lemma 2.1.
H1....m:m:n = nH1:1:1 − log c (5)

where c = n(n − R1 − 1)(n − R1 − R2 − 2) · · · (n − R1 − R2 − R3 · · · − Rm−1 − m + 1), and

H1:1:1 = h1:n = 1− ∫∞
−∞ f(x) log h(x)dx.

Since the progressively Type II censored sample form a Markov chain [8], we have the

following results.

Lemma 2.2.
1.

Hr+1....m:m:n|i...r:m:n = Hr+1....m:m:n|r:m:n, i = 1, · · · r
2.

Hr+1....i:m:n −Hr+1....i:m:n|r:m:n = Hr+1:m:n −Hr+1:m:n|r:m:n, i = r + 1, · · ·m.

PROOF. From the Markov chain property of progressive Type II censored OS, the first part follows

directly. The second part can be shown by using the first part and the symmetry of the mutual information

Csiszár [10],

Hr+1....i:m:n −Hr+1....i:m:n|r:m:n = Hr+1:m:n −Hr+1:m:n|r:m:n

= Hr:m:n −Hr:m:n|r+1:m:n

Next we show the following decomposition of the entropy of progressive Type II censored OS.

Lemma 2.3.
H1....m:m:n = H1....r:m:n +Hr+1....m:m:n|r:m:n (6)

PROOF. By the additive property of the entropy measure and Lemma 2.1. we have the result.

We see from Equations (5) and (6) that the entropy of r progressive censored data H1....r:m:n

can be obtained from Hr+1....m:m:n|r:m:n. So we consider Hr+1....m:m:n|r:m:n to study H1....r:m:n.

Let (X1:m:n, X2:m:n · · ·Xm:m:n) be a progressively Type II censored sample with censoring

scheme (R1, R2, · · ·Rm). The entropy in a collection of first i progressively Type II censored

(X1:m:n, X2:m:n · · ·Xi:m:n) is defined by Equation (3), and can be written as

H1....i:m:n = −
∫ ∞

−∞
· · ·

∫ x2:m:n

−∞
f1..i:m:n(x1:m:n, · · · , xi:m:n)

× log f1..i:m:n(x1:m:n, · · · , xi:m:n)dx1:m:n · · · dxi:m:n (7)
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where f1....i:m:n(x1:m:n, · · · , xi:m:n) is the joint pdf of the first i order statistics of the progressively Type II

censored sample.

Using the Markov chain property of the order statistics from progressive Type II censored samples,

we have the following decomposition for the score function:

log f1···m:m:n = log f1···i:m:n + log fi+1···m:m:n|i:m:n

where fi+1···m:m:n|i:m:n is the pdf of (Xi+1···m:m:n, · · ·Xm:m:n) given Xi:m:n = xi. The following

decomposition follows from the strong additivity of the entropy

H1···m:m:n = H1···i:m:n +Hi+1···m:m:n|i:m:n,

where Hi+1···m:m:n|i:m:n is the average of the conditional information in (Xi+1···m:m:n , · · · , Xm:m:n) given

Xi:m:n = xi.

On the other hand, in view of the result of Balakrishnan and Aggarwala [8], the fi+1···m:n|i:m:n is

the joint density of the progressively Type II censored sample of size (m − i), with censoring scheme

(Ri+1, , · · ·Rm), from (n−∑j=i
j=1 Rj − i) drawn from the parent distribution f(x) truncated from the left

at xi with density f(x)
1−F (xi)

, x > xi. Therefore Hi+1···m:m:n|i:m:n can be written as the double integral

Hi+1···m:m:n|i:m:n = (n−
j=i∑
j=1

Rj − i)
∫ ∞

−∞
g(w)fi:m:n(w)dw

− log(n−
j=i∑
j=1

Rj − i)! (8)

where

g(w) = −
∫ ∞

w

f(x; θ)

1− F (w; θ)
log

f(x)

1− F (w)
dx

and fi:m:n(x) is defined by

fi:m:n(x) = ci−1

i∑
j=1

aj(i)(1− F (x))γj−1f(x), −∞ < x < ∞, 1 ≤ i ≤ m

where

γi = n− i+
m∑
j=i

Ri, ci−1 =
i∏

j=1

γj, 1 ≤ i ≤ m (9)

and

aj(i) =
i∏

r=1,r �=j

1

γr − γj
, 1 ≤ j ≤ i ≤ m (10)

Since we already know about the entropy of the complete sample H1···m:m:n, the entropy H1···i:m:n can

be now easily derived from Equations (6) and (8).

EXAMPLE 2.1. For the exponential density exp(−x), we can show that g(w) = 1 so that

Hi+1···m:m:n|i:m:n = (n−
i∑

j=1

Rj − i)
∫ ∞

−∞
fi:m:n(w)dw

− log(n−
i∑

j=1

Rj − i)! (11)
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Hi+1···m:m:n|i:m:n = (n−
i∑

j=1

Rj − i)− log(n−
i∑

j=1

Rj − i)!

Thus in that case

H1···i:m:n = i+
j=i∑
j=1

Rj + log(n−
i∑

j=1

Rj − i)!− log(n)−
m∑
k=1

log(n−
k∑

j=1

Rj − k)

where H1:1:1 = 1 is the entropy in a single observation from the exponential density exp(−x).

REMARK 2.1. We note that all of Park’s results concerning the entropy for the minimum order statistics

X1:n works for the case of progressively Type II censored sample, since f1:n = f1:m:n.

3. Recurrence Relations

Recurrence relations between the cdf (pdf) of OS and progressive Type II censored OS have been

studied by many authors for the purpose of simplifying the calculation of moments of OS and progressive

Type II censored OS.

The standard recurrence relation for the moments of OS was obtained by Cole [11], and can be

written as

nμk
r:n−1 = (n− r)μk

r:n + rμk
r+1:n (12)

where μk
i:j is the moments of the usual OS Xi:j .

This result can be directly derived from the corresponding recurrence relation between the cdf’s of OS.

Kamps and Cramr Lemma 4 [12] obtained the corresponding recurrence relation for generalized OS as

(k + n− r − 1 +
n−1∑
j=1

mj)fX(r:n−1:(m1,·,mn−1))(x)

= (k + n− r − 1 +
n−1∑

j=r+1

mj)fX(r:n:(m1,·,mn−1))(x)

+ (r +
r∑

j=1

mj)fX(r+1:n:(m1,·,mn−1))(x), 1 ≤ r ≤ n− 1 (13)

Since the generalized OS includes the progressive Type II censored OS, it is clear that the case

of progressive Type II censoring is subsumed in the above result. By setting mi = Ri for

i = 1, 2, · · · ,m− 1, mi = 0 for i = m, · · · , n− 1, and k = Rm + 1, we have

(m+
m∑
j=1

Rj)fi:m:n−1 = (m− i+
m∑

j=r+1

Rj)fi:m:n + (i+
i∑

j=1

Rj)fi+1:m:n (14)

Using Equation (14) and the decomposition of the entropy in Equation (8) we have the following

results for the entropy in the progressive censoring scheme.

RELATION 3.1

Hi+1···m:m:n−1|i:m:n−1 =
(n−∑i

j=1 Rj − i)

(m+
∑m

j=1 Rj)
Hi+1···m:m:n|i:m:n

+
(
∑i

j=1 Rj + i)

(m+
∑m

j=1 Rj)
Hi+2···m:m:n|i+1:m:n + C1(n,m,R1 · · · , Ri) (15)
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where C1(n,m,R1 · · · , Ri) = 1
n
{(n − ∑i

j=1 Rj − i) log(n − ∑i
j=1 Rj − i) − log(n − ∑i

j=1 Rj − i)!}
and n =

∑m
j=1 Rj +m.

PROOF. From Equation (8) we have

Hi+1···m:m:n−1|i:m:n−1 = (n−
i∑

j=1

Rj − i− 1)
∫ ∞

−∞
g(w)fi:m:n−1(w)dw

− log(n−
i∑

j=1

Rj − i− 1)! (16)

on the other hand Equation (14) yields

fi:m:n−1(w) =
(m− i+

∑m
j=r+1 Rj)

(m+
∑m

j=1 Rj)
fi:m:n(w) +

(i+
∑i

j=1 Rj)

(m+
∑m

j=1 Rj)
fi+1:m:n(w) (17)

combining Equations (16) and (17) and noting that (m − i +
∑m

j=r+1 Rj) = (n − ∑j=i
j=1 Rj − i) since

n =
∑j=m

j=1 Rj +m, then the Lemma follows.

The following relation shows that the entropy of the first r of the progressive Type II censored OS

of sample size n − 1 can be obtained as a linear combination of the first r and r + 1 of the progressive

Type II censored OS of sample size n.

RELATION 3.2

H1···i:m:n−1 =
(n−∑j=i

j=1 Rj − i− 1)

(m+
∑m

j=1 Rj)
H1···i:m:n

+
(
∑i

j=1 Rj + i)

(m+
∑m

j=1 Rj)
H1···i+1:m:n + C2(n,m,R1 · · · , Ri) (18)

where

C2(n,m,R1 · · · , Ri) =
(n− 1)

n
{log n+

m∑
i=1

(n−
i∑

j=1

Rj − j − 1)}

− log(n−
i∑

j=1

Rj − i)!− (n−
i∑

j=1

Rj − i) log(n−
i∑

j=1

Rj − i) (19)

PROOF. For a sample of size n − 1 the general decomposition of the entropy of progressive Type II

censoring takes the form

I1···m:m:n−1 = I1···i:m:n−1 + Ii+1···m:m:n−1|i:m:n−1 (20)

By applying RELATION 3.1 on Equation (20) we get

H1···m:m:n−1 = H1···i:m:n−1 +
(n−∑j=i

j=1 Rj − i)

(m+
∑m

j=1 Rj)
Hi+1···m:m:n|i:m:n

+
(
∑i

j=1 Rj + i)

(m+
∑m

j=1 Rj)
Hi+2···m:m:n|i+1:m:n + C1(n,m,R1 · · · , Ri) (21)
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where C1 defined above. Equation (21) can be written, by using Equations (5) and (6), as

( n −1)H1:1:1 − {log n+
m∑
i=1

log(n−
j=i∑
j=1

Rj − i− 1)!} = H1···i:m:n−1

+
(n−∑i

j=1 Rj − i− 1)

(m+
∑m

j=1 Rj)
{nH1:1:1 − log n−

m∑
i=1

log(n−
i∑

j=1

Rj − i)!−H1···i:m:n}

+
(
∑i

j=1 Rj + i)

(m+
∑m

j=1 Rj)
{nH1:1:1 − log n−

m∑
i=1

log(n−
i∑

j=1

Rj − i)!−H1···i+1:m:n}

+ C1(n,R1 · · · , Ri) (22)

After some simplifications the result follows.

REMARK 3.1. With R1 = R2 = · · · = Rm = 0 all results of Sections 2 and 3 reduce to corresponding

results for the entropy in a collections usual OS.

4. Computational Method for Calculating H1···i:m:n

In this section we provide another approach to simplify the calculation of the entropy in a collection

of progressively Type II censored OS. We reduce r integrals in the calculation of H1···r:m:n to no integral

where the computation of the entropy in progressively Type II censored samples simplifies to a sum;

entropy of the smallest OS of varying sample size h1:n .

Lemma 4.1. Let X1, X2 · · ·Xn be i.i.d. random sample of size n from pdf f(x) with cdf F (x) and hazard

function h(x) = f(x)
1−F (x)

, and let X1:n, X2:n, · · · , Xn:n be OS corresponding to this sample. Park [2]

obtained the entropy in the smallest order statistics as

h1:n = 1− log n−
∫ ∞

−∞
log h(x)dF1:n(x) (23)

Theorem 4.1. Let (X1:m:n, X2:m:n · · ·Xm:m:n) be a progressively Type II censored sample with censoring

scheme (R1, R2, · · ·Rm). The entropy in the r collection of progressively Type II censored sample

(X1:m:n, X2:m:n · · ·Xr:m:n) can be written as

H1···r:m:n = r − log c′(r)−
r∑

s=1

c′(s)
s−1∑
i=1

ci,s−1(R1 + 1, · · · , Rs−1 + 1)

R′
i

(1− logR′
i − h1:R′

i
) (24)

where R′
i = (R∗

s + 1) +
∑s−1

j=s−i(Rj + 1), R∗
s = (n − s − R1 − · · · − Rs−1 + 1),

c′(t) = n(n−R1 − 1) · · · (n−R1 − · · · −Rt−1 − t+ 1) and

ci,s(R1, · · · , Rs) =
(−1)i

{∏i
j=1

∑s−i+j
k=s−i+1 Rk}{∏s−i

j=1

∑s−i
k=j Rk}

(25)

in which empty products are defined as 1.

PROOF. By the Markov chain properties of progressive Type II censored samples, one can write

f1:m:n,...,r:m:n(x1:m:n, · · · , xr:m:n) = f1:m:n(x1)f2|1:m:n(x2|x1) · · · fr|r−1:m:n(xr|xr−1)
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where fi+1|i:m:n(xi+1|xi) is the conditional pdf of Xi+1:m:n given Xi:m:n = xi, which also is the density of

the first order statistic of a sample of size (n−R1−· · ·−Ri−i) with the truncated density g(x) = f(x)
1−F (xi)

.

Therefore, we have

H1:m:n,...,r:m:n = H1:m:n +H2|1:m:n + · · ·+Hr|r−1:m:n (26)

where Hi+1|i:m:n is the expected entropy in Xi+1:m:n given Xi:m:n = xi i.e.,

Hi+1|i:m:n = E{−
∫ ∞

−∞
fi+1|i:m:n(x|xi:m:n) log fi+1|i:m:n(x|xi:m:n)dx} (27)

By Lemma 4.1. and noting that, condition on Xi:m:n = xi, Xi+1:m:n has the same pdf as the first order

statistic from a random sample of size (n− R1 − · · · − Ri − i) with pdf g(x) = f(x)
1−F (xi)

. Equation (27)

can be written as

Hi+1|i:m:n = 1− log(n−R1 − · · · −Ri − i)− I (28)

where

I = E{
∫ ∞

xi:m:n

fi+1|i:m:n(x|xi:m:n) log h(x)dx} (29)

By changing integrals and noting that Xi:m:n < Xi+1:m:n, we have

I =
∫ ∞

−∞
{
∫ ∞

xi

fi+1|i(x|xi) log h(x)dx}fi(xi)dxi

=
∫ ∞

−∞
log h(x){

∫ x

−∞
fi+1|i(x|xi)fi(xi)dxi}dx

=
∫ ∞

−∞
log h(x){

∫ x

−∞
fi,i+1(xi, x)dxi}dx

=
∫ ∞

−∞
{log h(x)}fi+1(x)dx (30)

Therefore Equation (31), can be written as

Hi+1|i:m:n = 1− log(n−R1 − · · · −Ri − i)−
∫ ∞

−∞
{log h(x)}fi+1(x)dx (31)

Thus by using Equations (26) and (31) H1....r:m:n can be expressed as a summation of single integral as

H1....r:m:n = r − log c′(r)−
r∑

i=1

∫ ∞

−∞
log h(x)fi:m:n(x)dx (32)

where c′(r) is defined above. From Theorem 1 in Balakrishnan et al. [13], we have the following relation

for fs:m:n

fs:m:n = c′(s)
s−1∑
i=1

ci,s−1(R1 + 1, · · · , Rs−1 + 1)f(xs)(1− F (xs))
R′

i (33)

−∞ < xs < ∞ where, R′
i, R

∗
s , c′(s) and ci,s−1(R1 + 1, · · · , Rs−1 + 1) are defined above.

We reexpress Equation (33) as

fs:m:n = c′(s)
s−1∑
i=1

ci,s−1(R1 + 1, · · · , Rs−1 + 1)

R′
i

f1:Ri
(xs) (34)

where f1:Ri
is the usual smallest order statistics in a sample of size R′

i. If we use Equations (23) and (34)

in Equation (32) the result follows.
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We have written program in the algebraic manipulation package, MATHEMATICA [14], for

computing Theorem 4.1 and Lemma 4.1 calculated above. For a pre-determined progressively Type

II censoring scheme (n,m,R1, R2, · · ·Rm) the program return the numerical values of the entropy. The

electronic version of the computer program can be obtained by contacting the corresponding author.

REMARK 4.1. The entropy of the smallest usual order statistics are known for well-known distributions

for example see Park [2] and Asadi et al. [15].

5. Illustrative Examples

The entropy of the smallest OS h1:n has the expression [2].

h1:n = 1− 1

n
− log n−

∫ ∞

−∞
log f(x)dF1:n (35)

EXAMPLE 5.1. For the normal distribution, f(x;μ, σ) = 1√
2πσ2 exp−(x− μ)2/2σ2, the entropy of the

smallest OS h1:n takes the form

h1:n = 1− 1

n
− log n+

log(2π)

2
+ log σ +

μ
(2)
1:n

2
(36)

where μ(2)
r:n is the second moment of Xr:n of the standard normal distribution, see Park [2]. We use

Theorem 4.1 and Equation (36) to calculate the H1···r:m:n given in Table 1.

Discussion

Table 1 provides the values of H1···r:m:n for n = 5, 10 and m = 3, 5 for different schemes and

r = 1 · · · ,m. The entries were computed using Theorem 4.1, Equation (36) and MATHEMATICA [14].

For r < m, the table gives the values of the entropy in a collection of r of OS from a progressively

Type II censored sample. For r = m the table gives the values of entropy in a complete progressive

Type II censored sample. The table includes the cases r1 = r2 = · · · = rm−1 = 0, rm = n −m which

corresponds to the Type II censored sample and r1 = r2 = · · · = rm = 0, n = m which corresponds to

the complete sample.

EXAMPLE 5.2. For the logistic distribution, f(x) = exp−(x)
(1+exp−(x))2

,−∞ < x < ∞ the entropy of the

smallest OS h1:n takes the form

h1:n = log β(1, n)− (n− 1)(ψ(n)− ψ(n+ 1) + 2ψ(n+ 1)− ψ(n)− ψ(1) (37)

where β(a, b) = Γ(a)Γ(b)
Γ(a+b)

is the beta function and ψ(z) = d log Γ(z)
dz

is the digamma function, see

Asadi et al. [15]. We use Theorem 4.1 and Equation (37) to calculate the H1···r:m:n.

Table 2 provides the values of H1···r:m:n for n = 5, 10 and m = 3, 5 for different schemes and

r = 1 · · · ,m. The entries were computed using Theorem 4.1 and Equation (37) and MATHEMATICA

[14]. For r < m, the Table gives the values of the entropy in a collection r of OS progressive Type II

censored sample. For r = m, the Table gives the values of entropy in a complete progressive Type II

censored sample.
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Table 1. The entropy in a collection of order statistics from a progressive Type II censored

sample from a normal distribution with unit standard deviation.

n m Censoring scheme r OS of Proressive samples Entropy
5 3 (2,0,0) 1 (X1:3:5) 1.0096

5 3 (2,0,0) 2 (X1:3:5, X2:3:5) 2.11423

5 3 (2,0,0) 3 (X1:3:5, X2:3:5, X3:3:5) 3.40163

5 3 (0,0,2) 1 (X1:3:5) 1.0096

5 3 (0,0,2) 2 (X1:3:5, X2:3:5) 1.87510

5 3 (0,0,2) 3 (X1:3:5, X2:3:5, X3:3:5) 3.18129

5 3 (1,1,0) 1 (X1:3:5) 1.0096

5 3 (1,1,0) 2 (X1:3:5, X2:3:5) 1.97448

5 3 (1,1,0) 3 (X1:3:5, X2:3:5, X3:3:5) 3.27328

5 5 (0,0,0,0,0) 1 (X1:5) 1.0096

5 5 (0,0,0,0,0) 2 (X1:5, X2:5) 1.8751

5 5 (0,0,0,0,0) 3 (X1:5, X2:5, X3:5) 2.76331

5 5 (0,0,0,0,0) 5 (X1:5, · · · , X5:5) 5.01551

10 5 (0,0,0,0,5) 1 (X1:5:10) 0.872403

10 5 (0,0,0,0,5) 2 (X1:5:10, X2:5:10) 1.52808

10 5 (0,0,0,0,5) 3 (X1:5:10, X2:5:10, X3:5:10) 2.12015

10 5 (0,0,0,0,5) 4 (X1:5:10, · · · , X4:0:10) 2.69953

10 5 (0,0,0,0,5) 5 (X1:5:10, · · · , X5:5:10) 3.29964

10 5 (5,0,0,0,0) 1 (X1:5:10) 0.872403

10 5 (5,0,0,0,0) 2 (X1:5:10, X2:5:10) 1.78936

10 5 (5,0,0,0,0) 3 (X1:5:10, X2:5:10, X3:5:10) 2.69933

10 5 (5,0,0,0,0) 4 (X1:5:10, · · · , X4:5:10) 3.70963

10 5 (5,0,0,0,0) 5 (X1:5:10, · · · , X5:5:10) 4.96641

10 5 (3,2,0,0,0) 1 (X1:5:10) 0.872403

10 5 (3,2,0,0,0) 2 (X1:5:10, X2:5:10) 1.65948

10 5 (3,2,0,0,0) 3 (X1:5:10, X2:5:10, X3:5:10) 2.58920

10 5 (3,2,0,0,0) 4 (X1:5:10, · · · , X4:5:10) 3.60857

10 5 (3,2,0,0,0) 5 (X1:5:10, · · · , X5:5:10) 4.86899

10 10 (0,0,0,0,0) 1 (X1:10) 0.872403

10 10 (0,0,0,0,0) 2 (X1:10, X2:10) 1.52808

10 10 (0,0,0,0,0) 3 (X1:5:10, X2:10, X3:10) 2.12015

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X4:10) 2.69953

10 10 (0,0,0,0,0) 5 (X1:10, · · · , X5:10) 3.29974

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X6:10) 3.95362

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X7:10) 4.57641

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X8:10) 5.50748

10 10 (0,0,0,0,0) 10 (X1:10, · · · , X10:10) 7.62962



Entropy 2011, 13 448

Table 2. The entropy in a collection of order statistics from a progressive Type II censored

sample from logistic distribution.

n m Censoring scheme r OS of Proressive samples Entropy
5 3 (2,0,0) 1 (X1:3:5) 1.67390

5 3 (2,0,0) 2 (X1:3:5, X2:3:5) 3.30409

5 3 (2,0,0) 3 (X1:3:5, X2:3:5, X3:3:5) 5.18643

5 3 (0,0,2) 1 (X1:3:5) 1.67390

5 3 (0,0,2) 2 (X1:3:5, X2:3:5) 3.07589

5 3 (0,0,2) 3 (X1:3:5, X2:3:5, X3:3:5) 4.95024

5 3 (1,1,0) 1 (X1:3:5) 1.6739

5 3 (1,1,0) 2 (X1:3:5, X2:3:5) 3.16708

5 3 (1,1,0) 3 (X1:3:5, X2:3:5, X3:3:5) 5.04210

5 5 (0,0,0,0,0) 1 (X1:5) 1.67390

5 5 (0,0,0,0,0) 2 (X1:5, X2:5) 3.07587

5 5 (0,0,0,0,0) 3 (X1:5, X2:5, X3:5) 4.46788

5 5 (0,0,0,0,0) 5 (X1:5, · · · , X5:5) 7.9208

10 5 (0,0,0,0,5) 1 (X1:5:10) 1.62638

10 5 (0,0,0,0,5) 2 (X1:5:10, X2:5:10) 2.89455

10 5 (0,0,0,0,5) 3 (X1:5:10, X2:5:10, X3:5:10) 4.03011

10 5 (0,0,0,0,5) 4 (X1:5:10, · · · , X4:0:10) 5.11611

10 5 (0,0,0,0,5) 5 (X1:5:10, · · · , X5:5:10) 6.20260

10 5 (5,0,0,0,0) 1 (X1:5:10) 1.62638

10 5 (5,0,0,0,0) 2 (X1:5:10, X2:5:10) 3.10523

10 5 (5,0,0,0,0) 3 (X1:5:10, X2:5:10, X3:5:10) 4.52211

10 5 (5,0,0,0,0) 4 (X1:5:10, · · · , X4:5:10) 6.059990

10 5 (5,0,0,0,0) 5 (X1:5:10, · · · , X5:5:10) 7.96778

10 5 (3,2,0,0,0) 1 (X1:5:10) 1.62638

10 5 (3,2,0,0,0) 2 (X1:5:10, X2:5:10) 2.99964

10 5 (3,2,0,0,0) 3 (X1:5:10, X2:5:10, X3:5:10) 4.43974

10 5 (3,2,0,0,0) 4 (X1:5:10, · · · , X4:5:10) 5.97958

10 5 (3,2,0,0,0) 5 (X1:5:10, · · · , X5:5:10) 7.88009

10 10 (0,0,0,0,0) 1 (X1:10) 1.62638

10 10 (0,0,0,0,0) 2 (X1:10, X2:10) 2.89455

10 10 (0,0,0,0,0) 3 (X1:5:10, X2:10, X3:10) 4.03011

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X4:10) 5.11611

10 10 (0,0,0,0,0) 5 (X1:10, · · · , X5:10) 6.20260

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X6:10) 7.33016

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X7:10) 8.54041

10 10 (0,0,0,0,0) 4 (X1:10, · · · , X8:10) 9.88642

10 10 (0,0,0,0,0) 10 (X1:10, · · · , X10:10) 13.44020
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