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Abstract:



The analysis of stability and bifurcation is studied in nonlinear mechanics with dissipative mechanisms: plasticity, damage, fracture. The description is based on introduction of a set of internal variables. This framework allows a systematic description of the material behaviour via two potentials: the free energy and the potential of dissipation. In the framework of standard generalized materials the internal state evolution is governed by a variational inequality which depends on the mechanism of dissipation. This inequality is obtained through energetic considerations in an unified description based upon energy and driving forces associated to the dissipative process. This formulation provides criterion for existence and uniqueness of the system evolution. Examples are presented for plasticity, fracture and for damaged materials.
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1. Introduction


Thermodynamics with an energetic analysis is providing a large framework for the description of irreversibility of anelastic structures. Various approaches has been developed. As an example, functional analysis for dissipative systems have been successfully applied in the case of viscoelasticity.



The introduction of the internal variables allows a systematic description of the material behaviour via two potentials: the free energy and the potential of dissipation.



The development of such description is due to the works of several authors: [1,2,3,4]. They propose a general framework for the usual constitutive laws in the modelling of the anelasticity. The purpose of this article is to study the quasistatic evolution of anelastic structure. The system evolution is analysed using the definition of functionals presented here in the case of nonlinear dynamics, firstly for internal variables associated to volume dissipation in nonlinear mechanics (plasticity and damage), secondly for dissipation due to singularities and discontinuities propagation (fracture, phase transformation). After a short account for the description of the system motion and of the mechanical interactions, the Lagrangian and the Hamiltonian of the system is introduced to describe the evolution of the system [5,6]. After that, the quasistatic evolution is studied for dissipative materials. The criteria of stability and uniqueness of the response of the system are given. Finally illustrations in case of plasticity, of fracture and of damage mechanics are proposed.



The discussion of stability and bifurcation is well known in elasticity [7] and discussion in elastoplasticity have been studied in the same spirit [8,9,10], extensions for fracture mechanics or for damage are more recent [11,12,13]. The discussion is founded essentially on the analysis of the properties of the rate boundary value problem [8,14,15].




2. Some General Features


In order to describe the motion and the equilibrium of bodies or structures subjected to various physical interactions, a kinematical description of the motion is performed. In the case of a continuous medium, this description must ensure the continuity of the medium during its motion.



Usually one looks for the motion of a material point [image: there is no content] from a reference configuration by describing its displacement [image: there is no content].



After the kinematical description of the body, one has to describe the mechanical interactions. Many choices for the description of these interactions are available. For example, the virtual power principle can be used.



This principle describes the mechanical interaction between each material point of the body with respect to a given loading distribution. For sake of simplicity and conciseness of this presentation, a thermodynamic description of interaction is then chosen.




3. Description of the Motion


Let a body Ω submitted to external forces described by vector fields [image: there is no content] over Ω and vector fields [image: there is no content] along the boundary [image: there is no content]. The external forces are generally functions of time.



Under these loadings the body is deformed. The actual position [image: there is no content] of a material point is a function [image: there is no content] of its initial position [image: there is no content] and of the time. The displacement [image: there is no content] is then defined by :


[image: there is no content]



(1)




Consider now, two material points [image: there is no content] and [image: there is no content], then we have:


[image: there is no content]



(2)




Hence, a material element [image: there is no content] is transported by the motion to the material element [image: there is no content]. The corresponding transformation is the linear application associated with the gradient of transformation [image: there is no content]:


[image: there is no content]



(3)




The present length of the material element is given by:


[image: there is no content]



(4)




The changes of the local geometry, the stretching and the shearing of material fibers are determined by the Cauchy-Green tensor [image: there is no content]. In small perturbations the gradient of the displacement is small and the deformation is reduced to its linearized contribution [image: there is no content]:


2ε(u̲)=∇u̲+∇Tu̲



(5)




or in terms of components in a Cartesian orthonormal frame


[image: there is no content]



(6)




All subsequent studies will be made in small perturbations for sake of simplicity.




4. The Mobility and the Interactions


The body Ω is considered as a continuous set of elements, positions of which are denoted by [image: there is no content]. This material element of volume dΩ posses an elementary mass dm=ρdΩ, where ρ is the mass density.



The mobility of the body is defined by its set of virtual motions associated with any vector field [image: there is no content], interpreted as a virtual velocity field.



The notation [image: there is no content] defines the field of f. The field is the set of the values [image: there is no content] for [image: there is no content]. The local value is denoted simply by f.



The interactions are defined by linear forms [image: there is no content] where [image: there is no content] is a real number. [image: there is no content] is named the virtual power of the forces developed by the virtual motion [image: there is no content].



In classical continuum mechanics, the external forces applied on the body are given by vector field [image: there is no content] defined over the volume Ω and by vector fields [image: there is no content] defined over the boundary [image: there is no content]. In this case the virtual power of external forces is expressed as:


Pe(v̲˜*)=∫Ωf̲.v̲*dΩ+∫∂ΩT̲.v̲*da



(7)




The power of internal interactions is given by a field of second order tensors [image: there is no content] such that:


Pi(v̲˜*)=−∫Ωσ:∇v̲*dΩ



(8)




The tensor σ is the Cauchy stress tensor. This expression is the simplest form for a local description of internal interactions compatible with external loadings defined only in terms of vector fields.



Taking account of the axiom of objectivity, the power of local interactions [image: there is no content] is equal to zero for any rigid body motion:


Pi(v̲˜*)=0,∀v̲˜*∈R.B.M



(9)




The set [image: there is no content] is the set of rigid body motion:


[image: there is no content]



(10)




with [image: there is no content] uniform and [image: there is no content] a rigid body rotation. By application of (9) for any domain Ω, the Cauchy stress σ is a second order symmetric tensor.



If we assume that there is no jump for the velocity, the virtual power of acceleration quantities is:


A(v̲˜*)=∫Ωργ̲.v̲*dΩ,γ̲=v̲˙=ddtv̲



(11)




The virtual power principle. The fundamental principle of dynamics is written in terms of virtual power, i.e., the sum of the virtual power of internal interactions and of the virtual power of external forces is equal to the virtual power of acceleration quantities:


Pi(→˜*)+Pe(v̲˜*)=A(v̲˜*)



(12)




for any virtual motion [image: there is no content].



Using this equality for any virtual motion and any subdomain [image: there is no content], the momentum conservation is obtained in a local form:


divσ+ρf̲=ργ̲,σT=σ,σ.n̲=T̲



(13)




[image: there is no content] is the outward normal vector to domain Ω. The divergence operator is defined classically as


[image: there is no content]



(14)







By the same reasoning, the principle of action and reaction is recovered. On an elementary internal surface da, with normal [image: there is no content], the stress vector is continuous, if there is no jump of displacement velocity:


[image: there is no content]



(15)







These equations of conservation are not sufficient to determine the internal state, and some complementary information are needed.



A thermodynamical point of view is chosen. The body is a thermodynamical system formed by a collection of small elements defined as material points. Each small element has a mass density ρ and the local state is characterized by a set of state variables.




5. Conservation of Energy


To describe effectively the behaviour of the material, we must measure a great number of mechanical quantities. In order to be more efficient, the concept of internal parameters is adopted. The internal state is described by the present value of a set of state variables.



The choice of these parameters is governed by the observation and the ability of the modelization to describe the studied phenomenon with accuracy.



The state variables are the strains ε, the temperature θ and a set of internal variables α. Attached with these parameters, an internal energy density e and a entropy density s are determined. Then the internal energy and the entropy of the body Ω are given by integration over the whole body:


E=∫ΩρedΩ,S=∫ΩρsdΩ



(16)







Conservation of energy. The conservation of energy is written as:


[image: there is no content]



(17)




We assume that the caloric power is due to conduction:


Pcal=−∫∂Ωq̲.n̲da=−∫Ωdivq̲dΩ



(18)




The local expression of the energy conservation is deduced from (12,17,18) applied to any volume Ω:


[image: there is no content]



(19)







Entropy production. The second law for the whole system is written as:


S˙+∫∂Ωq̲.n̲θda≥0



(20)




We assume ρ constant in time. After integration by parts, we obtain:


∫Ωρs˙+1θdivq̲dΩ−∫Ωq̲.gradθθ2dΩ≥0



(21)




The two terms are of different nature. The first one is due to internal mechanical irreversibility, and the second one is due to conduction. In nonlinear mechanics, the internal state is generally associated with irreversibility. Then the fundamental inequality of thermodynamics implies that the internal production of entropy must be non-negative. In the total dissipation, we distinguish the part due to the conduction and the part due to internal forces. We assume that the choice of state parameters is a normal set of variables. In this case, a variation of temperature does not induce variation on kinetic energy, so the two dissipations are individually positive:


[image: there is no content]



(22)






[image: there is no content]



(23)







By introducing the energy conservation in the first equation, we can use the free energy ψ instead of internal energy [image: there is no content]. Then, the intrinsic dissipation [image: there is no content] is rewritten as:


[image: there is no content]



(24)




This inequality must be satisfied by any real evolution from the current state defined by the values of the state variables [image: there is no content].




6. The Linear Thermoelasticity


When the constitutive behaviour is elastic, all thermodynamical quantities are functions only of the current state [image: there is no content].



In linear thermoelasticity and for small perturbations around a natural state at the temperature [image: there is no content], the free energy has the following form ([image: there is no content]):


[image: there is no content]



(25)




The positivity of entropy production is satisfied by any real variations of the state variables around a thermodynamical equilibrium (i.e., mechanical equilibrium under uniform temperature), hence we deduce the equations of state:


σ=σr=∂ψ∂ε,s=−∂ψ∂θ



(26)




In this case, the reversible stresses σ satisfy the conservation of the momentum. Therefore the elastic behaviour is essentially reversible.




7. More General Cases


In general, the intrinsic dissipation [image: there is no content] has a form derived from the free energy ψ, which depends on the strain ε, of internal parameters α and of temperature θ. The entropy production is rewritten as:


[image: there is no content]



(27)




The thermodynamical driving forces associated with the state variables are defined by the state equations:


σr=∂ψ∂ε,A=−∂ψ∂α,s=−∂ψ∂θ



(28)




Then, the dissipation takes the form:


[image: there is no content]



(29)







There exist two sources of entropy production, one due to the variations of internal parameters and the other due to the strain rates. The equations of state do not provide the full constitutive equations, and some complementary laws are needed to describe the evolution of the irreversibility. Such laws are determined by observations and experimentations. The domain of reversibility must be determined. The influence of the strain rates must be analysed and finally constitutive relations should be given between the rates [image: there is no content] and the thermodynamical driving forces [image: there is no content].



Generalized standard materials. A powerful method is to consider the existence of potential for the dissipation. Let us assume that the behavior belongs to the class of the generalized standard materials [4]. This ensures the existence of a potential of dissipation. The evolution of the internal state satisfies the normality rule:


α˙=∂d*∂A,ε˙=∂d*∂σirorA=∂d∂α˙,σir=∂d∂ε˙



(30)




The potentials [image: there is no content] and d are convex functions of the variables, having a minimum value at the origin.



Case of linear viscoelasticity. For example, the potential of dissipation is:


[image: there is no content]



(31)




with η a positive definite operator. The complementary law gives:


[image: there is no content]



(32)




The stresses σ used in the balance of momentum is decomposed in two terms [image: there is no content].



	
For the model of Kelvin-Voigt in linear viscoelasticity, the two potentials take the form:


ψ(ε)=12ε:C:ε;d(ε˙)=12ε˙:η:ε˙



(33)




and then the constitutive behaviour implies that:


[image: there is no content]



(34)







	
The Maxwell’s description is obtained by choosing the thermodynamical potential in the following form:


[image: there is no content]



(35)




and a pseudo potential of dissipation in a quadratic manner:


[image: there is no content]



(36)




Then [image: there is no content] and the complementary law gives the relation:


[image: there is no content]



(37)




Then the constitutive behaviour is given by:


σ=C:(ε−α),A=C:(ε−α)=η:α˙



(38)










Normality rule. In the case of a regular and differentiable function, the convexity of the potential of dissipation gives us the characterization of internal state evolution by the equalities:


σir=∂d∂ε˙,A=∂d∂α˙



(39)




More generally the definition of the gradient is replaced by the subgradient.



Normality rule and subgradient of a convex function. The internal state satisfies the evolution law given by the normality rule


[image: there is no content]



(40)




that is by definition the set of thermodynamical forces [image: there is no content] whose satisfy the inequality:


[image: there is no content]



(41)




for all admissible values [image: there is no content].



We can notice that the existence of a convex potential for the dissipation ensures the positivity of the entropy production:


σir:ε˙+A.α˙≥d(ε˙,α˙)−d(0,0)≥0



(42)








8. The Quasistatic Evolution


Consider a body Ω submitted to imposed boundary conditions. The boundary is decomposed into [image: there is no content] on which the displacement is imposed and [image: there is no content] along the stress vector is prescribed, ([image: there is no content] and [image: there is no content]). A solution of the problem of quasistatic evolution is defined by the displacement field [image: there is no content] and the internal state which satisfy:

	
the compatibility equations for strains and displacements: the strain field ε is associated to the displacement [image: there is no content] by [image: there is no content]. The displacement satisfies the boundary conditions [image: there is no content] over [image: there is no content],



	
the state equations:


σr=∂ψ∂ε,A=−∂ψ∂α,s=−∂ψ∂θ



(43)







	
the equations of evolution for the state variables:


[image: there is no content]



(44)







	
the constitutive law:


[image: there is no content]



(45)







	
the momentum conservation and the boundary conditions:


divσ=0 on Ω,σ.n̲=T̲dover∂ΩT



(46)












For the overall system, the rule of the local free energy is replaced by the global free energy:


W(ε˜,α˜,θ˜)=∫Ωρψ(ε,α,θ)dΩ



(47)




We recall the definition of the Gâteaux differential:


[image: there is no content]



(48)




Then we get for our particular case:


∂W∂q˜·q˜*=∫Ω∂ψ∂q.q*dΩ



(49)




For the whole system, the equations of state are relations between fields:


σ˜r=∂W∂ε˜,A˜=−∂W∂α˜,s˜=−∂W∂θ˜



(50)







In a global description, the equations of state have the same form as in the local description. The state of the system is defined by fields of state variables. Connection can be made with the theory of homogenization [16], the state of the whole system is defined by the field [image: there is no content] of the internal parameters α.



Dissipative function. By integration of the potential of dissipation and of evolution law (41), we define the dissipative function:


D(ε˙˜,α˙˜)=∫Ωρd(ε˙,α˙)dΩ



(51)




The evolution of internal state satisfies the normality rule:


[image: there is no content]



(52)




That is by definition:


[image: there is no content]



(53)




for all admissible fields [image: there is no content].



For example, in the case of regular function we have:


∂D∂ε˙˜·ε˜(δu)=∫Ωσir:ε(δu̲)dΩ∂D∂α˙˜·δα˜=∫ΩA.δαdΩ








These equations can be rewritten as:


σ˜ir=∂D∂ε˙˜,A˜=∂D∂α˙˜



(54)







The isothermal boundary value problem. We consider now for sake of simplicity only isothermal processes. Let us consider that the external loading derives from a potential given in terms of traction [image: there is no content] applied on the external surface [image: there is no content] of the body. Then, the global free energy W is replaced by the potential energy [image: there is no content] of the system:


E(u̲˜,α˜,T̲˜d)=∫Ωρψ(ε(u̲),α)dΩ−∫∂ΩTT̲d.u̲da



(55)




By combining all the equations in terms of fields of state variables, the quasistatic evolution is then given in a global manner by the variational system:


[image: there is no content]



(56)






[image: there is no content]



(57)




These equations are defined on a set of admissible fields. The displacement satisfies the boundary conditions [image: there is no content] over [image: there is no content]. Then the fields [image: there is no content] must satisfy [image: there is no content] over [image: there is no content]. The admissible variations [image: there is no content] are submitted to constraints depending on the nature of irreversibility.



The preceding equations are general. They contain the essential structure of a problem of quasistatic evolution. The first equation of this system explains the momentum conservation taking account of the constitutive law:


divσ=0,σ=σr+σir,σ.n̲=T̲dover∂ΩT



(58)




the second one explains the complementary law as a relation between the forces A and the internal parameters:


[image: there is no content]



(59)








9. The Lagrangian and the Dynamical Case


By definition the Lagrangian is the difference between the kinetic energy and the interaction potential of the system. For all kinematically admissible fields, the interaction potential is the potential energy of the whole body:


E(u̲˜,α˜,θ˜,T̲˜d)=∫Ωψ(ε,α,θ)ρdΩ−∫∂ΩTT̲d.u̲da



(60)




The kinetic energy is defined as:


K(v̲˜)=∫Ω12ρv̲2dΩ



(61)




Therefore the Lagrangian has the expression:


[image: there is no content]



(62)




The acceleration is denoted by [image: there is no content], [image: there is no content]. The variations of the Lagrangian are useful, in particular we have:


∂L∂u̲˜·δu̲˜=−∫Ωσr:ε(δu̲)dΩ+∫∂ΩTT̲d.δu̲da∂L∂v̲˜·δv̲˜=∫Ωρv̲.δv̲dΩ,ddt(∂L∂v̲˜·δu̲˜)=∂L∂v̲˜·δv̲˜+(ddt∂L∂v̲˜)·δu̲˜=∫Ω(ρv̲.δv̲+ργ̲.δu̲)dΩ+∫Γm[v̲]Γ.δu̲da








The notation m represents the mass flux through the moving surface Γ along which the displacement velocity v has discontinuities [v]Γ. The equations of the motion are related to the momentum conservation:


divσ=ργ̲overΩ



(63)






σ]Γ.n̲=m[v̲]ΓalongΓ



(64)




Hence, a variational form for the momentum conservation is easily deduced:


∫Ωσ:ε(δu̲)dΩ=∫∂Ωn̲.σ.δu̲da+∫Γn̲.[σ]Γ.δu̲da+∫Ωργ̲.δu̲dΩ



(65)




The stresses σ are decomposed as previously as [image: there is no content] taking account of the constitutive law. The surface Γ is a moving surface, where the displacement velocities undergo discontinuities. Taking all these relations, the evolution of the system is governed by the generalized Lagrange’s equations:


[image: there is no content]



(66)






[image: there is no content]



(67)






∂L∂θ˜·δθ˜=∫ΩρsδθdΩ



(68)







These equations are a generalization to non linear dynamics [5] of the classical Lagrange’s formulation, they have the same form as the expression given in viscoelasticity [1]. In this formulation, we have defined as previously the dissipative function as:


D(ε˙˜,α˙˜)=∫Ωρd(ε˙,α˙)dΩ



(69)




The first term is identical to the equations of motion, the second corresponds to the evolution of the internal variables, the last one defines the local entropy. Adding to these equations, a conduction law for determining the temperature is needed.




10. The Hamiltonian


The Hamiltonian is a Legendre transformation of the Lagrangian, with respect to the velocity and to the temperature [5,6]:


H(u̲˜,p̲˜,α˜,s˜,T̲˜d)=∫Ω(p̲.u̲+θρs)dΩ−L(u̲˜,v̲˜,α˜,θ˜,T̲˜d)



(70)




After transformation, we have:


H(u̲˜,p̲˜,α˜,s˜,T̲˜d)=∫Ω12p̲2ρdΩ+∫Ωρe(ε(u̲),α,θ)dΩ−∫∂ΩT̲d.u̲da



(71)




Here [image: there is no content] is the quantity of momentum [image: there is no content]. In this expression appears the density of internal energy: e=ψ+θs. In a global formulation, we obtain successively:


∂H∂p̲˜·p̲˜*=v̲˜·p̲˜*=ddtu̲˜·p̲˜*,∂H∂u̲˜·δu̲˜=∫Ωρ∂ψ∂ε:ε(δu̲)dΩ−∫∂ΩTT̲d.δu̲da=∫Ωσr:ε(δu̲)dΩ−∫∂ΩTT̲d.δu̲da











Taking account of the momentum conservation, of the decomposition of the stresses into reversible and irreversible parts, of the boundary conditions and of jump conditions, the expressions are then modified:


∂H∂u̲˜·δu̲˜=−∫Ωσir:ε(δu̲)dΩ−∫Ωργ̲.δu̲dΩ+∫Γn̲.[σ]Γ.δu̲da



(72)




Recall that [image: there is no content] and considering the relation:


ddt∫Ωp̲.δu̲dΩ=∫Ωργ̲.δu̲dΩ+∫Γm[v̲]Γ.δu̲da,



(73)




we obtain the momentum conservation in the Hamiltonian’s form:


∂H∂u̲˜·δu̲˜=−∂D∂ε˙˜·ε˜(δu̲)−ddt∫Ωp̲.δu̲dΩ



(74)




Finally, the Hamiltonian formulation of the evolution problem is obtained:


[image: there is no content]











As previously a conduction law must be taken into account and the positivity of the entropy production must be satisfied to determine the evolution of the system.



Generalization. The definition of the Lagrangian and of the Hamiltonian can be extended to generalized media as beams or plates. The proposed description is performed when the behavior of the system is described by two potentials: a global free energy and a dissipative function. If some particular internal constraints exist, the preceding description must be revisited.



Expression of the conservation of energy. For the real motion, the value of the Hamiltonian is the sum of the kinetic energy, of the internal energy and of the potential energy of the external loading, then the conservation of the energy of the system can be easily rewritten as:


[image: there is no content]



(75)




When the external loading is time independent [image: there is no content], the exchange of energy is only due to the heat rate supply [image: there is no content]. Generally this quantity has the form:


Pcal=−∫∂Ωq̲.n̲da,



(76)




where [image: there is no content] is the heat flux. This result is useful in fracture mechanics to discuss the heat generated by the propagation of the crack as presented in the following section.



Conservation law. In the case of conservative system, in an adiabatic evolution ( [image: there is no content]), the Hamiltonian is constant:


[image: there is no content]



(77)




This property can be rewritten in terms of the Lagrangian:


[image: there is no content]



(78)







Property of stationarity. The Lagrangian has properties of stationarity in elasticity or viscoelasticity: let us consider a variation of the Lagrangian in isothermal evolution:


[image: there is no content]



(79)




then


δ∫t1t2Ldt=δD



(80)




where [image: there is no content] is the total viscous dissipation during the variation.



Finally let us note that the above results may be adapted in the case of other type of boundary conditions, taking care they give rise to a well posed problem.




11. Quasistatic Evolution and Time Independent Processes


If the potential of dissipation is convex and the normality rule is adopted, the evolution is well defined by the notion of subgradient as we have seen previously. We are interested now in particular cases of time-independent processes, hence there is no viscosity. This framework permits description of dry friction, of plasticity, damage and fracture.



For these particular behaviour, the potential of dissipation [image: there is no content] is a positive homogeneous function of degree one:


d(mq˙)=md(q˙),∀m>0



(81)




The potential is not differentiable for [image: there is no content]. In this case the sub-gradient at this point is a convex set in the space of the driving force [image: there is no content]. This point of view is nothing else the description associated to Hill’s principle of maximal dissipation. The value of d is given by


[image: there is no content]



(82)




This explains the normality rule and its consequences.



11.1. The Problem of Evolution


Assuming now that the convex [image: there is no content] is defined by a regular convex function f of the driving force [image: there is no content]


[image: there is no content]



(83)




In this case, the normality rule implies that


α˙=λ∂f∂A=λN,λ≥0,f(A)λ=0



(84)




The internal parameter α evolves if the driving force reaches the critical value given by [image: there is no content], otherwise the internal parameter cannot evolve. The rate of α is normal to the equipotential surface [image: there is no content], the notation [image: there is no content] is then adopted.



As previously, we introduce the free energy [image: there is no content] and the potential energy


E(u̲˜,α˜,T̲d)=∫Ωψ(ε(u̲),α)dΩ−∫∂ΩTT̲d.u̲da.



(85)




The potential energy is defined on the set of admissible fields [image: there is no content] kinematically admissible with the given displacement [image: there is no content] prescribed on [image: there is no content].



At each time t, the driving force [image: there is no content] satisfies the inequality [image: there is no content] and the state equations:


[image: there is no content]



(86)




The system is in equilibrium during the time, hence at the current state, the potential energy is stationary among the set of admissible displacements [image: there is no content] which satisfy [image: there is no content] over [image: there is no content]:


[image: there is no content]



(87)




The variations of the potential energy are equivalent to


divσ=0,σ=∂ψ∂ε,σ.n̲=T̲d over ∂ΩT



(88)




These equations are true during the time, so the evolution of equilibrium is given by


divσ˙=0andσ˙=∂2ψ∂ε∂ε:ε˙+∂2ψ∂ε∂α:α˙inΩandσ˙.n̲=T̲˙d over ∂ΩT



(89)




which is equivalent to


[image: there is no content]



(90)




or


0=∫Ωε(δu̲):(∂2ψ∂ε∂ε:ε˙+∂2ψ∂ε∂α:α˙)dΩ−∫∂ΩTT̲˙d.δu̲da



(91)




The current state is determined by the evolution of the internal state [image: there is no content].



Evolution of α.  Considering the normality rule, we can conclude that


λ≥0,f≤0,λf=0



(92)




For an internal state such that [image: there is no content], the evolution of f satisfies [image: there is no content], and simultaneously the time derivative of the condition [image: there is no content] implies that


[image: there is no content]



(93)




then


[image: there is no content]



(94)




Hence [image: there is no content] if and only if [image: there is no content], which is the classical consistency condition. This provides the definition of the set [image: there is no content] of the admissible fields [image: there is no content].



At each instant τ, the domain Ω is decomposed into two complementary subdomains [image: there is no content] and [image: there is no content] such that:


x∈Ωr,f(A(x,t))<0



(95)






x∈Iτ,f(A(x,t))=0



(96)







Then [image: there is no content] is defined as:


P={β(x)/β(x)=0∀x∈Ωrandβ(x)≥0∀x∈Iτ}.



(97)




It is obvious that the field [image: there is no content] is an element of [image: there is no content].



Considering now a point [image: there is no content] then [image: there is no content] and [image: there is no content]. For [image: there is no content], because [image: there is no content] we deduce:


[image: there is no content]



(98)




so we have


∫Ω(λ(x)−β(x))f˙dΩ≥0



(99)




among the set [image: there is no content] of admissible fields β. This is a variational inequality.



By using now the definition of f, considering the equations of state for [image: there is no content] and the normality rule for [image: there is no content], the inequality Equation 99 is rewritten as ([image: there is no content]):


∫Ω(λ(x)−β(x))N:∂2ψ∂α∂ε:ε˙+∂2ψ∂α∂α:NλdΩ≤0.



(100)








11.2. The Rate Boundary Value Problem


We define the functional [image: there is no content] based on the velocities:


F(v̲˜,λ˜,T̲˙˜d)=∫Ω(12ε(v̲):C:ε(v̲)+ε(v̲):Mλ+12λHλ)dΩ−∫∂ΩTT̲˙d.v̲da



(101)




where we have adopted the notations: [image: there is no content].



Variational inequality. The solution of the rate boundary value problem satisfies the variational inequality


[image: there is no content]



(102)




among the set of admissible fields [image: there is no content].



Generally the modulus of elasticity [image: there is no content] is a quadratic positive-definite operator, then the value of the field [image: there is no content] is unique, if the [image: there is no content] is a given data. So the velocity [image: there is no content] can be eliminated: [image: there is no content]. Then, we introduce a new functional which is defined only on the internal variables:


[image: there is no content]



(103)






=∫Ω∫Ω12λ(x)Q(x,y)λ(y)dΩxdΩy−∫∂Ω∫∂Ωλ(x)T(T̲˙d,v̲d)(y,x)daxday



(104)




The solution of the boundary value problem satisfies the variational inequality


[image: there is no content]



(105)




among the set of admissible fields [image: there is no content].



Stability condition. It is known that a solution exist if


∀β˜∈P,∫Ω∫Ωβ(x)Q(x,y)β(y)dΩxdΩy≥0



(106)




where [image: there is no content] is


P={β˜/β(x)=0∀x∈Ωr,andβ(x)≥0∀x∈Iτ}



(107)




this ensures that the current state is stable.



Uniqueness and no-bifurcation. The solution of the boundary value problem is also unique if


∀β˜∈P*∫Ω∫Ωβ(x)Q(x,y)β(y)dΩxdΩy≥0,



(108)




where [image: there is no content] is the set


P*={β˜/β(x)=0∀x∈Ωr}



(109)




This conditions ensures that there is no bifurcation.




11.3. Property of the Functional


The functional [image: there is no content] is decomposed in a quadratic term and a linear contribution


[image: there is no content]



(110)







Consider now that a solution is determined, the domain [image: there is no content] is decomposed in three different domains depending on [image: there is no content] or not:

	
the loading zone


I+τ={x∈Ω/x∈Iτ,μτ(x)>0,f˙τ(x)=0}











	
the unloading zone


I−τ={x∈Ω/x∈Iτ,μτ(x)=0,f˙τ(x)<0}











	
the neutral zone


Ioτ={x∈Ω/x∈Iτ,μτ(x)=0,f˙τ(x)=0}













Introducing asymptotic expansion to define a loading path


[image: there is no content]



(111)






[image: there is no content]



(112)




We may find a local response in terms of displacement field and internal variable fields. It is assumed that the response is developed as an asymptotic expansion in the form of:


[image: there is no content]



(113)






[image: there is no content]



(114)




The term of order one corresponds to the solution of the boundary value problem in velocities. As similar asymptotic expansions can be introduced for the function f to express the normality rule, we can derive constrains on the successive orders of the internal state. Hence the characterization of order two shows that


[image: there is no content]



(115)




The properties of [image: there is no content] are given related to the decomposition of [image: there is no content] and the field [image: there is no content] is an element of the set [image: there is no content]


P2={μ˜/μ(x)=0,ifx∉Iτ∪I+τ∪Ioτ,μ(x)≥0,ifx∈Io,μ(x)∈ℜ,ifx∈I+τ}



(116)




The boundary value problem for the order two has the same form for that of order one, except that the linear term contains terms due to order one [17].


[image: there is no content]



(117)




and the solution of the rate boundary value problem of order 2 satisfies


[image: there is no content]



(118)




among the set of admissible field [image: there is no content] which may satisfy the boundary conditions at order two and [image: there is no content] is an element of [image: there is no content].



The condition of stability on order two is different than the condition of order one, due to the presence of unloading zone. The condition of no bifurcation is also changed taking account of [image: there is no content] on [image: there is no content]. The lost of positivity of Q on these new spaces changes the critical value [image: there is no content].





12. Some Typical Examples


The column is simulated here by a model equivalent to that used previously by many authors [10]. We study the plastic buckling of a simple column. This system is discussed in detail in [9].



The rigid rod model has two degrees of freedom : the downward vertical displacement u and the rotation θ.



12.1. The Discrete Shanley Column


The increment in the compressive force is balanced by the deformation of the two support springs as shown in Figure 1. The springs have an elastoplastic behaviour with linear hardening with free energy:


[image: there is no content]



(119)




where


[image: there is no content]



(120)






The springs are located at points [image: there is no content] and [image: there is no content]. The internal variables are denoted by [image: there is no content]. The potential energy of the system is then:


[image: there is no content]



(121)




The local tension of the spring are


[image: there is no content]



(122)




The domain of reversibility is defined by the convex function f on the driving forces associated to α:


Ai=E(ε−αi)−Hαi,f(Ai)=Ai2−Yc2≤0



(123)




where [image: there is no content] is the plastic limit and we adopt the normality rule for governing the evolution of α:


α˙i=λAi,λ≥0,λf=0



(124)




During loading, the local behaviour is purely elastic or elastoplastic. The local behaviour can be rewritten as:


[image: there is no content]



(125)




where [image: there is no content] for elastic response or [image: there is no content] for loading path in elastoplasticity.


Figure 1. The discrete Shanley column.



[image: Entropy 13 00332 g001]






The potential energy stationarity gives the conditions of equilibrium:


−Td=σ1+σ2;−LTdθ=l(σ2−σ1)



(126)




These equations are preserved during the loading path:


−T˙d=σ˙1+σ˙2;−L(T˙dθ+Tdθ˙)=l(σ˙2−σ˙1)



(127)




In these relations, the local behaviour must be taken into account. Assume now that the local behaviour is conserved during the equilibrium path, the equations of equilibrium can be integrated since the initial position [image: there is no content] to the current state:


[image: there is no content]



(128)




where


A=lLE1−E2E1+E2,B=4l2LE1E2E1+E2.



(129)




Three cases are then studied depending on whether plastic loading or elastic unloading occurs:

	
The two springs are elastic,


[image: there is no content]








hence A=0, the solution [image: there is no content] is given by the condition [image: there is no content]. That is the critical value of Euler. This can be found if the plastic limit [image: there is no content] is not reached, then [image: there is no content].



	
The two springs are in plastic loading.


[image: there is no content]








The value [image: there is no content] is a critical value, but in this case due to the vertical equilibrium, the only possibility is to have [image: there is no content] in these case [image: there is no content]. This state is reduced to the curve [image: there is no content]. That is the fundamental path, the condition of stability is fulfilled.



	
One is elastic and two is in plastic regime:


E1=E,E2=ET








Introducing the notation


Td=TR=ER2l2L,ER=2EETE+ET








[image: there is no content] satisfies [image: there is no content], that is due to the signs of [image: there is no content] at [image: there is no content]. The [image: there is no content] curves are branches of hyperboles with [image: there is no content] as asymptotes. Along this new path the condition of stability is fulfilled.





This simple example shows the influence of the domain of unloading.




12.2. A Simple Continuum : The Shanley Column


Now the springs are uniformly distributed along the segment [image: there is no content]. The domain [image: there is no content] is assumed to be [image: there is no content]. The value of d is determined by the condition of neutral loading


ε˙(d)=0=u˙−dθ˙,[α˙](d,t)=0



(130)




The equations of equilibrium are deduced from the potential energy


[image: there is no content]



(131)




as previously, [image: there is no content], then the state of equilibrium obeys to


[image: there is no content]



(132)






[image: there is no content]



(133)




These equations are valid during the loading process taking into account of the condition Equation 130. Then, we obtain


[image: there is no content]



(134)






[image: there is no content]



(135)







A non-trivial solution in θ is obtained by introducing the time-scale τ such that the velocity [image: there is no content] of propagation of the unloading domain is finite. The domain [image: there is no content] is parametrized with


[image: there is no content]



(136)




At point [image: there is no content], the condition [image: there is no content] where [image: there is no content] gives conditions on the asymptotic expansion.


[image: there is no content]



(137)




A non-trivial solution is then obtained as


[image: there is no content]



(138)




We can take the time-derivative of the equilibrium equations taking account of the position of [image: there is no content] and of discontinuities (137) of the mechanical quantities on this boundary. It is obvious that we have:


[image: there is no content]



(139)







We find [image: there is no content], [image: there is no content] and [image: there is no content],


[image: there is no content]








This is a bifurcated path. The condition of stability of the fundamental path [image: there is no content] is preserved for loading near [image: there is no content] but for [image: there is no content] another path exists which is also a stable path.



Applications. More applications can be found in many papers for elastoplasticity [17,18] with implications on the constitutive laws [14,19]. Influence of prebifurcation conditions have been also analysed [20,21].





13. Stability of Crack Propagation in Fracture Mechanics


Consider an elastic solid Ω containing linear cracks of length [image: there is no content], subjected to an external loading [image: there is no content] on [image: there is no content] and prescribed displacement on [image: there is no content]. Clearly the potential energy depends of the crack lengths [image: there is no content]. For the whole structure, these parameters play the role of internal parameters. The displacement [image: there is no content] belongs to the set of admissible field:


[image: there is no content]



(140)




The surface [image: there is no content] defines the geometry of the crack i, and the prescribed condition is that the crack is opened. As previously stated, a state of equilibrium for a given distribution of crack of length [image: there is no content] is related to the potential energy stationarity:


E(u̲˜,li,T̲d)=∫Ω12ε(u̲):C:ε(u̲)dΩ−∫∂ΩTT̲d.u̲da



(141)




The state of equilibrium is defined by the stress field [image: there is no content] such that: [image: there is no content] over [image: there is no content] and the local equation [image: there is no content]. The strain [image: there is no content] and the displacement [image: there is no content] satisfies the boundary condition [image: there is no content] over [image: there is no content].



Along the open cracks, there is no stress [image: there is no content].



Using now these equations for any closed loop C inside Ω we have:


∫Cσ:ε(u̲)nx−n̲.∇xσ.u̲−n̲.σ.∇xu̲da=0



(142)




where we have adopted the notation [image: there is no content].



With this property, the integral J is rewritten as:


J=12∫Γn̲.∇xσ.u̲−n̲.σ.∇xu̲da



(143)







The local behaviour is reversible, the dissipation is only due to the propagation of cracks. The characterization of the dissipation for the case of a linear crack have been studied, and the dissipation is defined by


Dm=limΓ→0∫Γψn̲.e̲x−n̲.σ.∇u̲.e̲xdal˙=Jl˙



(144)




The integral JΓ=∫Γ(ψn̲.e̲x−n̲.σ.∇u̲.e̲xda in linear elasticity is independent of the curve Γ surrounding the crack tip. The propagation of the crack obeys the Griffith’s law


J≤Gc,l˙=0,(Gc−J)l˙=0



(145)







In classical linear elasticity, the strain ε near the crack tip is singular as [image: there is no content]. To follow the evolution of J in the motion of the crack, we must take the singularity into account. The singularity is preserved for a frame in motion with the crack tip. The crack tip is surrounded by a curve Γ delimiting a domain [image: there is no content], see Figure 2. This domain moves with the position of the crack tip which is given by the function [image: there is no content]. All mechanical quantities are expressed in terms of the classical fixed coordinates [image: there is no content] outside [image: there is no content] and in terms of the moving frame inside [image: there is no content]: the change of coordinates is [image: there is no content].


Figure 2. Decomposition of Ω in [image: there is no content].



[image: Entropy 13 00332 g002]








The time derivative of any mechanical quantities F is given by [image: there is no content] in the moving frame


F(X,Y,t)=f(x,y,t),f˙=∂F∂t=−a∂f∂x+f∘








Following this process, it is easy to evaluate the evolution of J


J˙=∫Γn̲.∇xσ.u̲∘−n̲.σ∘.∇xu̲da



(146)




The direction [image: there is no content] is the direction of the crack. The notations [image: there is no content] and [image: there is no content] are adopted.



For a set of cracks, the boundary value problem is defined on the field [image: there is no content] over [image: there is no content] and [image: there is no content] inside [image: there is no content] with the velocity [image: there is no content]. The direction of the crack is [image: there is no content] and the notations [image: there is no content] and [image: there is no content] are adopted.



The [image: there is no content] has a jump along [image: there is no content] and the stress [image: there is no content] satisfies some discontinuity relations along each [image: there is no content]


[u̲^]Γ+ai[∇i]Γu̲=0,n̲.[σ^]Γ+ain̲.∇iσ=0



(147)







The solution for the rate boundary value problem is now written by introducing the functional [image: there is no content]


F(u̲^,a)=∫Ω/VΓiU(ε^)dΩ+∫ΩU(ε^−ai∇iε)dΩ+∫VΓi(ai∇iσ:ε^−12(ai)2∇iσ:∇iε)dω+∫Γ(−ain̲.∇iσ.u̲^−+12ai2n̲.∇σ.∇iu̲)da−∫∂ΩTT̲˙d.u̲^da



(148)




This is the general form for the propagation of the crack, when the local behaviour is hypoelastic in the sense of Hill, due to the existence of a potential [image: there is no content] such that


[image: there is no content]











More details are given in many papers for elastic media [11,12,22] and extension to other cases in [23,24,25].



Property of a solution. A solution of the boundary value problem [image: there is no content] satisfies the variational inequalities


[image: there is no content]



(149)




among the set of admissible fields


K={(u̲^*,a*)/[u̲^*]Γ+a*∇xu̲=0,a*≥0,u̲^*=v̲dover∂Ωu}



(150)







Some example are given in [12].



13.1. A Simple Model


Consider a straight beam in flexure fixed at the extremities [image: there is no content], where the beam is clamped. The strain is defined by the vertical displacement v : [image: there is no content]. We applied a load at the origin, and we study the possibility of decohesion at point [image: there is no content]. We study two cases, first the applied load is a vertical displacement [image: there is no content] and second we control the load at the origin [image: there is no content]



For the first case the potential energy at the equilibrium is


[image: there is no content]



(151)







As previously [image: there is no content] and [image: there is no content] governs the evolution of the system.



For [image: there is no content] the matrix Q is always positive definite, the position is always stable and we have no bifurcation.



For the case when the force is controlled


[image: there is no content]








The associated Q matrix is always negative definite. The symmetric equilibrium is always a unstable state with a possible bifurcation.



Analysis of a system of two colinear cracks. In a recent paper, the case of two colinear cracks have been studied [26]. The stress intensity factors are expressed and the variation of these quantities relative to the length of the cracks are also given. The interaction matrix of the crack is explicitly given and then the condition of stability and bifurcation can be explicitly given.





14. Moving Surfaces


The propagation of moving surface inside a body is analysed. Here, the moving surface is associated with a change of mechanical properties. This framework is used to describe damage or phase transformation. Variational formulations were performed to describe the evolution of the surface between the sound and the damaged material [13,27,28]. Connection can be made with the notion of configurational forces [29].



14.1. Some Features


The domain Ω is composed of two distinct volumes [image: there is no content] of two materials with different mechanical characteristics. The bounding between the two phases is perfect and the interface is denoted by Γ, ([image: there is no content]). The external surface [image: there is no content] is decomposed in two parts [image: there is no content] and [image: there is no content] on which the displacement [image: there is no content] and the loading [image: there is no content] are prescribed respectively.



The material 1 changes into material 2 along the interface Γ by an irreversible process. Hence Γ moves with the normal velocity [image: there is no content] in the reference state, [image: there is no content] is the outward [image: there is no content] normal, then ϕ is positive; see Figure 3.


Figure 3. Propagation of the interface.



[image: Entropy 13 00332 g003]








When the surface Γ is moving, all the mechanical quantities f can have a jump denoted by [f]Γ=f1−f2, and any volume average has a rate defined by


ddt∫Ω(Γ)fdΩ=∫Ω(Γ)f˙dΩ−∫Γ[f]Γc.ν̲da



(152)







The state of the system is characterized by the displacement field [image: there is no content], from which the strain field ε is derived. The other parameters are the temperature θ and the spatial distribution of the two phases given by the position of the boundary Γ. We analyse quasistatic evolution of Γ under given loading prescribed on the boundary [image: there is no content].



The behaviour of the phase i is defined by the free energy density [image: there is no content], function of the strain ε and of the temperature θ. The mass density ρ of the two phases is the same. The state equations of each phase are


σ=ρ∂ψi∂ε,s=−∂ψi∂θ,



(153)




where σ is the reversible stress and s the entropy. If the materials have no viscosity then σ is the stress satisfying the momentum equation.



To simplify the analysis, we assume that the two phases are linear elastic materials.



The two phases are linear elastic. The potential energy [image: there is no content] of the structure Ω ([image: there is no content]) has the following form


E(u̲˜,Γ,T̲˜d)=∑i=1,2∫Ωiρψi(ε(u))dΩ−∫∂ΩTT̲d.u̲da.








The potential energy plays the role of the global free energy in a thermodynamical description. We can notice that the position of the interface Γ becomes an internal parameter for the global system. The characterization of an equilibrium state is given by the stationarity of the potential energy


∂E∂u̲·δu̲=∑i=1,2∫Ωiρ∂ψi∂ε:ε(δu̲)dΩ−∫∂ΩTT̲d.δu̲da=0,



(154)




for all [image: there is no content] kinematically admissible field satisfying [image: there is no content] over [image: there is no content]. This formulation is equivalent to the set of local equations:

	
local constitutive relations:


[image: there is no content]



(155)







	
momentum equations


divσ=0onΩ,[σ]Γ.ν̲=0overΓ,σ.n̲=T̲dover∂ΩT,



(156)







	
compatibility relations


2ε=∇u̲+∇tu̲,[u̲]Γ=0overΓ,u̲=u̲dover∂Ωu.



(157)












They are equations of a problem of heterogeneous elasticity. The solution is denoted by [image: there is no content], this field depends upon the quantities [image: there is no content]. For an equilibrium state


[image: there is no content]



(158)




This equation expresses the fact that the position of the interface Γ plays the role of internal parameters.



At a given state of equilibrium for a given value of the prescribed loading ( [image: there is no content]), the position of the interface Γ is known. At this time a variation of the loading is imposed, the mechanical quantities evolve and propagation of the interface can occur according to a given evolution law. For a prescribed history of the loading, we must determine the rate of all mechanical fields and the normal propagation ϕ to characterize the position of the interface Γ at each time. Along interface Γ perfect bounding is preserved at each time. Let us introduce the notion of convected derivative.



Convected Derivation. The convected derivative [image: there is no content] of any function [image: there is no content] is


[image: there is no content]



(159)







With this definition, we can expressed the transport of the normal vector at point [image: there is no content]


Dϕν̲=−∇ϕ.e̲αe̲α,



(160)




where [image: there is no content] is a basis of the plane tangent to Γ at point [image: there is no content]. We can notice that the equation of the surface Γ, [image: there is no content] satisfies immediately


[image: there is no content]



(161)




which defines the normal velocity [image: there is no content] of Γ ([image: there is no content]) :


c̲=ϕν̲,ν̲=∂S∂X̲/∥∂S∂X̲∥,



(162)




and finally for any differentiable fields f the convected derivative is obvious


Dϕf=∂f∂t+ϕ∇f.ν̲.



(163)







Hadamard’s relations. The bounding being perfect between the phases, the displacement and the stress vector are continuous along Γ. Their rates have discontinuities according to the general compatibility conditions of Hadamard, rewritten with the convected derivative:

	
continuity of displacement


[u̲]Γ=0⇒Dϕ([u̲]Γ)=[v̲]Γ+ϕ[∇u̲]Γ.ν̲=0,



(164)







	
continuity of the stress vector


[σ]Γ.ν̲=0⇒Dϕ([σ]Γ.ν̲)=[σ˙]Γ.ν̲−divΓ([σ]Γϕ)=0.



(165)












The last equation is obtained taking the equilibrium equation into account. As we have


Dϕ([σ]Γ.ν̲)=Dϕ[σ]Γ.ν̲+[σ]Γ.Dϕν̲,



(166)




where


Dϕ[σ]Γ=[σ˙]Γ+ϕν̲.[∇σ]Γ.ν̲,



(167)




and using the conservation of momentum


[image: there is no content]



(168)




and the expression of the surface divergence given by


[image: there is no content]



(169)




the above result is obtained.



Orthogonality property for discontinuities. Since the displacement is continuous along the interface,


[u̲]Γ=0,⇒[∇u̲]Γ.e̲α=0,



(170)




the discontinuities of the gradient must satisfy


[∇u̲]Γ=U̲(x)⊗ν̲.



(171)




Since the stress vector is continuous on Γ,


[σ]Γ.ν̲=0,



(172)




the discontinuities of σ and of [image: there is no content] have the property of orthogonality as pointed in [30]:


[σ]Γ:[∇u̲]Γ=0.



(173)








14.2. Dissipation Analysis


We consider isothermal transformation and the dissipation is written as previously


[image: there is no content]



(174)




Taking into account of the discontinuities of the mechanical quantities along the moving surface Γ, we have


Dm=∫∂Ωn̲.σ.v̲da−∫Ωψ˙ρdΩ−∫Γ[ψ]Γρϕda



(175)




Taking account of equilibrium and Hadamard relations on the velocities the dissipation is rewritten as


Dm=∫ΓG(s)ϕ(s)da



(176)




where


G(s)=[ρψ]Γ−σ:[ε]Γ



(177)







This quantity has an analogous form to the driving traction force acting on a surface of strain discontinuity proposed in [31]. The criteria which guide the evolution of the interface may be written as function of this quantity.



In a thermomechanical coupling, two different release rates must be distinguished [6]. One defined in terms of variation of the total internal energy gives rise to the heat source associated with the moving surface; the second one gives rise to the production of entropy.



In the case of isothermal evolution the total dissipation is given in terms of the derivative of the potential energy relatively to the position of the interface


∂E∂Γ.Γ˙=−∫ΓGsϕda,orGs(x̲)=−∂E∂Γ(x̲).



(178)




with Gs=ρ[ψ]Γ−σ:[ε]Γ.



In this case, there is only one energy release rate to characterize the propagation, which gives the sources of entropy production and the dissipation.



These relations can be generalized in the dynamical case, by replacing the internal energy of the system by its Hamiltonian, and can be extended to the case of running cracks as well as more general behaviour and structures [6].




14.3. Quasistatic Evolution


In isothermal evolution we must give complementary relations to describe the irreversibility. An energy criterion is chosen as a generalized form of the well known theory of Griffith. Then, we assume


ϕ≥0,ifGs=GconΓ,ϕ=0,otherwise.



(179)




This is a local energy criterion. At each equilibrium state, the interface Γ is decomposed into two subsets where the propagation is either possible or not. Let [image: there is no content] denote the subset of Γ where the critical value [image: there is no content] is reached. The evolution of the interface is governed by the consistency condition. If at the geometrical point [image: there is no content] the criterion is reached


[image: there is no content]



(180)




then the derivative of [image: there is no content] following the moving surface vanishes [image: there is no content]. This leads to the consistency condition written for all point belonging to [image: there is no content]


(ϕ−ϕ*)DϕGs≥0,∀ϕ*≥0,overΓ+,



(181)




otherwise [image: there is no content].



Evaluation of [image: there is no content]. Along the interface, the displacement is continuous, then the velocities satisfy the Hadamard relation:


[image: there is no content]



(182)




To take the convected derivative [image: there is no content], we consider each term of [image: there is no content]. The first term is the jump of free energy and the derivative is


Dϕ(ρ[ψ]Γ)=−σ2:(∇v̲2+ϕ∇∇u̲2.ν̲)+σ1:(∇v̲1+ϕ∇∇u̲1.ν̲)



(183)




Hence, we obtain:


DϕG=Dϕ[ψ]Γ−Dϕσ2:[∇u̲]Γ−σ2:[Dϕ∇u̲]Γ=[σ]Γ:(∇v̲1+ϕ∇∇u̲.ν̲)−(σ˙2+ϕ∇σ2.ν̲):[∇u̲]Γ



(184)




Therefore after regrouping of terms


DϕG=[σ]Γ:∇v̲1−σ˙2:[∇u̲]Γ−ϕGn



(185)




where the last term is given as


Gn=−[σ]Γ:(∇∇u̲1.ν̲)+∇σ2.ν̲:[∇u̲]Γ



(186)









15. The Rate Boundary Value Problem


The solution ([image: there is no content]) must satisfy:

	
the constitutive law: [image: there is no content], over Ω



	
the compatibility for strain and displacement: [image: there is no content] over Ω, and the boundary conditions [image: there is no content] along [image: there is no content],



	
the conservation of the momentum: [image: there is no content] over Ω, and [image: there is no content] along [image: there is no content],



	
the compatibility conditions along the moving perfect interface: [Dϕv̲]Γ=0, [Dϕ(σ.ν̲)]Γ=0,



	
the propagation law: [image: there is no content], [image: there is no content].





This system is written in a global formulation.



The rate boundary value problem. The evolution is determined by the functional


F(v̲˜,ϕ˜,T̲˙d)=∫Ω12ε(v̲):C:ε(v̲)dΩ−∫∂ΩTT̲˙d.v̲da−∫Γϕ[σ]Γ:∇v̲1da+∫Γ12ϕ2Gnda.








The solution satisfies the inequality


[image: there is no content]



(187)




among the set [image: there is no content] of admissible fields [image: there is no content]:


K.A=(v̲,ϕ/v̲=v̲d over ∂Ωu,[v̲]Γ+ϕ[∇u̲]Γ=0,ϕ∈K,



(188)






K={β/β≥0onΓ+,β=0 otherwise}.



(189)







Proof The variations of the functional is given by


δF=∫Ωε(v̲):C:ε(δv̲)dΩ−∫∂ΩTT̲˙d.δv̲da−∫Γδϕ[σ]Γ:∇v̲1da+∫ΓϕδϕGnda−∫Γϕ[σ]Γ:∇δv̲1da,








after integration by part we obtain:


δF=∫Γn̲.[σ˙.δv̲]Γda+∫∂ΩT(σ˙.n̲−T̲˙d).δv̲da−∫Γϕ[σ]Γ:∇δv̲1da−∫Γδϕ[σ]Γ:∇v̲1da+∫ΓϕδϕGnda.








Using now the compatibility conditions for the variation:


δv̲=0, over ∂Ωu,δv̲2+δϕ∇u̲2.ν̲=δv̲1+δϕ∇u̲1.ν̲, over Γ,



(190)




we obtain finally:


δF=∫Γν̲.[σ˙]Γ−divΓ(ϕ[σ]Γ).δv̲1da+∫∂ΩT(n̲.σ˙−T̲˙d).δv̲da−∫Γδϕ([σ]Γ:∇v̲1−σ˙2.[∇u̲]Γ−ϕGn)da.








Hence, we recover the conservation of the momentum and the propagation law.



Stability and Bifurcation The discussion of the stability and bifurcation along an evolution process can be investigated as presented in [13].



Consider the velocity [image: there is no content] solution of the rate boundary value problem for any given velocity ϕ. The field [image: there is no content] satisfies:


divσ˙=0,σ˙=ρ∂2ψ∂ε∂ε:ε(v̲),overΩ,v̲=v̲dalong∂Ωu,σ˙.n̲=T̲˙dalong∂ΩT,








and non-classical boundary conditions on Γ:


Dϕ([σ]Γ.ν̲)=0,Dϕ[u̲]Γ=0.








Consider the value W of [image: there is no content] for this solution [image: there is no content]


[image: there is no content]



(191)




The stability of the actual state is determined by the condition of the existence of a solution


δϕ∂2W∂ϕ∂ϕδϕ≥0,δϕ≥0onΓ+,δϕ≠0,



(192)




and the uniqueness and no-bifurcation is characterized by


δϕ∂2W∂ϕ∂ϕδϕ≥0,δϕ≠0onΓ+.



(193)




The functional W is complex and has the general form


W=∫Γ∫Γ12ϕ(s).B(s,s′)ϕ(s′)dada′−∫ΓQ¯.ϕ(s)da,



(194)




where [image: there is no content] is an integral operator.



Applications The main idea of this framework is that the constitutive law is composed of a potential ψ to describe the reversibility and a potential of dissipation and the normality rule for describing the evolution of the internal parameters. So this approach can be applied in generalized continuum media for study the delamination of laminates or thin film decohesion [32].



Moving surfaces and moving layers are used in a thermodynamical approach of wear and friction [33].



Using of stability and bifurcation analysis, this framework is also used to determine criterion of initiation of defects [34,35].



Many papers are concerned on damaged structure constituted by elastic-brittle material [36] with discussion of conditions of stability [27,37].



15.1. Delamination of a Thin Membrane under Pressure


In this case the volume [image: there is no content] with e small. The strain energy is given as [image: there is no content] where u is the transverse displacement as depicted in Figure 4.


Figure 4. Delamination of a thin membrane.



[image: Entropy 13 00332 g004]








The potential energy of the whole system is:


E(u(x,y),p)=∫Ω12K(∇u)2da−∫Ωpuda



(195)




he displacement [image: there is no content] over [image: there is no content]. When the boundary [image: there is no content] is moving the variation of energy gives the dissipation


Dm=∫Ω∂(ψ−pu)∂uδudΩ−∫∂Ω(ψ−pu)δϕ(s)da



(196)




The displacement [image: there is no content] is related to the boundary [image: there is no content] which moves with the velocity [image: there is no content]. Along this front [image: there is no content] at each instant, then we have a constrain over the variations:


δu+∇u.n̲δϕ=0








In the domain, the variations of the solution satisfies


KΔδu=0x̲∈Ω








The dissipation is then given by


Dm=∫∂Ωψδϕda=∫∂ΩG(s)δϕ(s)da








The normality rule is used


ϕ(s)≥0,G(s,t)−Gc≤0,ϕ(s)(G(s,t)−Gc)=0








This ensures the fact that if [image: there is no content] then [image: there is no content], this equation defines the motion of the boundary [image: there is no content]. The variational inequality takes the form


∫∂Ωddt(G−Gc)(δϕ−ϕ)da≥0.



(197)




for all [image: there is no content].



The boundary value problem is given by the functional


F(v˜,ϕ˜)=∫Ω12K(∇v)2dΩ−2KGc∫∂Ωn̲.∇∇u.n̲ϕ2da



(198)




v and ϕ are linked by the constrain [image: there is no content] over [image: there is no content].



The evolution of [image: there is no content] is given by


[image: there is no content]











For a circular delamination, [image: there is no content] is decomposed in Fourier series of θ. The second variations of energy is


δϕ.E".ϕ=∫∂Ω(G˙+ϕGR)δϕda








and the variation of the dissipation is given in the same time by


δDm=∫∂ΩGcδϕϕRda











The primal functional takes the form


F=∫Ω12K∇v.∇vdΩ−∫Ωp˙vdΩ−ϕ2K∇u.∇∇u.n̲da



(199)




The set of the admissible velocities v is


K={(v˜,ϕ˜)/v(s)+ϕ(s)∇u.n̲=0,ϕ≥0,G≤Gc,ϕ(G−Gc)=0}



(200)







By combining the equations, the solution is [image: there is no content]. The propagation is possible when [image: there is no content] that defines the pressure [image: there is no content]. For a change of shape of


[image: there is no content]



(201)




the displacement is obtained as


[image: there is no content]



(202)







The condition of stability is given by


[image: there is no content]



(203)




hence the circular shape is unstable for pressure controlled system.



Conversely, if the volume is controlled, the pressure is the lagrange multiplier associated to the condition


∫ΩudΩ=Vd



(204)




The condition of stability is governed by


[image: there is no content]



(205)




The condition for stability is fulfilled but the condition of uniqueness is not, [image: there is no content] and [image: there is no content] can be defined such that [image: there is no content].



Many other examples are founded in literature for more complicated situations.





16. Conclusions


We have presented an introduction to the analysis of bifurcation and stability during the evolution of nonlinear system governed by potential energy, potential of dissipation and normality rule. The frame work is used in elastoplasticity, in fracture and for moving interfaces.



The rate boundary value problem has a formal identical structure and leads to variational inequalities that the evolution must satisfy. These inequalities are based on the second derivative of the energy of the system, and are quadratic operators. The properties of these operators give the condition of existence and uniqueness of the system evolution.



Some applications has been also presented. Many other situations can be investigated as in phase transformation [13]. This last example show how the analysis of stability bifurcation has strong implications in homogeneization of the existence of an homogeneized constitutive behaviour.



The conditions of stability and no-bifurcation can also be used to determine new criterion of initiation of defect as pointed out in [34,35].
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