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Abstract: We perform an asymptotic analysis of the NSB estimator of entropy of a discrete
random variable. The analysis illuminates the dependence of the estimates on the number
of coincidences in the sample and shows that the estimator has a well defined limit for a
large cardinality of the studied variable. This allows estimation of entropy with no a priori
assumptions about the cardinality. Software implementation of the algorithm is available.
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1. Introduction

Estimation of functions of a discrete random variable with an unknown probability distribution is one
of the simplest problems in statistics. However, the simplicity vanishes in an extremely undersampled
regime, where K, the cardinality or the alphabet size of the variable, is much larger than N , the number
of the samples. In this case, the average number of samples per possible outcome, or bin, is less than
one, and the relative uncertainty about the underlying probability distribution and its various statistics
is large. To decrease the posterior error, one may turn to Bayesian statistics and bias the set of a priori
admissible distributions. However, finding an optimal bias-variance tradeoff is not easy. For severely
undersampled cases, controlling the variance often make an estimator a function of the prior, rather than
of the measured data.

This is often the case for inference of the Boltzmann-Shannon entropy, H = −
∑K

i=1 qi ln qi (here
qi is probability of an event i), an important characteristics of a discrete variable. In this paper, all
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logarithms are natural, and the unit of entropy is nat. Simple estimators of entropy have low variances
but high biases that are difficult to calculate due to the divergence of the logarithm near zero [1].
Developments driven in part by computational biology applications have solved this problem in the
moderately undersampled regime, N ∼ K and N ∼ eH [1–9]. Interestingly, they also resulted in the
understanding that it is impossible to estimate entropy with zero bias uniformly over all distributions for
a smaller N . However, Ma has argued [10] that, since coincidences in data start to occur at N ∼

√
eH ,

it is possible to estimate entropies even in the deeply undersampled regime, at least for some classes
of probability distributions, such as uniform ones. Similar arguments are well-known in the literature
on estimation of population sizes from capture-recapture data (see, e.g., [11] for recent developments).
There it has been recognized that the population size (and the population entropy) can be estimated long
before every possible individual outcome has been sampled with a high probability [12].

In 2002, Nemenman, Shafee and Bialek introduced a method for entropy estimation, hereafter called
NSB [13]. While the estimator has proven successful in the Ma square-root regime [14,15], a theoretical
basis for the success has not been presented in the literature. Here we review the method and perform
its asymptotic analysis. We verify the intuition that the estimator works in the Ma regime by counting
coincidences. We point out that the method can be viewed as finding the number of yet unseen bins
with nonzero probability given K, the maximum cardinality of the variable. While estimation of K by
model selection techniques cannot work (see below), we show that the method has a non-trivial limit
as K → ∞. Thus one should be able to calculate entropies of discrete random variables even without
knowing their cardinalities. Our analysis allows for an efficient numerical implementation of the NSB
estimator, which we have made available from [16].

2. Summary of the NSB Method

We use Bayes rule to expresses the posterior probability of a probability distribution q ≡ {qi}, i =

1 . . . K, of a discrete random variable with a help of its a priori probability, P(q). Thus if ni i. i. d.
samples from q are observed in bin i, such that

∑K
i=1 ni = N , then the posterior, P (q|n), is

P (q|n) =
P (n|q)P(q)

P (n)
=

∏K
i=1 q

ni
i P(q)∫ 1

0
dKq

∏K
i=1 q

ni
i P(q)

(1)

Following [13], we focus on the popular Dirichlet family of priors, indexed by a hyperparameter β:

Pβ(q) =
1

Zβ
δ

(
1−

K∑
i=1

qi

)
K∏
i=1

qβ−1
i , Zβ =

ΓK(β)

Γ(Kβ)
(2)

Here the δ-function and Zβ enforce normalizations of q and Pβ(q), respectively; and Γ stands for
Euler’s Γ-function. These priors are common in statistics since they result in an analytically tractable,
multinomial posteriors. For example, Wolpert and Wolf [17] calculated posterior averages, here denoted
as 〈. . . 〉β , of many interesting quantities, including the distribution itself,

〈qi〉β =
ni + β

N + κ
, κ ≡ Kβ (3)

and the moments of its entropy, which we will not reprint here.
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According to Equation (3), Dirichlet priors add extra β samples (pseudocounts) to each bin. Thus
for β � N/K, the data are unimportant, on average, and P (q|n) is dominated by almost uniform
distributions, q ≈ 1/K. Then the posterior mean of the entropy is strongly biased upward to its
maximum possible value of Hmax = lnK. Similarly, for β � N/K, distributions in the vicinity of the
frequentist’s maximum likelihood estimate, q = n/N , are important, and 〈H〉β is biased downward [1].

[13] traced this problem to properties of the Dirichlet family. Its members encode reasonable a priori
assumptions about q, but not about H(q). Instead, a priori assumptions about the entropy are strongly
biased, as seen from the a priori moments:

ξ(β) ≡ 〈H|N=0〉β = ψ0(κ+ 1)− ψ0(β + 1) (4)

σ2(β) ≡ 〈(δH)2
∣∣
N=0
〉β =

β + 1

κ+ 1
ψ1(β + 1)− ψ1(κ+ 1) (5)

Here ψm(x) = (d/dx)m+1 ln Γ(x) are the polygamma functions. ξ(β) varies smoothly from 0 for β = 0,
through 1 for β ≈ 1/K, and to lnK for β → ∞. σ(β) ∼ 1/

√
K for almost all β [13], which is

negligibly small for large K. Thus q that is typical in Pβ(q) has the entropy extremely close to some
predetermined β-dependent value. This bias persists even when N ∼ K data are collected.

One should strive for the a priori distribution of entropy, P(H(q)), to be approximately uniform to
have a chance for an unbiased estimator. NSB achieves the uniformity (but not necessarily zero bias) by
noting that, following Equations (4) and (5), for large K, Pβ(H) is almost a δ-function. Thus a prior that
averages over all non-negative values of β (and, correspondingly, over all a ξ ∈ [0; lnK]) may reduce
the bias in the entropy estimation even for N � K. [13] proposed the following infinite mixture of
Dirichlet priors [18] for the averaging:

P(q; β) =
1

Z
δ

(
1−

K∑
i=1

qi

)
K∏
i=1

qβ−1
i

dξ(β)

dβ
P(β) (6)

Here Z is again a normalizing coefficient, and dξ/dβ ensures uniformity for ξ, rather than for β. A
non-constant prior on β, P(β), may be used if needed, but we will not focus on this term from now on.
Such Dirichlet mixture results in P(q) 6= const, introducing biases in estimation of q as a tradeoff for a
possibly accurate estimation of H .

Inference with the prior, Equation (6), involves additional averaging over β (or, equivalently, ξ). The
a posteriori moments of the entropy are

Ĥm =

∫ lnK

0
dξ ρ(ξ,n)〈Hm〉β(ξ)∫ lnK

0
dξ ρ(ξ|n)

(7)

where the unnormalized posterior density is

ρ(ξ|n) = P (β (ξ))
Γ(κ(ξ))

Γ(N + κ(ξ))

K∏
i=1

Γ(ni + β(ξ))

Γ(β(ξ))
(8)

Note that, for N = 0, ρ(ξ|0) = P (β(ξ)). Thus if we choose P (β(ξ)) = const, then the a priori
assumptions about ξ are exactly uniform, as we had hoped to achieve. We note again that the uniformity
of the prior is not equivalent to zero posterior bias.
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An additional reason for the choice of averaging over the model families, as in Equation (6), is
provided by the theory of Bayesian model selection [13,19–23]. Specifically, families of probabilistic
models of data that incorporate more models (have larger volumes in the model space) usually have
high explanatory powers and include some models that are very likely a posteriori. However, they also
include many extremely unlikely models, and the posterior probability averaged over the entire family is
low. Thus the competition between the “goodness of fit” and the volume of the model space (the Occam
factor) often attributes much of the posterior weight to model families that are relatively simple, but
explain the data well. In the case of the NSB prior, different values of β index different model families.
For small β, the estimates in Equation (3) are closer to the frequentist’s maximum likelihood, explaining
the data better. However, there is less smoothing, and the space of models is larger. Thus as argued
in [13], one expects that the integrals in Equation (7) are dominated by some β∗ with a small posterior
variance, and then ·̂ · · ≈ 〈· · ·〉β∗ .

In this work, we start with investigating whether a maximum of the integrand in Equation (7), indeed,
exists. We then study its properties. The results of the analysis leads to a deeper understanding of the
NSB method.

3. Saddle Point Analysis

We calculate integrals in Equation (7) using the saddle point (a. k. a. Laplace) approximation. Since
〈Hm〉β does not depend on N , for N →∞, only the Γ-terms in ρ define the saddle. We write

ρ(ξ|n) =P(β(ξ)) exp [−LK(n, β)] (9)

LK(n, β) =−
∑
i

ln Γ(β + ni) +K ln Γ(β)− ln Γ(κ) + ln Γ(κ+N) (10)

Differentiating, we obtain the following equation for the saddle point (or the maximum likelihood) value,
κ∗ = Kβ∗:

1

K

ni>0∑
i

ψ0(ni + β∗)− K1

K
ψ0(β∗) + ψ0(κ∗)− ψ0(κ∗ +N) = 0 (11)

where Km denotes the number of bins that have, at least, m counts. Note that N > K1 > K2 > · · · .
If K � N , and if there are many bins with multiple counts, i.e., N −K1 � 1, then the (unknown) q

is likely non-uniform. Thus the entropy is significantly smaller than its maximum possible value Hmax.
Since for any β = O(1), 〈H〉β ≈ Hmax [13], small entropy estimate is achievable only if β∗ → 0 as
K →∞. Thus we will look for

κ∗ = κ0 +
1

K
κ1 +

1

K2
κ2 + . . . (12)

where none of κj depends on K. Plugging Equation (12) into Equation (11), we get an equation for κ0:

K1

κ0

= ψ0(κ0 +N)− ψ0(κ0) (13)



Entropy 2011, 13 2017

The leading terms in the expansion of κ∗ are:

κ1 =

ni>1∑
i

ψ0(ni)− ψ0(1)

K1/κ2
0 − ψ1(κ0) + ψ1(κ0 +N)

(14)

κ2 =

[
K1

κ30
+ ψ2(κ0)−ψ2(κ0+N)

2

]
κ2

1 +
∑ni>1

i κ0 [ψ1(ni)− ψ1(1)]

K1/κ2
0 − ψ1(κ0) + ψ1(κ0 +N)

(15)

We have calculated additional higher order terms. However, whenK � 1, as is common in applications,
these terms are rarely needed.

We now solve Equation (13). For κ0 → 0 and N > 0, the r. h. s. of the equation is approximately
1/κ0 [24]. For κ0 → ∞, it is close to N/κ0. Thus if N = K1, and the number of coincidences among
data, ∆ ≡ N − K1, is zero, then the l. h. s. majorates the r. h. s., and Equation (13) has no solution.
That is, there is no saddle point in the integrand. If there are coincidences, a unique solution exists, and
∆→ 0 means κ0 →∞. Thus we search for κ0 of the form κ0 ∼ 1/∆ +O(∆0).

It is useful to define:

fN(j) ≡
N−1∑
m=0

mj

N j+1
(16)

where each of fN ’s scales as N0. Using properties of polygamma functions [24] and defining δ = ∆/N ,
we rewrite Equation (13) as

1− δ =
∞∑
j=0

(−1)j
fN(j)

(κ0/N)j
(17)

Combined with the previous observations, Equation (17) suggests that we look for κ0 of the form

κ0 = N

(
b−1

δ
+ b0 + b1δ + . . .

)
(18)

where each of bj’s is independent of δ and scales as N0.
Substituting Equation (18) into Equation (17), we find the series expansion self-consistent, and

b−1 = fN(1) =
N − 1

2N
(19)

b0 = −fN(2)

fN(1)
=
−2N + 1

3N
(20)

b1 = −f
2
N(2)

f 3
N(1)

+
fN(3)

f 2
N(1)

=
N2 −N − 2

9(N2 −N)
(21)

Again, more terms have been calculated and are used in the software implementation of the estimator.
The obtained expressions present the saddle point value β∗ (or κ∗, or ξ∗) as a power series in 1/K

and δ. To complete the evaluation of Equation (7), we now calculate the curvature at this saddle point:

∂2L
∂ξ2

∣∣∣∣
ξ(β∗)

=

[
∂2L
∂β2

1

(dξ/dβ)2

]
β∗

= ∆ +NO(δ2) (22)

Notice that the curvature does not scale as a power of N as was suggested in [13]. The uncertainty in
ξ∗ is determined to the first order only by coincidences. One can understand this by considering K � 1
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with qi � 1 for most of the bins. Then counts of ni = 1 are not informative for entropy estimation
since they can correspond to massive bins, as well as to some random bins from the sea of the negligible
ones. However, coinciding counts likely corresponds to high-probability bins, which should influence
the entropy estimation. Note also that, to the first order in 1/K, the exact positioning of coincidences
does not matter: for a fixed ∆, a few coincidences in many bins or many coincidences in a single one
produce the same saddle point and the same curvature around it. While this is an artifact of the specific
choice of the prior P(H(q)), the similarity to Ma’s coincidence counting [10] is intriguing.

In summary, if the number of coincidences ∆ � 1, then the saddle point analysis is self-consistent.
A specific value β∗ is selected a posteriori, and the variance of the entropy is small.

Numerical Implementation

The series expansions calculated above form the basis for a numerical implementation of the NSB
algorithm. To calculate the posterior mean and variance of the NSB entropy estimator using Equation (7),
evaluation of three integrals is required numerically (normalization, the first, and the second moments of
H). The algorithm for this is as follows. When ∆ = 0, the integrands are not peaked, and the integrals
can be evaluated by simple Gaussian quadratures or other user-selected methods. If instead ∆ > 1, the
integrands will be peaked, strongly if ∆� 1. Identification of the location of the peaks is then essential
before numerical integration is done. We proceed as follows:

1. The saddle point (the maximum of ρ(ξ|n)) is found numerically by:

(a) evaluating an approximation for κ0 using the first few terms of the series, Equation (18);

(b) using the approximate value as a starting point for the Newton-Raphson iterative algorithm
to solve for κ0 from Equation (13);

(c) plugging the solution into the series expansion for the saddle κ∗, Equation (12);

(d) and, finally, using the latter solution as a starting point for the Newton-Raphson search of a
more accurate value of κ∗ in Equation (11).

2. Each of the integrands in Equation (7) is divided by the value of ρ(ξ|n) at the saddle point, so that
the maximum of the integrands is O(1).

3. Curvature around the saddle point (and hence the posterior variance) is evaluated numerically.

4. The integrals are evaluated numerically over the range that spans a few standard deviations on both
sides of the saddle point; the range is controlled by the user-specified desired accuracy.

The above algorithm has been implemented in Octave/Matlab and C++. It is available from [16]. The
input to the routines is either the histogram of counts (Octave/Matlab and C++), or a series of samples
(C++ only). The output of the routines is either the posterior mean and the standard deviation of the
entropy, and the position of the saddle point, or a variety of diagnostics information if the integration
fails for any reason. The C++ version is implemented specifically to allow estimation of entropies on
alphabets with arbitrary large cardinalities. It is limited only by the ability of the data series to fit in the
computer memory.
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4. Choosing a Value for K?

We are interested in the regime N � K, when the number of pseudocounts in occupied bins, K1β,
is negligible compared to their number in empty bins, (K − K1)β ≈ Kβ. Then Equations (3) and (8)
show that selecting β (i.e., integrating over it) means balancing N , the number of actual counts versus
κ = Kβ, the number of pseudocounts, or, equivalently, the scaled number of unoccupied bins. K is
often unknown in real-life applications, or the number of possible outcomes is a countable infinity.
Estimation of K from data has proven to be a hard problem, only solved completely for uniform
distributions [10,11]. One can consider varying K (instead of β) to find its maximum a posteriori value
when performing Bayesian integration over κ.

To see that this will not work, we note that smaller K leads to a higher maximum likelihood since
the total number of pseudocounts is less. Unfortunately, since there are fewer bins (degrees of freedom)
available, smaller K also means smaller volume in the distribution space. Thus Bayesian averaging over
K is trivial: the smallest possible number of bins (i.e., no empty bins) dominates. This can be seen
from Equation (8): only the first ratio of Γ-functions in the posterior density depends on K, and it is
maximized for K = K1. Thus straightforward selection of the value of K is not an option. However, the
next section suggests a way around this hurdle.

5. Unknown or Infinite K

Often the true value of K is unknown because its simple estimate is intolerably large. For example,
consider measuring entropy of `-gramms in printed English [25] using an alphabet with 29 characters:
26 different letters, one symbol for digits, one space, and one punctuation mark. Then for ` = 10, a naive
estimate of K is 2910 ∼ 1014. Only very few of all possible 10-gramms are allowed by the grammar,
but one does not know how many exactly. Thus one has to work in the space of full cardinality, which is
ridiculously undersampled.

As shown in Section 3, NSB is well defined even for finite N and extremely large K, provided
∆ � 1. Moreover, if K → ∞, then the expressions simplify since only the first term in Equation (12)
needs to be kept. Even more interestingly, for an increasing K and β � 1/K, Pβ(H) becomes closer
to a delta function since the a priori variance of entropy drops to zero as 1/K, Equation (5). Thus NSB
becomes more “certain” asK increases. Correspondingly, a possible solution to the problem of unknown
cardinality is to use an upper bound estimate for K. It is better to overestimate K than to underestimate
it. Even K → ∞ can be used. Insensitivity of the method to the value of K was explored empirically
in [14].

Which assumptions allow NSB to use a few data points to specify entropy of a variable with
even an infinite cardinality? A typical distribution in the Dirichlet family has a specific rank ordered
(Zipf) plot [13]: the number of bins with the probability less than some q is given by an incomplete
B-function, I ,

ν(q) = KI(q; β, κ− β) ≡ K

∫ q
0
dxxβ−1(1− x)κ−β−1

B(β, κ− β)
(23)

where B is the usual complete B-function. NSB estimates the best value for β using bins with
coincidences, the head of the rank ordered plot. But knowing β defines the tails, where no data has
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been observed yet, allowing entropy estimation. Thus NSB relies on the rank-ordered tail of the studied
distribution to be not too far away from the form in Equation (23). If the Zipf plot of the studied
distribution has a substantially longer tail, then one should not trust the results of the method. An
empirical procedure for detecting this case has been suggested in [14,15].

With this warning in mind, we can analytically calculate the entropy estimate and its variance for
a very large K. We want the results that hold even if the saddle point analysis, Section 3, fails when
∆ ∼ 1. Following Equations (12) and (18), β∗ → 0, but κ∗ = Kβ∗ ∼ N2/∆ � N � 1. The range
of entropies is 0 ≤ H ≤ lnK → ∞, so the prior on H produced by P(q; β) is (almost) uniform over
a semi-infinite range and thus is ill-defined. Similarly, there is a problem normalizing Pβ(q). However,
both problems are resolved by an appropriate limiting procedure, and we disregard them in what follows.

To perform the integrals in Equation (7), we point out that, for K →∞, δ = ∆/N → 0, and κ→ κ∗,
we have κ∗ ∼ N2/∆, and then [〈H(n)〉κ − ξ(β)]

∣∣∣
κ≈κ∗

= O(δ) + O(1/K) ≡ O(δ, 1/K). A similar

relation holds for 〈H(n)〉κ. That is, the posterior averages of the entropy and its square are almost
indistinguishable from ξ and ξ2, their respective a priori averages. Since now we are interested in small
∆ (otherwise we can use the saddle point analysis), we replace 〈Hm〉β by ξm in Equation (7). The error
of this approximation is O

(
δ, 1

K

)
= O

(
1
N
, 1
K

)
.

We transform the Lagrangian in Equation (10). First, we drop terms that do not depend on κ since
they appear in the numerator and denominator of Equation (7) and thus cancel. Second, we expand
around 1/K = 0. This gives

LK(n, κ) = −
ni>1∑
i

ln Γ(ni)−K1 lnκ− ln Γ(κ) + ln Γ(κ+N) +O

(
1

K

)
(24)

We note that κ is large in the vicinity of the saddle if δ is small and N is large, cf. Equation (18). Thus
by definition of ψ-functions, ln Γ(κ + N) − ln Γ(κ) ≈ Nψ0(κ) + N2ψ1(κ)/2. Further, ψ0(κ) ≈ lnκ,
and ψ1(κ) ≈ 1/κ [24]. Finally, since ψ0(1) = −Cγ , where Cγ is the Euler’s constant, Equation (4) says
that ξ − Cγ ≈ lnκ. Combining all of these expressions, we get

LK(n, κ) ≈ −
ni>1∑
i

ln Γ(ni) + ∆(ξ − Cγ) +
N2

2
exp(Cγ − ξ) (25)

where ≈ means the precision of O (1/N, 1/K).
We write:

Ĥ ≈ Cγ −
∂

∂∆
ln

∫ lnK

0

e−Ldξ (26)

̂(δH)2 ≈
(
∂

∂∆

)2

ln

∫ lnK

0

e−Ldξ (27)

The integrals in these expressions are calculated by substituting exp(Cγ−ξ) = τ and replacing the limits
of integration 1/K exp(Cγ) ≤ τ ≤ exp(Cγ) by 0 ≤ τ ≤ ∞. This introduces errors of ∼ (1/K)∆ at
the lower limit and ∼ δ2 exp(−1/δ2) at the upper limit. Both errors are within the precision of interest
O(1/K, 1/N) if there is, at least, one coincidence. Thus∫ lnK

0

e−Ldξ ≈ Γ(∆)

(
N2

2

)−∆

(28)
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Finally, substituting Equation (28) into Equation (26) and (27), we get

Ĥ ≈ (Cγ − ln 2) + 2 lnN − ψ0(∆) (29)̂(δH)2 ≈ ψ1(∆) (30)

These equations are valid to zeroth order in 1/K and 1/N . They provide a simple, yet nontrivial,
estimate of the entropy that can be used even if the cardinality of the variable is unknown. However, one
always must analyze for a possible bias when using the estimator. Note that Equation (30) agrees with
Equation (22) since, for large ∆, ψ1(∆) ≈ 1/∆. The similarity between the coincidence counting in
Equations (29) and (30) and in Ma’s analysis [10] is also clear.

6. Conclusions

We have calculated various asymptotic properties of the NSB estimator for estimation of entropies
of discrete random variables. First, the posterior expectations have been evaluated in terms of power
series in 1/K and δ = ∆/N , but for the number of coincidences ∆ � 1. Evaluation is done
using the saddle point expansion. Convergence of the series depends on the number of coincidences
rather than on the total number of samples. This elucidates the similarity to Ma’s argument [10] and
verifies the intuition of [13,14] that counting coincidence is what makes the method work in the severely
undersampled regime. We have then discussed the limit when ∆ ∼ 1, and the saddle point analysis is
not applicable. Here we have shown that the estimator has a finite asymptote for the case of infinitely
many bins, K → ∞, or of an unknown number of bins. We obtained a closed form solutions for the
estimate of the entropy and its variance in this regime. As for ∆ � 1, to the first order, both depend on
the number of coincidences rather than on the total number of samples.

The NSB estimator has been implemented in software, using the current asymptotic analysis as one
of the steps in numerical evaluation of posterior integrals. Armed with empirical tests for the absence
of bias in the estimator suggested in [14,15], the software brings us one step closer to a reliable, model
independent estimation of entropy of discrete probability distributions in the severely undersampled Ma
regime. The method is proving to be particularly powerful in a variety of biological applications.
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