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Abstract: In this paper, a stochastic frontier model accounting for spatial dependency is 

developed using generalized maximum entropy estimation. An application is made for 

measuring total factor productivity in European agriculture. The empirical results show that 

agricultural productivity growth in Europe is driven by upward movements of technology 

over time through technological developments. Results are then compared for a situation in 

which spatial dependency in the technical inefficiency effects is not accounted.  
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1. Introduction 

This paper develops a stochastic frontier model accounting for spatial dependency through spatial 

econometrics techniques and using generalized maximum entropy (GME) estimation. An application is 

provided computing Total Factor Productivity (TFP) growth for the agricultural sector of the EU-27 

countries as well as three European Union (EU) candidate countries (CC): Croatia. Former Yugoslav 

Republic of Macedonia (FYROM) and Turkey.  
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Stochastic frontiers, simultaneously introduced by Aigner [1], Meeusen [2] and Battese [3], usually 

comprise dual error components, one accounting for the random error and the other for the technical 

inefficiency. In order to compute total factor productivity growth a time-varying inefficiency model is 

usually required [4]. A farm-specific temporal variation in technical inefficiency as developed by 

Cuesta [5] is applied to allow countries to have different temporal technical inefficiency patterns.  

Spatial dependence is accounted for in the technical inefficiency component of the stochastic 

frontier. In the literature, [6] detected that the employment rate exhibits a correlation with economic 

growth in neighbouring counties in the American Midwest, while [7] found that technical efficiency 

scores can display spatial dependency given that their determinants are often spatially correlated. 

Therefore, it important to account for the spatial dependency between countries since economic 

conditions in neighbouring countries are likely to be similar as a result of spillovers of economic 

activities across borders and even more for the countries that are part of the EU. These knowledge 

externalities can create dependency in the technical efficiency. Moreover, several other unobserved or 

immeasurable characteristics may be similar across country boundaries, which may lead to 

dependency in the residuals of empirical models of technical efficiency. The spatial dependency is 

introduced through a spatial weight matrix exogenously defined to capture the spillover effects 

between countries included in the study. In so doing, the technical inefficiency component is allowed 

to follow a spatially autoregressive error process [8].  

Standard maximum likelihood stochastic frontier estimations require ad-hoc assumptions on the 

distribution of the inefficiency component. The GME estimator avoids the need for making 

unnecessary assumptions on the inefficiency component. Maximum entropy estimators were 

introduced by Golan [9], and proved to be robust under ill-posed and ill-conditioned problems. A 

GME is particularly suited in this context given the very large number of parameters to be estimated. 

The data are from the Food and Agriculture Organization (FAO) for the period 1993–2006 comprising 

former EU-15 countries, EU-12 as well as three CC.  

The paper is structured as follows: Section 2 contains the time-varying technical inefficiency 

stochastic frontier model accounting for spatial dependency. Section 3 describes the data and the 

empirical model. Section 4 presents the empirical results. Finally, in Section 5 we provide our 

conclusions. 

2. The Empirical Model 

A stochastic production frontier is estimated in order to compute TFP growth which measures the 

change in total output relative to changes in the use of all inputs. Approaches using stochastic-frontier 

production functions have been independently proposed by Aigner [1], Meeusen [2] and Battese [3]. 

Schmidt [10] extended to panel data the production frontier model. For a stochastic production frontier 

estimated by GME see Macedo [11]. The agricultural production of country i (i = 1, ..., N)  at time  

t (t = 1, ..., T), itY , is assumed to be produced using the input array, itX  constituted by land  itX1 , 

machinery  itX 2 , labor  itX3 , fertilizer  itX 4  and livestock  itX5  respectively.  

A trascendetal logarithmic (i.e. translog) production frontier is selected for its flexibility in 

measuring TFP growth. It provides a second-order differential approximation which is linear in 

parameters. A translog production frontier allows production elasticities to vary at each data point and 
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non-neutral Hicksian technical change. The empirical model is specified following the ‘true’ fixed 

effects model of Greene [12,13]. The ‘true’ fixed effects model allows to capture potential  

country-specific time invariant heterogeneity. However when the number of time periods available  

in each panel is not large enough the ‘true’fixed effects model may be subject to the incidental 

parameter problem. Countries can be characterized by different stage of development, liberalization 

and different conditions in terms of soil quality, drainage, altitude and climate. The empirical model is 

specified as follows:  
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where lower case letters ),( xy  indicate natural logs of upper case letters ),( XY ,  I ,,, 10 iα is 

the vector of country-specific intercepts capturing time invariant heterogeneity,  N ,,, 10 nβ  is 

the vector of unknown parameters to be estimated, t  a time trend used in order to account for 

technological change. The inefficiency  itit lnZ =  is assigned a non-negative random variable and 

the random error  itit lnε =  has a symmetric distribution with mean zero.  

Regularity conditions are a priori imposed during the estimation to ensure that input elasticities are 

nonnegative at all observed output levels [14] with the following inequality restrictions:  
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A generalization of the time-varying inefficiency model of Battese [15] proposed by Cuesta [5] is 

implemented and extended to account for spatial dependency in the technical inefficiency effects. 

Cuesta’s [5] function is specified as:  

   iiit ZTtZ exp=  (3) 

where the temporal pattern of inefficiency effects (i.e., ηi) is now a country-specific parameters 

responsive to different temporal variations among countries.  

Spatial dependency is introduced in the inefficiency terms equation (3) by the following expression: 

  iiZ  1= WI   (4) 

where I is an identity matrix,   the parameter accounting for spatial dependency in the inefficiency 

effects, W the spatial weighting matrix and i  a stochastic term ensuring that the technical efficiency 

)(exp itZ  lies between zero and one. Substituting Equation (4) into (3): 

    iiit TtZ  1exp= WI   (5) 

First of all, different weight matrix forms are possible, such as contiguity weights and distance 

weights. The choice of the weight matrix depends on the study at hand and the subject being 

investigated. In this study, a distance-based weight matrix is more appropriate because not all 

countries involved are contiguous (sharing borders). The weight matrix is defined a priori and 

exogenously based on arc distances between the geographical midpoints of the countries. The 

neighbourhood is defined using a cut-off distance that enforces all countries to have at least one 
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neighbour. Two countries are considered neighbors when the geographical distance (arc distance) 

between them is less than a threshold distance. The weight matrix therefore takes value one when 

countries are neighbors and zero when they are not. The threshold distance in this case is chosen in 

such a way to guarantee all countries have at least one neighbor. No country should be a neighbor to 

itself. This forces the weight matrix to have zero on the diagonal. The weight matrix is further 

standardized. Mathematical and statistical reasons for standardization can be found in Bell and 

Bockstael [16]. The technical efficiency of each country in each year is obtained through the 

conditional expectation of )(exp itZ , given the value of  iit Zε  .  

TFP growth is computed and decomposed into the efficiency, technical change and scale 

components through the identity with the so-called Malmquist index (MI) [17]. The MI can be defined 

by using either an input or an output orientation. For country-level analysis, an output orientation is the 

proper choice [4]. An output orientation looks for the maximal proportional expansion of an output 

vector, given an input or resource vector. The efficiency change component is given by:  

  itisisitis ZZZZEC /=exp=   (6) 

The technical change component requires one to evaluate the partial derivatives of the production 

frontier with respect to time using the data for the i-th country in period s  and t . Then the technical 

change between the adjacent periods s  and t  can be derived through the geometric mean of the 

aforementioned partial derivatives. In the case of a translog specification, this is equivalent to the 

exponential of the arithmetic mean of the log derivatives as given by:  
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To detect potential scale change effects, scale change is introduced in computing TFP following 

Orea [18], who uses Diewert’s quadratic identity to derive a MI. The scale change component is given by: 
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single component is then summed up to recover the MI of TFP growth. 

3. Data and the Estimation 

Data are drawn from the FAOSTAT database of the Statistics Division of the Food and Agriculture 

Organization (FAO) of the United Nations. The data include the former EU-15 countries as well as the 

new member states EU-12, notably: Austria, Belgium-Luxembourg, Denmark, Finland, France, 

Germany, Greece, Ireland, Italy, The Netherlands, Portugal, Spain, Sweden, and United Kingdom, 

Bulgaria, Czech Republic, Cyprus, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Romania, 

Slovakia, and Slovenia. In addition three CC to the EU accession are considered: Croatia, the Former 

Yougoslav Republic of Macedonia (FYROM) and Turkey. The data cover the period 1993–2006. The 

sample includes 29 countries for a period of 14 years yielding 406 observations. 

One agricultural aggregate output variable, defined as agricultural production net of quantities of 
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various commodities used as feed and seed, is considered. The output series is based on international 

commodity average prices (1999–2001 1000 I$) and expressed in a single currency unit. Five input 

variables are taken into account. Land comprises arable land land and permanent crops and the area for 

permanent meadows and pastures. It is measured in 1000 Ha. Agricultural tractors refers to wheel and 

crawler or track-laying tractors (excluding garden tractors) used in agriculture without reference to the 

horsepower of the tractors. It is measured in number (1000 No) of tractors in use. Agricultural 

population defined as all persons depending for their livelihood on agriculture, hunting, fishing and 

forestry. It comprises all persons economically active in agriculture as well as their non-working 

dependents. It is measured in thousands of people (Pe). Fertiliser is an aggregate of Nitrogen (N), 

Potassium (P) and Phosphate (K) consumed in agriculture and expressed in tonnes of nutrients. 

Livestock is constructed by aggregating five categories of animals into sheep equivalent. The 

categories of animals considered are: buffaloes, cattle, pigs, sheep and goats. Numbers of these 

animals are converted into sheep equivalents (SE) using the same conversion factors as in Coelli [4]. 

Table 1 presents descriptive statistics for the data. 

Table 1. Descriptive statistics, 1993–2006. 

Variables Units Avg Min Max Std 
Agr. Output ×103 I$ 8281701.2 53350.0 38125640.0 9950171.2 

Land ×103 Ha 8335.2 9.0 41223.0 10174.4 
Machinery ×103 No 349.1 0.5 1900.0 458.2 

Labour ×103 Pe 875.9 2.0 10454.0 1854.0 
Fertilizer ×103 Mt 740.6 0.9 5064.0 1019.5 
Livestock ×103 SE 42007.8 236.8 191956.0 50067.3 

A GME estimator is used. The advantages and properties of the GME estimator are extensively 

discussed in Golan [9], Mittelhammer [19] and Perloff [20]. Here we only list the main advantages for 

the problem at hand. First, the GME estimator efficiently exploits all the information contained in each 

data point, instead of using moment conditions as done by the more traditional estimators. Second, it is 

less influenced by outlying observations because of the weighting between signal and noise in the 

objective function. Third, it is a robust estimator, even when noise is not normally distributed and/or 

the design matrix exhibits high condition indexes. Multicollinearity is often problematic in stochastic 

frontier analysis affecting the sign of the estimated coefficients as well as the precision of the 

estimated coefficients. Fourth, the GME estimator enables the researcher to easily impose prior 

information on parameters [21]. Finally, the GME estimator does not require strong behavioural 

assumptions on the underlying data generating process. 

The parameters of the stochastic production frontier are reparameterized according to the GME 

formalism as follows: 


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with kmp  and imp being the probability vector associated with the stochastic production frontier 

parameters to be estimated and the temporal pattern of inefficiency effects, kmv  and imv representing 

their support values. The supports for kmv  are initially set to  1000,500,0,500,1000   and the 
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supports for iuv  to  5.0,0,5.0 . The inefficiency terms and random error are defined by: 
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with inw  and inlw  being the probability vectors to be estimated and ing  and itlg  representing the 

support values. With respect to the number of support points, Golan [9] show through simulation 

experiments that the greatest improvements in the estimate precision is obtained by selecting five or 

more support values. The number of support values is set to five for the stochastic frontier parameters 

and the inefficiency terms whereas it is set to three for the random error. For the signal space 

definition, when the researcher does not know the possible realizations, it is suggested that v  be set to 

be symmetrical around zero with large negative and positive boundaries [22]. The supports for the 

stochastic terms i  are set following Campbell [23] to  1,0015.0,01.0,005.0,0 . The noise support 

bounds are specified following the widely accepted three sigma rule of Pukelsheim [24], see also 

Golan [9], defining a uniform zero-centred symmetric distribution with a support space specified as 

follows:   ~3,~5.1,0,~5.1,~3  , where ~  is the empirical standard deviation of the dependent 

variable. The parameter   accounting for spatial dependency is reparameterized as follows: 
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where mr  being the probability vector to be estimated and ms  representing the support values defining 

a uniform symmetric distribution with a support space specified as follows:  1,75.0,5.0,25.0,0 . 

The GME objective function H  to maximize is defined as:  
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subject to Equation (1), Equation (2), Equation (5), and Equations (9–11) and the following adding-up 

constraints 
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for all values of k, i and t. 

4. Empirical Results and Discussion 

In this section, we discuss the final estimates. The estimates for the time-varying technical 

inefficiency stochastic frontier model accounting for spatial dependency estimated by GME, are 

displayed in Table 2.  
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Table 2. Estimated coefficients. 

Coef GME1 Support1 GME2 Support2 GME3 Support3 

β1 0.2005 m = (0, 0.1, 0.2, 0.3, 0.4) 0.2005 m = (0, 0.1, 0.2, 0.3, 0.4) 0.2005 m = (0, 0.1, 0.2, 0.3, 0.4) 

β2 0.1996 m = (0, 0.1, 0.2, 0.3, 0.4) 0.1996 m = (0, 0.1, 0.2, 0.3, 0.4) 0.1996 m = (0, 0.1, 0.2, 0.3, 0.4) 

β3 0.1999 m = (0, 0.1, 0.2, 0.3, 0.4) 0.1999 m = (0, 0.1, 0.2, 0.3, 0.4) 0.1999 m = (0, 0.1, 0.2, 0.3, 0.4) 

β4 0.1991 m = (0, 0.1, 0.2, 0.3, 0.4) 0.1991 m = (0, 0.1, 0.2, 0.3, 0.4) 0.1991 m = (0, 0.1, 0.2, 0.3, 0.4) 

β5 0.2008 m = (0, 0.1, 0.2, 0.3, 0.4) 0.2008 m = (0, 0.1, 0.2, 0.3, 0.4) 0.2008 m = (0, 0.1, 0.2, 0.3, 0.4) 

βt 0.0126 m = (−1000, −500, 0, 500, 1000) 0.0126 m = (−500, −250, 0, 250, 500) 0.0126 m = (−250, −125, 0, 125, 250) 

β11 0.2159 m = (−1000, −500, 0, 500, 1000) 0.2159 m = (−500, −250, 0, 250, 500) 0.2158 m = (−250, −125, 0, 125, 250) 

β12 −0.1479 m = (−1000, −500, 0, 500, 1000) −0.1478 m = (−500, −250, 0, 250, 500) −0.1477 m = (−250, −125, 0, 125, 250) 

β13 −0.0098 m = (−1000, −500, 0, 500, 1000) −0.0098 m = (−500, −250, 0, 250, 500) −0.0097 m = (−250, −125, 0, 125, 250) 

β14 −0.0272 m = (−1000, −500, 0, 500, 1000) −0.0272 m = (−500, −250, 0, 250, 500) −0.0271 m = (−250, −125, 0, 125, 250) 

β15 0.1382 m = (−1000, −500, 0, 500, 1000) 0.1382 m = (−500, −250, 0, 250, 500) 0.1381 m = (−250, −125, 0, 125, 250) 

β1t 0.0108 m = (−1000, −500, 0, 500, 1000) 0.0108 m = (−500, −250, 0, 250, 500) 0.0108 m = (−250, −125, 0, 125, 250) 

β22 0.1058 m = (−1000, −500, 0, 500, 1000) 0.1058 m = (−500, −250, 0, 250, 500) 0.1058 m = (−250, −125, 0, 125, 250) 

β23 0.1171 m = (−1000, −500, 0, 500, 1000) 0.1171 m = (−500, −250, 0, 250, 500) 0.1170 m = (−250, −125, 0, 125, 250) 

β24 −0.0419 m = (−1000, −500, 0, 500, 1000) −0.0419 m = (−500, −250, 0, 250, 500) −0.0419 m = (−250, −125, 0, 125, 250) 

β25 0.0661 m = (−1000, −500, 0, 500, 1000) 0.0661 m = (−500, −250, 0, 250, 500) 0.0660 m = (−250, −125, 0, 125, 250) 

β2t 0.0066 m = (−1000, −500, 0, 500, 1000) 0.0066 m = (−500, −250, 0, 250, 500) 0.0066 m = (−250, −125, 0, 125, 250) 

β33 0.0185 m = (−1000, −500, 0, 500, 1000) 0.0184 m = (−500, −250, 0, 250, 500) 0.0184 m = (−250, −125, 0, 125, 250) 

β34 −0.0539 m = (−1000, −500, 0, 500, 1000) −0.0539 m = (−500, −250, 0, 250, 500) −0.0539 m = (−250, −125, 0, 125, 250) 

β35 −0.0667 m = (−1000, −500, 0, 500, 1000) −0.0667 m = (−500, −250, 0, 250, 500) −0.0667 m = (−250, −125, 0, 125, 250) 

β3t −0.0100 m = (−1000, −500, 0, 500, 1000) −0.0100 m = (−500, −250, 0, 250, 500) −0.0100 m = (−250, −125, 0, 125, 250) 

β44 0.0228 m = (−1000, −500, 0, 500, 1000) 0.0228 m = (−500, −250, 0, 250, 500) 0.0229 m = (−250, −125, 0, 125, 250) 

β45 0.1690 m = (−1000, −500, 0, 500, 1000) 0.1689 m = (−500, −250, 0, 250, 500) 0.1688 m = (−250, −125, 0, 125, 250) 

β4t −0.0064 m = (−1000, −500, 0, 500, 1000) −0.0064 m = (−500, −250, 0, 250, 500) −0.0064 m = (−250, −125, 0, 125, 250) 

β55 −0.4092 m = (−1000, −500, 0, 500, 1000) −0.4091 m = (−500, −250, 0, 250, 500) −0.4087 m = (−250, −125, 0, 125, 250) 

β5t −0.0012 m = (−1000, −500, 0, 500, 1000) −0.0012 m = (−500, −250, 0, 250, 500) −0.0012 m = (−250, −125, 0, 125, 250) 

βtt −0.0017 m = (−1000, −500, 0, 500, 1000) −0.0017 m = (−500, −250, 0, 250, 500) −0.0017 m = (−250, −125, 0, 125, 250) 

ρ 0.5001 m = (0, 0.25, 0.5, 0.75, 1) 0.5001 m = (0, 0.25, 0.5, 0.75, 1) 0.5001 m = (0, 0.25, 0.5, 0.75, 1) 

All variables, before estimation, are rescaled in order to have unit means so that the estimated  

first-order coefficients represent the elasticities of output with respect to inputs when evaluated at the 

variable means. One of the advantages of maximum entropy is that it allows to include prior 

information on parameters either introducing additional consistency constraints characterizing the 

system at hand or modifying the support values of the parameters to be estimated. Three different 

support spaces are specified for the estimated models (GME1, GME2, and GME3). The support space 

for the first order coefficients is kept fixed at  4.0,3.0,2.0,1.0,0m  since we attribute a prior 

expectation of 0.2 to all five first order coefficients in order to fulfill globally monotonicity ensuring a 

well behaved production frontier function. For the remaining coefficients the supports bounds are 

progressively shrinked although keeping a wide support definition introducing minimal prior 

information on the coefficient to be estimated. The estimated coefficients appear to be stable to 

different choices of support values. The first order coefficient of the time trend variable provides 

information on the average annual rate in neutral technical change. The annual percentage change in 

output due to technical change is estimated to be 1.3 percent. The coefficient of time squared is 
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negative indicating that the rate of technical change is increasing at a decreasing rate through time. 

The coefficient of time interacted with the land, machinery, labour, fertilizer and livestock input are 

positive for the first two input variables and negative for the remaining three input variables. This 

suggests that technical change has been land-, machinery-saving but labour-, fertilizer- and livestock-

using over the time considered. The country-specific intercepts and the coefficients capturing the 

temporal variation of the technical inefficiency for the estimated model are not reported to save space 

but are available upon request. 

Table 3. Estimated technical efficiency scores for 2006. 

Countries GME1A Support1 Countries GME1B Support2 

Austria 0.80499 w = (0. 0.005. 0.010. 0.015. 1) Austria 0.86293 w = (0. 0.005. 0.010. 0.015. 0.67) 

Denmark 0.80447 w = (0. 0.005. 0.010. 0.015. 1) Denmark 0.86261 w = (0. 0.005. 0.010. 0.015. 0.67) 

Greece 0.80180 w = (0. 0.005. 0.010. 0.015. 1) Greece 0.86062 w = (0. 0.005. 0.010. 0.015. 0.67) 

Germany 0.80153 w = (0. 0.005. 0.010. 0.015. 1) Germany 0.86052 w = (0. 0.005. 0.010. 0.015. 0.67) 

Finland 0.79926 w = (0. 0.005. 0.010. 0.015. 1) Finland 0.85875 w = (0. 0.005. 0.010. 0.015. 0.67) 

Sweden 0.79923 w = (0. 0.005. 0.010. 0.015. 1) Sweden 0.85874 w = (0. 0.005. 0.010. 0.015. 0.67) 

France 0.79763 w = (0. 0.005. 0.010. 0.015. 1) France 0.85758 w = (0. 0.005. 0.010. 0.015. 0.67) 

Italy 0.79735 w = (0. 0.005. 0.010. 0.015. 1) Italy 0.85736 w = (0. 0.005. 0.010. 0.015. 0.67) 

Netherlands 0.79659 w = (0. 0.005. 0.010. 0.015. 1) Netherlands 0.85682 w = (0. 0.005. 0.010. 0.015. 0.67) 

Belgium 0.79392 w = (0. 0.005. 0.010. 0.015. 1) Belgium 0.85504 w = (0. 0.005. 0.010. 0.015. 0.67) 

Ireland 0.75978 w = (0. 0.005. 0.010. 0.015. 1) Ireland 0.82970 w = (0. 0.005. 0.010. 0.015. 0.67) 

Portugal 0.75977 w = (0. 0.005. 0.010. 0.015. 1) Portugal 0.82970 w = (0. 0.005. 0.010. 0.015. 0.67) 

Spain 0.75973 w = (0. 0.005. 0.010. 0.015. 1) Spain 0.82968 w = (0. 0.005. 0.010. 0.015. 0.67) 

United Kingdom 0.75968 w = (0. 0.005. 0.010. 0.015. 1) United Kingdom 0.82966 w = (0. 0.005. 0.010. 0.015. 0.67) 

Slovakia 0.80520 w = (0. 0.005. 0.010. 0.015. 1) Slovakia 0.86310 w = (0. 0.005. 0.010. 0.015. 0.67) 

Poland 0.80483 w = (0. 0.005. 0.010. 0.015. 1) Poland 0.86283 w = (0. 0.005. 0.010. 0.015. 0.67) 

Hungary 0.80473 w = (0. 0.005. 0.010. 0.015. 1) Hungary 0.86275 w = (0. 0.005. 0.010. 0.015. 0.67) 

Czech Republic 0.80462 w = (0. 0.005. 0.010. 0.015. 1) Czech Republic 0.86268 w = (0. 0.005. 0.010. 0.015. 0.67) 

Slovenia 0.80454 w = (0. 0.005. 0.010. 0.015. 1) Romania 0.86265 w = (0. 0.005. 0.010. 0.015. 0.67) 

Romania 0.80454 w = (0. 0.005. 0.010. 0.015. 1) Slovenia 0.86261 w = (0. 0.005. 0.010. 0.015. 0.67) 

Malta 0.80235 w = (0. 0.005. 0.010. 0.015. 1) Malta 0.86102 w = (0. 0.005. 0.010. 0.015. 0.67) 

Bulgaria 0.80212 w = (0. 0.005. 0.010. 0.015. 1) Bulgaria 0.86084 w = (0. 0.005. 0.010. 0.015. 0.67) 

Lithuania 0.80070 w = (0. 0.005. 0.010. 0.015. 1) Lithuania 0.85981 w = (0. 0.005. 0.010. 0.015. 0.67) 

Latvia 0.80002 w = (0. 0.005. 0.010. 0.015. 1) Latvia 0.85932 w = (0. 0.005. 0.010. 0.015. 0.67) 

Estonia 0.79925 w = (0. 0.005. 0.010. 0.015. 1) Estonia 0.85875 w = (0. 0.005. 0.010. 0.015. 0.67) 

Cyprus 0.79803 w = (0. 0.005. 0.010. 0.015. 1) Cyprus 0.85785 w = (0. 0.005. 0.010. 0.015. 0.67) 

Croatia 0.80490 w = (0. 0.005. 0.010. 0.015. 1) Croatia 0.86287 w = (0. 0.005. 0.010. 0.015. 0.67) 

FYROM 0.80440 w = (0. 0.005. 0.010. 0.015. 1) FYROM 0.86256 w = (0. 0.005. 0.010. 0.015. 0.67) 

Turkey 0.79041 w = (0. 0.005. 0.010. 0.015. 1) Turkey 0.85228 w = (0. 0.005. 0.010. 0.015. 0.67) 

Standard Deviation 0.01496  Standard Deviation 0.01100  

Table 3 presents the estimated technical efficiency scores assuming two different upper bounds in 

the support of the inefficiency component. Following Campbell [23] we estimated two models 

(GME1A and GME1B) where the upper limit for the support points is changed. The model GME1A 

assumes a prior technical efficiency mean of 81.4 percent with a maximum of efficiency of 100 
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percent and a minimum of 36.8 percent. The model GME1B assumes a prior technical efficiency mean 

of 86.9 percent with a maximum of efficiency of 100 percent and a minimum of 51.2 percent. The 

ranking of the technical efficiency scores is preserved under the two different distributional 

assumptions with the exception made for Romania and Slovenia. GME1A displays higher standard 

deviation in the estimates and a larger entropy value.  
The decomposition of TFP growth for each country is presented in Table 4. On average the EU-12 

is characterized by higher agricultural productivity growth rates as compared to EU-15 and CC. TFP 

growth ranges from 0.48 for Turkey to 3.48 for Slovenia. All the countries under analysis showed 

productivity growth. Efficiency change ranges from −0.20 for Belgium to 0.17 for Germany. Technical 

change ranges from −0.34 for Croatia to 2.49 for Slovenia. Scale change ranges from -0.68 for France 

to 2.87 for Malta. The estimates suggest that productivity growth was driven by technical change. The 

estimates of technical efficiency change were then compared with a model not allowing for spatial 

dependency  0 . In Figure 1 cumulated technical efficiency change is reported for the model 

allowing for spatial dependency and for the more standard model not including spatial dependency. 

From this application, it appears that not accounting for spatial dependency has an impact on the final 

technical inefficiency estimates. The cumulated technical efficiency changes appear underestimated in 

the standard model not accounting for spatial dependency. 

Figure 1. Cumulated technical efficiency changes, (percent). 

 

Table 4. Decomposition of TFP growth for 2006, (percent). 

Countries Efficiency Change Technical Change Scale Change TFP Change 
Austria 0.0150 2.1045 −0.1027 2.0168 

Denmark 0.1108 1.5095 0.1393 1.7595 
Sweden −0.0479 1.8101 −0.0362 1.7259 
Spain 0.0773 1.6065 0.0086 1.6924 

Finland −0.0097 1.6997 −0.0104 1.6796 
Ireland 0.0073 1.3844 0.0069 1.3986 

United Kingdom −0.0991 1.5839 −0.2259 1.2589 
Belgium −0.1952 1.1707 0.1765 1.1519 
France 0.0504 1.7017 −0.6795 1.0725 
Italy −0.0086 1.5461 −0.4885 1.0490 

Greece −0.0597 1.1068 −0.0547 0.9365 
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Table 4. Cont. 

Countries Efficiency Change Technical Change Scale Change TFP Change 
Germany 0.1686 1.2156 −0.6197 0.7645 
Portugal 0.0338 0.7013 −0.0142 0.7209 

Netherlands 0.0604 0.3225 0.2351 0.6180 
EU-15 average 0.0074 1.3902 −0.1190 1.2747 

Slovenia 0.0345 2.4905 0.9645 3.4894 
Estonia −0.0128 1.7539 1.2814 3.0225 
Malta 0.0565 −0.0044 2.8695 2.9216 
Latvia −0.0486 1.7321 0.7246 2.4081 
Cyprus −0.0103 0.4935 1.2080 1.6912 

Lithuania −0.0458 1.5618 0.0213 1.5373 
Bulgaria −0.0289 1.3112 0.0368 1.3192 
Slovakia −0.0666 0.4443 0.4215 0.7992 
Hungary 0.0465 0.8790 −0.1343 0.7912 
Romania 0.1022 0.8323 −0.3632 0.5714 
Poland −0.0564 0.5874 0.0009 0.5319 

Czech Republic −0.0620 0.5649 −0.0184 0.4846 
EU-12 average −0.0076 1.0539 0.5844 1.6306 

Fyrom 0.1146 1.8425 0.3255 2.2826 
Croatia 0.0089 −0.3494 1.3851 1.0446 
Turkey −0.0187 0.1320 0.3707 0.4841 

CC average 0.0349 0.5417 0.6937 1.2704 

5. Conclusions 

A time-varying technical inefficiency stochastic frontier model was developed accounting for 

spatial dependency through spatial econometrics techniques and using a GME estimation procedure. 

The estimated model also controlled for country-specific time invariant heterogenity. An application 

was provided computing total factor productivity growth for the agricultural sector of the EU-27 

countries as well as three CC: Croatia, FYROM and Turkey.  

The GME estimator allowed us to estimate a model with a relatively large number of parameters 

and include prior information on parameters by defining support bounds and adding specific 

consistency constraints. The inclusion of prior information helped in decreasing multicollinearity 

issues among the exogenous variables The economic analysis showed that agricultural productivity 

growth in Europe is driven by upward movements of technology over time through technological 

developments. EU-12 countries are characterized by larger agricultural productivity growth rates as 

compared to the EU-15 countries and the CC. Most of the countries that were well below the frontier 

at the beginning of the sample period are displaying high TFP growth rates evidencing catch-up. The 

empirical results show that not allowing for spatial dependency underestimate the cumulated technical 

inefficiency changes. 

Topics for future research are the programming of standard errors with bootstrapping techniques 

and to examine the consistency properties of the GME estimator. Care should be taken when 

interpreting the results since the input data used did not allow to control for differences in input 
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qualities across countries. In additon, the potential incidental parameter problem and related bias 

should be limited in our application given the relatively large number of time periods available in our 

panel data set.  
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